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1. Introduction

This paper is concerned with the iteration of the generalized
Stieltjes transform

.y YL el(z) = f(arefff(f)oct.

whére p¢e R 1is fixed, -J < arg 2 < J. , the principal value of
@+¢)"F  is taken and (1+¢)"% £(¢)€ ZL(000) is assumed. Then it is
known /10/ that (1.1) defines an analytic function in {\ (-ee CJ
The transform (1.1) can be inverted by use of a differential opera-
tor of infinite order. In the case ¢=-1 it is additional known
that (1.1) can be inverted by a complex integral formula.

Benedetto /1/, Erdélyi /5/, Pandey /€/, Pathak /7/, Stancovid /9/
and Zemanian /10/ extended the transform (1.1) to generalized func-
tions following different approaches.

¥hen the transform (1.1) is iferated, one leads to the transform

(o) FLPIR v g]te) = [erp ™ fiuet)™™ pro)aie

or, if one can change the order of ‘integration, to the transform

; oo
(.3 PLE, g ]2 = [Kiats g, v) pr)att,
o :

where
O

(104) K(r‘-,fjg,v) = J(ﬁ*j)_?(j-f-t)-vo(/y
o

To distingulsh between these two cases, we refer to (1.2) as the -
zeneralized iterated Stieltjes transform and to (1.3) as the genera-
lized Sz—transform.

Boas and Widder /2/ studied the transform (1.2) and (1.3) in the

case ¢=-~v= 4 , Dube /4/ in the case ¢=~ > %, . A distribu-
tional extention of "(1.3) has recentl- been giver by Dube /3,4/ for
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the cases ¢=v=4 and ¢<~ > %, . Dube proved that for fixed
2>0 and ¢<~ > ¥4 the kernel (1.4) of the transform (1.3)
can be embedded in a test function space. Then the generalized
Sz—transform of elements of the dual space is defined by

sy FlRe 1@ = (o Ky gy D

where

Kajg v (B = K(2t58,%)
According to Zemanian /11/ this method is called the direct approach
to the integral transform of generalized functions.
There is a basically different approach to generalize integral
transforms which may be called the method of adjoint. The idea is
the following. Consider a test function space A which %¢s mapped
by the integral transform continuously into anqther test function
space B . The adjoint mapping then defines the generalized inte-
gral transform for elements of the dual space of B . The transform
thus defined is no longer a function but a distribution, an element
of the dual space of A . For usual functions with suitable inte-
grability properties the double integral

o< OO
1.6 [ [ 46 klx,t56,v)g @ ot

can be evaluated in two different ways showing that

(1.7) <%§’ff3v,§] ) § > =<2, $L9;¢,v] >

and this relation is the basis for the application of the method
of adjoints to the Sz-transform. One example for the method of
adjoints is the well-known theory of Fourier’ transforms of tempered
distributions. For the transform (1.1) this way was presented in
/5/. '

The aim of the present paper is further to develop these two
approaches for the transform (1.3). At first the propérties of the
kernel (1.4) are discussed. Dube's approach is improved to the case
gV >0 » Q+rvV> 4 + Then we discuss the method of adjoints for
the transform (1.3). It is proved that the inversion operator is
again a linear differential operator of infinite order. Examples
are given.

2. The test function space

Following Erdélyi /5/ we define for infinitely differentiable
complex-vaiued functions @(¢) on R, and a, 8€R the set of
seminorms

. 1-at a-€ (&)
(2.1) L (@) = sup T ?4+t) [@d“ ]
' //¢q)z) t;ﬁ%

+

The test function space (A4l o is given by
I

(2.2) M“lé = {4)6 CM(R_' )/:uald,k ((p)(w fpo/' oall kE Z{ JZ,

where 2?’ is the set of all non-negative integers. 0Aﬁg,g is
equipped with the topology generated by the seminorms (2.1). A
sequence {¢n Y P te Ala, g , converges in J(4,4 to
@) if/aal.g,/,((b,, -@) tends to zero as 7 goes to infinity
for each & € ;Z+ . It can be proved that 04&0‘ ig a Préchet-gpace.
Note that #{s . is not nuclear., The dual space Udl;,@ consists
of all continuous linear functionals on 04[% & and is equipped
with the usual weak topology.

Let f(ﬁ be a function defined on K, such that

£ (1) € P € L (0,00)
of u%;/g according to

(g,¢>x6f{m¢({/wf ) ¢6¢/{/4/g

» Then it generates an element

These elements of “44%{ will be called regular elements, and we
use the same notation for the function f(t) and the regular

element of (Af, , which it generates.
|

3. The kernel

At first we study the properties of the kernel (1.4) of our genera-
lized Sg-transform.
Suppose once for all in this paper ¢, v >0 4 Q+v > A .

ot



Lemma 1:

Let %, ¥ >O and consider K(x.t;$,¥) defined by (1.4). Then the
following properties hold:
i) smoothness:

Kot vy € C(R R, Y,
ii) symmetry:

K (xt;8,v) = Kltixsg,v),
1ii) homogeneity:

Kax,at; ¢, v) = £« Klxt;e,~ ).
iv) partial-differential equation:

(qu+f7t+g+v—4) K(x,tye,v) O

i

v) positivity: .

C™ " (907 (97 K(x,t58,¥) >0 for att mne Z,
vi) asymptotic behavionr:

K (4,658,%)= O™ 7)) as € =0 (ve 1)

K E1L55,%) = O (477 80y o tmos (41)

with a logarithmic correction factor on the right-hand side if
¥v<1 orif ¢=1 .

Proof:

The properties i) and ii) are obvious. Properties iii) to vi) follow
by direct computations.

Now we show that (1.4) for fixed Zz¢ é:\<'°°,0] is an element of
Ma ¢ for special a and é .

fTheorem 1:

For fixed Zz€ C\(-o0,0]1 the kernel K(z,t;¢,~v) belongs to cfls ¢
/
if

a £ 4+rmun (0|/1-'Y) ansl a <4 ‘4? ~ o=

(3.1) £ > gom s manx (g 1-¢) anl E>A-~ wf p= 1

Proof:
Congider

/uqﬁlk (K(&t)g,Y>>=

[T (vek )

< ,‘,(\"fk)

b [(v) tk?;?f

Note that (+/(p0)<t if t,y >0

= 4
~(+) tm,

~Ti ¢ arge < T we have

0_;22 é

gso that

l2+ryl

12i+y

lzfgl-g £ (Gb g2

and consequently

a6k (K2 4,8.v)) <

(3.2) 7 7

[ (~vek)

L4

( o 049 2

2

a-€
< 1-ark (141)

(o]

(>

and for z-l2ie

[ Kzt 5, ~vie) |

)E? (IZHH)‘S?

-5

)

a -t e, oy
f4 (1) L[/Z»}yl f(;}'f) {

+ K«
) %Y.

darg 2

4

/1(4/:2/0 ( é({?‘/,t/ 9,y ))

It is sufficient to investigate Mo e,0 (k(&{;g’v) ) for x >0
Because of the homogeneity ot the kernel we have

-€
/““‘0(‘(("1(‘/)’/"’) = Aup 2 (/f"i)a Kix,t;¢,v)
h te R,

xa-g-'v- é

K(1,%;3 v)



Having in mind that x > O

+
of 3 and % by 9 and ¥ respectively we get

Ma,e 0 ( Kigtyg,v) =

G =x T e 1 () g5
and
Ma 60 (K(x,élvg;r))=
Guy = xS iﬁ}e, P IR ey K(1,m v, 8)
Since
(3.5) man (4,%) ¢ ;,57’_?— ¢ max (4x) Y t,x >0

it follows from (3.3) that
;,/ua/“,a (f((x'f)'F|.,)) é C /uqlevlo (k(/"{) 51”’)'

where C
of Lemma 1 gives immediately that

© e (kitiy9,01) < ¢

if a,6 satisfy conditions (3.1) where (' depends on a, €, ¢
and v . This completes the proof of the theorem.

Corollary:
Let 2€ C\(-~,07 , TIf a,t satisfy conditions (3.1), then (1.4)
s an analytic function of 2 in the topology of- .4, e o
{,Further we need the behaviour of Ma,¢0 (KOt 0 ~0)
and ¥ ;—) 0 » respectively. First let x < 4
. Q-
is ¢ ¢ ) % a1y and from (3.4) we have
Xffv-l-m/kq o (‘((ﬁ‘}j,yi)
4 >a , then

1 a-¢ -€ " -
(O 7T (0™ & (500)" L (g, n€

fOI‘ X — ¢
. For < a

has upper and lower nonzero bounds. If

is up to now fixed after substitution

depends on @,% ¢,v and X ., The use of property vi)

o
it

and from (3.3) we have that x$ovo2ré Ma, 0 (Koyess,v )

has upper and lower nonzero bounds. Thus there exist positive
constants C; and C, independent of x but dependent on
a, g,g, v such that for Xg A we have

C Z-!-v-max(alf) Z-pv —man (a,8)
X
1 B

é/“-a/g/o (k&,é,g)y))( C,x

Similarly for X > 41 there exist positive constants €3 and c,
such that for x > 17

c mn (0 2-g-v-min(a € ),)< '
X ' . < Cox
3 € g 60 (kont; 5,9))€ €,

We summarize what we shall need in the following lemma:

/hm(t.‘/x'-y—v- minla€))

.

Lemma 2:
Let a.lé’ gatisfy conditions (3.1), then

/{,ng’g (/(()tlé/f’\/))= 0’(xd-f-v—mux(57,é)) a4 x —+0

Fmin (OIZ'J"V L ED)

(3'6)/&578'0 (/((X{)j’,’)) = ﬁ()l

oA X —> O

4. Dube's approach

Pirgt let us define the generalized S,-transform of distributions

by the direct approach. The definition is similar to Dube's defini-
tion in /4/ for the case ¢= v > '/L . .

Suppose a, & gatisfy conditions (3.1) and suppose Z€ Q\(-oc,oj .
Then I<£)g‘V ()= K(g,t, ¢ v)E L/{Ql{ and (1.5) defines the generalized

8,~tranaform for §€ M, e . From the Corollary of Theorem 1 it°
o 1

follows that PLp;pv/(:) 1is an analytic function of z2ef\ (-, 0] .
From (3.1) and (3.6) we have

= d ~pP-v-max(gqg )
flpig, 1@ =0(121°° Co ¢ )

s (2 —+0

) in (0 2-g-7 - minla €
(4.1) y[f,f}‘/]t(i) fmlz—/m ! ) as [E]— oo

2?



uniformly in any sector O« |Z] < oo s large| ¢ J-d I . If so that
£ is a regular element of ¥, » , then this definition coin- -

gides with that for the classicallcase. ‘ /‘(“«‘,/‘ ( ?L@;g,v]) <
Additionally we have from (3.2)

&, - -
arg & -9~k £ ; Lot A
w2 | Sl T € 7)< c (e L2 (5.3) € Aa60 () s o o (PLETCht) 455 0] )
‘ From the asymptotic behaviour of the hypergeometric function it is
/ known /5/ that
5. The method of adjoints oo ( p , ()
- -1 -7 mn(0 g=p) wx (6 4-1r)-min p‘L
(5.4) J(gﬂc) P et ) e =00 (o)™ 11 )
We prove the following theorem: o

with a logarithmic correction factor on the right-:cand side if
. Because the integrand in the double integral

Theorem 2: P"? or =7
Tet tf’[t“"(4,,_¢) /’"‘J- ?,7-7 (x) 1is positive, the order of integration can
be changed and we have
(5.1) o<>'meu)=(olw~1) , Ayt ma (0,9-7) ‘ 0,4 o
. J t (e ok~ (7| minl0 d-v) max (6, 4) - minla 4)
Then the generalized Sz—transform maps ‘/k'dIA continuously into 5 (gt J (413) ! \) ) o+ v) A+ o,
44{4;[6 if
and therefore
as 1tmn (04-9) ool o <A '/f gs=1
1 1 4-&
Cre* (4e0) 7T 80 kv JG)=
$ 2-¢- v . 2 - y - A
& oY el ac<2g oY co m{dq A-d
. ) A
(5.29 6 z ’I—gr}'ﬂﬂ-x (0’4-')’) aunel 6’ >"l—g (/’t v =1 P = il‘ [ ( {) oAt
: ' o O L (gt
€ 22-p-v+ 4 el 4> 2-p-v A A=0.
i (0 m,n (0w ) oy g Tax oy~ +1-7 g
) (5'5).:0’()(""‘(/ ), %) 4fk)(4“)mm(al'h (0 Aret-v nl1,2:1-v ¢ k‘\)
Proof: p¥1 4 v O N-ad 4,
Let ¢plore %{“‘,” « Then %f[gb;f,r](x) , defined as in (1.3) is Taking into account (5.1) and (5.2), (5.5) gives us N
a smooth function on R, and
et A-&k
- a) ’ X /7($+z) (5-6) /’(qlglk(sflf (/hf) J—g,y]) < ()'
4 y[¢)fﬂ’] (x) =G E— y[¢;f‘i))f](x) i
' [ (¢) . where ( depends on at/A, a €,¢,v and k . Thus, the theorem is?
It follows that proved.
- (k)
| Plbse~] ] € . ) s
‘ Now suppose that «, /4 a.lt? satisfy conditions (5.1) and {(5.2) and
7 (9+k) w - ‘ let p€ Mo s and £€ (’//Z; ¢ -+ From Theorem 2 we have
- -ol ’
Fle) /“4’ ¢o (p) (f[f (1+¢) " ¢, y](x) Fl¢;5,v]J(x) € Hpy and so (1.7) defines a generalized S,-transform
. of £€ c/ﬁﬂ,a.,e.




' 6., The inversion operator

In /5/ it is proved that the generalized Stieltjes transform of
distributions can be inverted by a sequenee of differential opera-
tors.

Let La,¢ be an operator which acts on functions P (&) €& C“(Rf )

as follows

Ln¢ @) =L, ¢ ¢ Qu) -

_ (‘1)"1—1(?) o n tne g1 ol "
(6.1) - w! [(neg-1) At ) t (W}) ¢(f), n e Z*‘

Erdélyi proved that the sequence {L",S’ ‘f[¢;f](f)} converges
in 4, , to lﬁ(t) . In this section we shall prove a similar
. r

statement for the transform (1.3).

Let L"/frv be an operator which acts on functions
as follows

L @) = Loy, Q=

= LH,V OLh’f ¢(1)

M(¢) (¥

- o'{/ R z 2up - "
(6.2) (n)*® [ (neg1) [ lneve1) (E) f"‘ 1(%) ”t k4 ’(;{T) ¢(6).

Note” that [, ., , maps Aoy continuously into

) Arl2-gov
Mq’A '+ For the (formal) adjoint operator we have
y L
“/f,v h}y‘? .
Let us compute L”:Sﬂ,“ K(x,t}.?),,) . Because /10/
-9 r N ntg-1 n
(6.3) th . (x+4) - ! (Zn-e ) x +
13,

n! [Mnep-1) (“t)l'\'f
it follows

L":g,"'7\( k()‘,t}g,\') = L"’v L0 Zn g k()‘fg Y) -
’ ) » ', )

x

[(2n05) (T
! (nig-1) Al

(6.8)

16

e e e, T W

_-;“_ p

Now we show that (6.4) may be written as
Floneg) T amsmed g net

(6.5) —— <
n! [[(nep-1) o (xr4)*"73

-
([""'17 (y+t) )04_;7
The substitution y=wx 1in (6.5) leads to

F(anf) oou_hf'v.v

n! |7 (hvf—1) o (A-fu)zh’f (L"‘)“’,ux‘ (."Q\“"t)‘w ) 0(-%

. [Haaeg) v WY v-1
n.'/-'(ﬁrf.ri) é!'(/’“()l,n’vg w (z_h)v)a(uxr‘[_‘ )- >W&
AF(ZMf? o n

w
n![(nrg-1) Z"/V;x J‘(;fn)zh'f (k"*tfy"'('“
o]

Replace wx by Y in the last integral, (6.5) gets to (6.4).
From (6.3), (6.4) and (6.5) we have

L":_s’vv.’( K (y't)'f)“’ ) =

[ &

So
/—r(‘sz)/ﬁ(.zn'v) j xmy-'v—z :jza-\t

(6.6) G 1)E T 7e9-1) [7 (0evet) (xﬂj)zmy(g‘t)ghrv a‘y )

o

Next we compute
oo

J-’-mgmf Kixt,o,v) ot
0
Using the formula for the beta-function
G0 o= e d 7
(6.7) ] y . 0{:} - td/( / (d)/ (:‘f*i)
o (t=y -
17 (.4)

we get for n+2 >~ |, ned>e

Do.
Th, . ot ot -
(s}

[M(wrtsay) M (nzg1 +v-1) >

/‘1(1'44) /_,‘(hrf-»;) = Qn,(f,v) =9;1_.

By Stirling's formula it follows that the sequence {Qn} conver=
ges to 1 aB n goes to infinity.

i1 ’



In the following we use the operator

L

-1

(6.8) LW)S,‘v =(6,) .
inctead of L, , so that for nel,, ned>v, rn:l>g
we have

00

oo *
Fo— nigr =2 2a "
1= Jhas v Kty = 7, [ X gyt
I ’ 1§ 2ne g FIEY 04‘;] .
0 o (x+9) (y+t)

We want to show that the sequence { ng v, kot e, v) } tends to
S(x-1) in a weak sense. Because of the homogeneity it is suffi-~

cient to consider x =1 .
Let t=at1 s, a3-1 , suppose a=*0U and put

L"‘t k()()‘h-u/g’v) =L /<(’1)/1¢055>)-Y)

WE PR

K‘Y)X
X= 1

Then we have

Ln,g,v k(”,”ﬁd} ¢,y ) =

oo 2 "
J‘ 9o ()

= cfg
h‘g;‘l (44‘1).2;«\0:; ('\jq"l*t‘k)ln*‘{

v o

_ wrkr(v)o‘o o Lm (4* -)\q(\)
BRI «)
o

o(fj ’

2a-Y R ——
[(41\3)-(«3+ 1+ a)] L () Q- (ljﬂ‘a)w—/L

where

Yy - ' -1&a< O
)\a(v)t ’ ‘/{
0y

('L>C)

( Because
’

(440;).)0‘[1)

O < .
(”‘*‘j‘)gvl/l (tijfc.)V-l/‘ < C(fﬂ')

~

for all 4>0O and taking inte account formula 2.2.6.23 from /8/ we

conclude

rae o

/-n,f,v KA, 4va, 5,7 ) ¢

< -
z Cle,v)-m,, - lM(en-2)
Y e )
(4*4)!”%“(“() [2’_’_&*2(1"_4)/4411’]
(6.9) . .
(/H /4—'_+q4)’v‘h‘-2
Lemma 3:
If Y1) is a function continuous in (0, 17
a real number A such that
1
N
Jt G (t) ot converges,
0
then
4-8

f ¢ (4) L—h,w K(1,t;5,v) ott

[+

tends to zero if n goes to infinity.

Proof:

From (6.9) we have for = > X+vy |, me ZZ

a-g

(J ity L_hlg_v K(4,455 ~v) ot | =

~E

:H'VMM)Z;YYkﬁﬂmlﬂv)da/
- 17 !

7l2a-2) oE

r
¢ r _
NIEIRLEALE AP (%4, ) J [$10a)] (tea)

1

J7(net) |7 (ue v-1) /7(;1:1,4.7) P(hrf—hv»” /7(‘)“‘1)
z

(6.10) ¢ C
where we have used that
d+a
(/1+ VA+ a )H

increases in the interval (-1, 0 )

13

%

(2u-1) TC2nep) M(2ner) T(20-2) P
[(m /71-'5)"]

<

C; depends on ¢,v

and there exists

oa

L )
mEY Jora (2l ] -
(‘11 ¥11q )""AL

L Y

and ¢p

v



Note that

2%(1-¢)
e {8y | §-5y >0

and using Stirling formula we can continue the estimate (6.10) and
get
A-g .
; ntA- v -
o< | J Y Laey k(1,658 ) olt /4 G (-
0
as n — oo .

Thus, the lemma is proved.

Lemma_4:
If @i+) is a function continuous in [H,oa) and there exists a
real number X such that
O
X
jt W t) ettt
-1

then
)

JWH)Z;&VK(%t)KY)Oa

1+ ¢

converges,

tends to zero if n goes to infinity.

.Prooﬁ:
Replace ¢ by jg in Lemma 3.
Lemma 5

If W) is a function continuous on R, and there exist real numbers
A and X, such that for some a, £

o o
s J e YiL)elt and J-t)L(Plé)cit : converge,
0 <
then
O
j}?&) Lugv K41, 8,v) ol
0

converges to ‘P(1) if = goes to infinity.

14

i ————

Proof:
By (6.8) we have

oo —

foe) Lo kit ) ot - @la) =
o

(28]

= J(\P(t)_ (P(_/I)) 'Z'-h.g“( l'((/’)'t) Sjy) M i

Pix € >0 such that [Y(t)-¢ (3] <d if only lé-11 ¢ g . Now

decompose the integration into the integration over o< t ¢ 4-¢ ,
1-E ¢t ¢ 4+ ¢ s, 1+€ ¢+ ¢ 0o and denote the corresponding integrals
by I, I2 and I3 regpectively. In view of Lemma 3 and Lemma 4 I,

and I3 tend to zero and for 12 a simple computation leads to

A+ @
‘I;i < j|‘€({)— @1y [; g« Kitt g v) ot ¢
a-g »
oo
CE ST v Kt 5 0y an ¢ £
(o]

Thus, the lemma is proved.

Now we can prove the inversion theorem for the transform (1.3).

Theorem 3:

Suppose > max {0,v-1) , AL~vrmin(0 g-1)

and let ¢ € 4/, ., - Then the sequence {ln g~ ‘J"[_(P',g,v]} converges
in oMy 4 to ¢ .

Proof:
¥e have to prove that for ke Z,

/‘a14|k ( Lvngfv ffy—¢,3,v_] - ) —— (0

as n —» 0o . Note that the sequence { Log ,LlPs5,v] 5 tends
to @ if and only if {Ll., . ¥[®;¢,v]} tends to @ so that
1t is. sufficient to consider the sequence { Z;g v SL@;3,v]} + From

(6.6) and (6.8) we have



L"\Q)VJX (:i)fq))g)V](X) —qﬁ(x):

o
mg-r-v—Z 2n “w

= Vg J(d)(t)-cb(x))J d tmv ol et

(xf\j)lmg (y4+t)

is continuous on K,; , satisfies all conditions of Lemma 5 and
vanishes at w=+1 , Consequentely

Yoys,~ Tu(w | ‘4_—“”3_

(4—&3) (vl-rv\)lhrv - Lf‘ (‘) -0
« Thus

(=]

or with += x-w \ |
-/a““,/*,k (L'l,j"v Sol¢jf}w’]-¢) _l_>0

[+%} (Vo) 2 n
La “oow
6. . ~ R
(6.11) Vo ¢ v ;((dmu) cbm)i(f T k)mv"‘gj ol

&
2
|
8

. as n —» 0o and the theorem is proved. *
Put w
R. () = J ) - (ux)=ch 1 Lemma 6:
“ 1 CD 9 0{7 CD C,Z5 *) . Suppose
Then

(6.12) ¥ > 1-2 » max (0,4-~) | {¢ 14 man (0 1-9)

and et @€ d( § + Then the following commutation relation holds
l
for the operator L, LS

N (kr", . ¢ -7
=)<4J¢ )(x-?)?tp{j * I’f(_}j{)(?x)g‘ 17{-7’

and by (2.1)

| IQ:U(X) | ¢ o

Ad

(6.13) A‘",S,Y‘x‘ Cf[{.?w-z(b({); g,v](x)’)(fﬂ'—z 50[1»1,9”,1@[”}‘3,"]()() .
(/‘UA wa (@) L/‘f,/s « (¢’)) (4*_7 x) o(( . -

Proof:
If 7 and f satisfy (6.12), then d= ys¢rv-2 and sdege~-2
from .6
Furthemore/; ,,{r (3-6) e | satisfy (5.1) so that the S,-transform of 15T Bed) and of
- . . o
(Argy) £ (1ix) man (1,9 g ) : L5, @ (¢)  are well defined.
cor 'Oék)ﬁ (oo and so we get , To prove equality (6.13), we consider the right-hand side of (6.13)

and substitute ¢ by x-u . Using the homogeneity of the kernel
; k(v t;5,v) we have

/“d,A,k (Ru, )\4 (/44/5 L+t ((P) I(/“d/fk(¢)) J max (g ﬁ )3 p(?( , Lev-2

Taking into account the last inequality and (6.11) we have X i K (xt, g, v ) (L")g)*\l)-q_ CDU)) At

fapt (Lo g SLPisc1-0) £

8

k(/f.;uiglv) (L“,S,V)&w{ Qj()ﬁu)) ol

< (/‘d'/g,kvr (¢) *L/dl,jlk (QS)) ‘
oG 0o
T | [ 2

The function % (w) defined by

il

k(".u‘} 3,7) M‘f"hz (L,“S/T)» ¢()ut{) ) oA

0\———-.8 o e

w

¢ thf!’lx I\k(ala'/'fl'\’) JA.‘P'Y-Z @(xu)o(,(,(
Y(w) =|\\ s (3"1,3’/5) g_’zolﬁ l . 0
l’

e e — e
(i
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Replace ux by t » the last integral gets to '

ra Remazk:

L prv-2 An inverslon theorem for the S,~transform of distributions defined
"o v KGytse v )4 ot 2 .
5T o ’ by (1.5) can be proved by following the lines of /4, Theorem 3/,
where as sequence of differential operators a sequence similar to
(6.2) must be elected.

and equality (6.13) is proved.

Let m[ satisfy condition (6.,12), Then from Theorem 3 and Lemma 6.
we see that the sequence { ¥[ ¢, new D g, v]} converges in %171/
to ¢ .

Now the results on the inversion of the generalized Se—transform
(in the sense of (1. 7)) can be summarized as follows:

1. Exemples

v v —— —————

i) Let ¢=v=41 ., Then

bax - Aud o+ x
Theorem 4: Y
Suppose « > Max (0, v-ﬂ,dza.,/g(\um,,,(o $-1) | A< g Kyt, g, vy =
{ ’ “
jr)xdlet @ e Md/; and  f € o2y} ¢+ Then - 1= X '
L, . .
< Lf[. Yy - ;Y8 ]} P> — < 7{7' @ > &S h s oo We get the classical S,-transform considered by Boas and Widder /2/
if . . ) &o
¢ - - A 2 -Aut
a < ~4‘+’W\m(0|g 1) ool a ¢y uf ? -1 H (7.1 (30[(1334’4](?_) _ [ 2 @({)M
£ 2 man (0’\'-1) g oA £ >0 (,f ~ = b
If Z=x >0 , then with t=x'g (7.1) gets to
Y8 50@9;")5.]> ¢>—“—><7€;¢> as n— oo (1.2) YL 1,11 () = j j ¢(xy)9‘é7
if ‘
A€ 4 mn (’0/4,3») ol a4 of p=
b 2 1-9 +rmon (c ) oot £>A-p ”f Y = ii) Let ¢=v=2 , 0¢g<1 ., Then by formula 2.2.5.19 from /8/
! . we have 1-¢ 1-%
' : 1 x -1
t#+ x
A-¢ ()‘-—i) t4~j
Proof: K (x t)S 23) ‘
Wle prove only the first part. Under the conditions mentioned above “4
] ’ o t = X
we have L" "3 ‘F € C/la"f‘y 2, Brorv=2 and 3)[-L"/‘(;i’ I[ ;8 ] € (/((J 4 x
50 that / g0 that oo
4 278 _ -89
L 2 y=| = "t olt
<':PLL")"ISEJV,9J,®>:<L»\.‘V,9£) (:PL_QS;S.'V]S ! (7.3) '?JP[ég 3](2 45’ (2-1) ¢ ¢ ¢(f)
~ and if 2=-x >0 , then with ¢ =x.:j (7.3) gets to
. = Pl PP 5v T > |

Finally, using Theorem 3 we obtain the first part of Theorem 4.

(1.0) S[¢;p,29](2) _Ejaj) e P 5)0?

———
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Tperep T, E5-86-834
06 WTOPHPOBAHHOM NpeobBpasoBanuu CTuUnbTEca

onst oBoGuenupk GYyHKUMHA

OnuceipaeTCa MTepHpOoBaHHoe mnpeobGpasoBaHue CrunbTeca pna
oBobweliHeX GYHKUHA C 1OMOmbl TeXHUKH [YANbHOr'O lipeofpasoBaHudA.
lloxaswiBaeTca, UTO O6paTHuil ONeparTop €cTh NMHeiiHui#t aubdepexH-—
UHanbHul onepaTop GeCKOHEYHOro NopsAkKa.

PaGora pmronHeHa B JlaGopaTopuu TeopeTudeckoy dusuxu OHAH.

Tpenpuit O6beIMHCHHOrO MHCTHTYTa AfepHbIX uccnesopanuii. lyGHa 1986

Iy

Troger G. E5-86-834 "
On the Iterated Stieltjes Transform of Generalized

Functions

The iterated Stieltjes transform is discussed using the
method of adjoint mapping. It is proved that the inversion’
operator is a linear differential operator of infinite order.
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