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1. Introduction

The theory of self-adjoint extensions is & part of functional analysis
which is commonly regarded as classical. Recently, it has attracted a
new interest connected with applications in quantum physics which in-
clude, e.g., rigorous treatment of point interactions 1_8/, a model of
three-particle resonances , the so-called metallic models of molecu-
les 10, , some properties of singulér potentials such as tunneli
effect in one dimension/1' or various regulearization procedure:§12'1f/
etc.

The theory of self-adjoint extension gives us also a possibility
to construct models describing experiments in the quantum point-contact
spectroscopy, where one studies deviations from the Ohm’s law on metel-
lic contacts whose diameter is small comparing to the mean free path
of the electrons in metal 15/. In a recent series of papers/16"8/,
we have analyzed very simple models, in which the electrons are suppo-
sed to be free and spinless, for two typical situations usually dubbed
spear-and-anvil contact and thin-film contsct. Despite their simplicity,
the models are able to reproduce the basic non-linear shape of the ob-
served current-voltage charascteristics of the "point"” contacts as we
have illustrated on examples in Ref.18. On the other hand, one cannot
obtain in this way the fine structhire of the current-voltage characte-
ristics, which is not surprising, because we have neglected completely
structure of the metal (which might be modelled by adding & suitable
periodic potential). Another open question concerna the.choice of the
right self-udjoint extension which should play the role of Hamiltonianj
one would invite a choice guided by some physical considerations rasther
than a fit to experimental data.

Before dealing with these problems, however, one must analyze
basic features of this claess of models. The present paper is a part of
this program ! we concentrate our attention here to the problem how
the current-voltage charancteristic of a thin-film contéct is influen-
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ced by thickness of
the metallic films.

A typical experiment
is sketched schemati-

,~ oxide layer

(/ metallic film
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S a cally on Fig.1. Two

metallic films are
produced on a substra-

te by an evaporation
Fig.1. Scheme of the point-contact

experiment with thin films. technique, separated

by a very thin oxide
layer in which a crack
is produced by an elec-
tric breakdown or me-
chanically. It is well
known from the pioneer-
/19/
energies exhibits oscilletions whose frequency is inversely proporti-
onal to the thickness d of the films.
We are going to discuss two extreme situations. In the first of
them, the film is supnosed to be very thick, i.e., d=00 ; then we
have to analyze motion of a particle in two halfspaces separated by &

ing experiments that the current-voltage charscteristic. at low

plane with one point "hole". One must choose, of course, suitable boun-
dery conditionus on this plane. Since we have in mind motion of elect-
rons in metal, the Neumann condition is an appropriate choice. Other
poesibilities are discussed in Section 3 ; in particular, we show
there that ovne cannot construct & model of this type, in which the
electron is allowed to pees from one halfspace to the other, with Di-
richlet condition.

Starting from the free Kamiltonian in halfspace, we construct a
four-parameter family of self-adjoint extensions HU which may be
used as Hamiltonians for & (spinlees) electron moving on the descri-
bed configuretion menifold ; each of them is characterized by suitable
singular boundary conditions at the point connecting the halfspaces.
Among the admissible Hamiltonians, there is @ physically interesting
two-parametef family containing the operators commuting with the modi-
figg parity operafor which exchanges the halfspaces. In Section, 6, we
celculate the transmission coefficient for each of the operators HU .

The second extreme is represented by the situation, when the film
is very thin so one can set d=0 . The configuratior manifold can be
modelled in this case by two planes connected at one point. This prob-
lem has ‘been discussed in Ref.17 ; in Section 7, we rewrite the boundae-
ry conditions obtained there in a more convenient way snd calculate

the transmission coefficient. Since it yields easily the current-volta-
ge characteristics, we are able to compare results for the two situa-
tions. This is done in the concluding section ; the result is that for

thin films, the observed deviations from the Ohm's law are (at least,

in part) a global guantum (or geometrical) effect rather then a conse-

quence of the electron-phonon interaction.

2. The Operator hO_

Consider first the Laplecien in halfspace specified by the Neumann

2,52
boundary condition, i.e., the operator h on L°(R"X R+) defined by

h"f= —Ay, (2-18)
with
. 2 2 .
D(n) = § ngZ(RZX R,) ® AYE L (R°x ®B,) in the sense of (2.15)

distributions, Eég’y(x) x3=0 =0 } .

Points of Bzx R, ave denoted as x= (x1,x2,x3) with X X € R and
x3eR+ . ‘
The operator h 1is self-adjoint. Qur construction will start

from its non-selfadjoint resiriction

(2.2a)

= H x)= £ some neighborhood
D(hy) = {¥ € Dh) : Y(x)=0 for x o g (2.25)

of the point 0 } .

Let us look for the deficiency indices of h, . It ie useful to work
in the spherical coordinates with the center at o,

X, =T sinﬂ‘cosw y X, =T sinﬁ sinp , x3 =T cos$ y (2.3)

x .
where reR, , (pe[O,Zn) and »ﬁ\g[_'o,-é] . The Hilbert space decomposes

conventionelly &s
12@%x g,) = 2@, ,rlan e t?(s{?a2) (2.4)

where Si2) is the halfephere of unit radius end dQ the rotationally



invarient measure on it. The operator h can be rewritten in the
coordinates (2.3) as

o Loaf2a), 1
hf = - (r 3/ * 2 AT,

2 ar (2.5a)

r

where A is the modified squared angular momentum operstor defined
by the differential expression

- 1 3/. 3 2 R
A= - BinF pry (oll’l‘l 317‘) - sin2$ 3}02 (2.5b)
together with the boundary condition
a
5 f(ﬂ,p)lﬁzﬂ/z =0 (2.5¢)

which follows from the Neumann condition in (2.1Db).

2.1 Proposition : A has a purely point spectrum, Af1m= 1+t
1=0,1,,2,00. , m==1,-1+2,...,1 , where ﬁm:Ynﬁsia with 1+m
even.

Proof : It is easy to see thet flm are eigenvectors of A It rema-
ins to check that they span the space L2(8i2)) . Suppose that a func-
tion ge 12¢s(?)) fuifils

x/2 2z’
sf sing ab g' dp g( ,p)flm(3,¢) =0 (2.6a)
for all 1=0,1,2,... and m=-1,-142,...,1 . We extend g to the
sphere «8(2) by
g(#,p) .. 0gdsgase
E(t,p) :=
s(n—ﬁ,y)) ee. A/2<PS o

80 § is an even function with respect to qu'—ryz—'f‘ (with a possible
exception of a zero measure set). It holds Ylm(ﬂ—#5P)= (—{)l+inm(ﬁ,¢),
and therefore (2.6a) gives

x 27

ofsin'r" a¥ of ap G )Y () = 0 (2.6b)

for 1l+m even ; the same relation holds trivially for 1l+m odd.
Since {Iim} forms an orthonormal basis in LZ(S(Z)) , it follows
that &£=0 , i.e., g=0 . ]

We denote further by Zﬁl the eigenspaces ‘1in.{flm Im=-1,-1+2,
P § } y then the Hilbert space (2.4) decomposes as

4

w .
2,2 _ T (2.72)
I°(R°xR,) = L
+ 120 1
where
2 .
L = 12(r,,r%ar)® &,y (2.70)

and for h we obtain

o0
h= @ h(l)® 1, (2.8)
1=0
where
(1) 1 d( 2 g;) Wi+ o (2.92)
h f = - —5 FA\T +
r2 dr r v
with

D(h(l)) = {f‘el?(ﬂ+,r2dr) : £,f°e aC[R,] and

2 2 ; (2.9v)
nVrer?r,,r%n § -
In the same way, we get the expansion of hO :
o
= (1) (2.10)
by = ® ny-'el ,

1=0
where hél) is again given by the rhs of (2.92) znd

D(hél)) = {fe p(n‘1)y : £(r)=0 on some neighborhood of 0 3 (2.1n)

Hence the self-adjointness problem for ho is reduced to analysis of
the operators hél) . They are e.s.a. for 1z 1 (cf.Theorem X.10 of
Ref.20), while S’

ces equal to (1,1) - solution to the deficiency equations will be

can be easily seen to have the deficiency indi-

presented below. Consequently, we have.
2.2 Proposition * The deficlency indicey of hO are (1,1) .

Before using this information, we are going to make a short digression
concerning & more general type of boundary conditions.

3, The Mixed Boundary Conditions

If we replace the Neumann boundary comdition in (2.1b) by the Dirichlet
one, the corresponding operator hy will be e.s.a. In order to see
this, one has to realize that the modified squared angular momentum

S .




eperator A is specified in this case by the boundary condition
f(ﬂ/2,p)= 0 1instead of (2.5c). An argument similar to proof of Propo-
sition 2.1 then shows that it hss a(pure point spectrum, Afl =
= ] = 2 by

1(1+1)f, , where now flm"ylmr s, ) with 1+m odd. It means that
1=1,2,... and all terms in the decomposition enalogous to (2.10) are
e.s.a.

These boundary conditions represent particular cases of a more

generel condition of the mixed type, namely

2
T b(x = £

7 ¥ )x3=0 Y, (3.18)
where ¢ 1is s real number. In the spherical coordirates, this condi-
tion is independent of r &and looks as follows

A -
- 55 f(?",sa)'#:]’/z scf(@/2,p) . (3.10)

The condition (3.t) can be interpreted as adding a surface-interaction
term which is repulsive (with respect to the origin) if c¢>0 sand
attractive for c¢< O . The Dirichlet condition corresponds to the csse
of infinitely strong repulsion, while the Neumann one means that the
surface term is absent. Somewhere between them there is » criticsl
point Chsa in which the repulsin becomes wesak enough that the ope-
rator h0 ceases to be e.s.a., i.e., the deficiency indices jump
from (0,0) to (1,1) - cf.Fig.2 . There is snother criticel point in
which the sttraction becomes so strong that the particle can collapse

into the singulerity, i.e., the spectrum of ho is unbounded from
below.

h
o below Neumann Dirichlet
unbounded %/\/// hO is e.s.sn. i
- eo11 © v Clsa 2

F1§.2. The critical values of the boundary condition (3.1).

The aim of this section is to find the above named critical points.
In the same way as above, One can decompose ho into an orthogonal sum,
end to reduce therefore the problem to =nalysis of the cperators

W) . ). L 4 21:) 2+
ho T B E = -3 dr(r ar /* T2 £ (3.2e)

with

D(h(()")) ={te Lz(ﬁ+,r2dr) t £,f°¢ AC[R,], £(r)=0 in some

{3.2b)
neighborhood of 0 and hév)fe Lz(ﬂ%.rzdr)} .

The numbers v (y+1) are obtained by solying the eigenvalue problem

Atyp = O+, (3.3)
for the modified squared angulur momentum operator, which is now given
by the expression (2.5b) together with the boundary condition (3.1b)
(at the ssme time, of course, one must demsnd the functions fvm to
be regular at the pole (=07 ). Conventionally, we substitute

£ a(h9) =glcos $)el®¥ for m=0,%1,#2,... obtaining in this way
the eigenvalue problem for the ordinary differentiel operator

L :Lg-= (z2-1)g"+2 P (3.48)
'm ° mg— 2 -1)g zg8 1—228 ’ .

i.e., the Legendre equation, with the boundary conditioms

g regular at z=1

g (0) = cg(0)

(3.4p)

In distinction to the particulaer ceses c =0,0 , the solution to {3.3) need
not generally exhibit degeneracy with respect to m ; only the dege-
neracy with respect to the sign of m persists. Hence for each m=

= 0,%#1,%2,... , we have a sequence of values v(y+1) which obey (3.3).
The equation ng =y{(¥+1)g 1s solved by the first-order Legendre fun-
ction g(z) =Pm(z) sy the solution Qm is excluded by the first one
of the conditions (3.4b) - cf.Ref.21, 8.711.4 . The second cordition
leads to the equation

et Drdy-daed

Figy+3m+ Py -3n+ 1)

2 wgfem) = o (3.5)
{cf.Ref.22, 8.6) ; solving 1t for Vv one can obtain the eigenvalues

of (3.3).
7



Fortunately, it is not nccessary to perform the task in the gene-
ral setting. As we have mentioned, the operstor hév) is e.s.a. iff
9(9+1)a-£ . It is also well known (see, e.g., Ref.zj) that hgv) is
bounded from below iff y (v+1)2 -7 Hence the lowest eigenvalue in)
(3.3) is decisive for both .of ourAﬁroplems. 1t is an_easy consequ-—
ence of the minimsx principle (Rer.20, *Theorem XIII.1) that fhe “"ground
states" of Lm are not lower ,than that of LO y i.e., inf 6(L0)5
< inf 6(Lm) for each m , It is therefore sufficient to solve the
equation (3.5) for m=0 when it acquires. the form

el 102 | '
g\ _ [[Zv+3) . : .
2 tg(3v) = °(F(%‘,”“‘) : (3.62)

™

Th 3 :

[ éle%g3n?alue g}o+})"has Fo be real so y 1is either real belonyngﬁo
-3i0)or V= -5-+1/5 w:;th € R . Thé rhs of (3.6a) is a monoto-
nous function of’ v in, E—E,éo) (decreasing for c¢>0) ;' we denote
it as cPF(v) . ftheans that a solution in (- E,—-) which corresponds
‘t)o_ o»go:ne (',—’,Z), "e‘xi‘sts' iff cF(¥)e (-1,1) . On the other hand, for
=-3 iﬁ the €q.(3.6e) can be after simple manipalations rewritten

in the form \

2
ch(rp) = ~ca®[P(Z+1p)|™ . (3.6b)

It is clearly sufficient to consider B 20 . The rhs (which we denote
as -cG(f) ) is increasing for ¢<0 , but not so fast as ‘ch(rR) ;
its asymptotics for large A is —%c 613-3/2/3'1[1+O(/5'1)] . Hence
(3.6?) haﬁ s solution if “c6(0)2"1" " orie 'can chéck ch(#g) > G(R)/6(0)
for all R #0 80 there is no solution it ' Z¢G(¢)< 1 )

The above considers'tions allow us to calculate the sought critical
valqea % we obtain ' ’

i
'

SRR (L6725 L _
®nea = ?(n 3 4') = 1.09422... - (3.78)

and

S = _[r3/4))? ~ : :
Ceo11 © '2<p(1 1 ) = -7 2[“5/4)4 = -0.22847... (3.7b)

—
S

4. The Admissible Hamiltonians

As mentioned in the introduction, our model consists of & free spinless
particle moving in twc halfspaces (with Neumenn boundsry conditions)
which are connected at one point. The state Hilbert space of such a
system is

2,2 2.2
= ISR X ROOLYR XR,) - 4.1

Since the psrticle is assumed to be'free anywhere except at the point
singularity, @ suitable starting operator for constructing the Hamil-

tonian is

Ho = H0:1® HO,Z , (4.2)
where HO j= ho for j=1,2 . According to Proposition 2.2, the defi-
cieney inéices of Ho are (2,2) so there is a four-parameter family
of self-adjoint extensions HU specified by 2X2 unitary matrices

U . The decomposition (2.10) shows that each extension is of the form
i =46 © hller @ & niller (4.3)
U~ U 1=1 0,1 1=1 0,2 ’ *

where hél)z hél) for J=1,2 (it makes no difference how we number
’
the halfspaces) and AU is some self-adjoint extension of the opera-

tor Aq ¢

1= 0% ) @ m{%e D (4.48)
which acts on the Hilbert space

Ho = (TA(R,,rPaneky) @ (PR, ,x2ar)e k) - (4.4b)

(2)
+ ) spenned by

Here kb is the one dimensional subspace in 1%(s
the constant funetion fOO ; the angular part is therefore trivial
and>we shall drop it out in the following. )

The ad joint operator AO is given by the same differential ex-
pression as AO icf.Ref.zo, Appendix to Sec.X.1) so the deficiency
subspaces JASHE Ker(ABitiI) can be found essily ! they are span-
ned by the functions

£ 0
+) =( o) +) _
Fisle /) 0 T2 (f()) : (4.58)



-&r
£olr) = &= , e= &7/t (4.5b)
and
¢§—) - P§+) , i=1,2 . . . (4.5¢)

According to the von Neumann theory, we have
Ay AY (4.68)
U 0 :

and every extension is specified by its domain,

= (+) (=) (=)
D(Ay) = Dy = 3= ¢+ oyl T+ sy P00+
U U { 1Yy (1;W1 1272 (4.60)

* °2(?§+)*“21¢1 *“22¢§_)’ P ey,ceC, peD(RY

where ujk are the matrix elements of U .

Not every extension is interesting, hovever. It is reasonable to
suppose that the two halfspaces are physically equivalent, i.e., to
fequire the extencsions HU to commute with the modified parity operea-
tor P which is defined on & by

U, :
P% =] . (4.7)

¥2 h
. In the following, we restrict therefore our attention to such extensi-
ons AU which fulfil

POAUC AUPO ] (4-88)

where Po=PPd, , or more explicitly, PoDy € Dy and Pohy = AyPy
for yel%l. An inspection of the relations (4.6) shows that it is

equivalent to
Uyp = Upp oy Ugp T Upy (4.8Db)
gsince P w(ij= (+) and P.A é AP The family of extensions selec-
of1 2 oo < AoFp - y ' !

ted in this way is therefore two-parsmetric and its elements can be
specified by the matrices

10

U ol cosf i sin/g

i sin/S cos/&

with A,¢e[o0,27) .

(4.9)

5. Characterization of the Extensions Through Boundary Conditions

According to (4.68), every extension acts as the differential operator

(2.92) with 1=0 on each component of the weve function. The expressi-
on (4.6b) of the domain DU , however, is not very suitable for practi-
cal calculations ; one would prefer rather to have some bveoundary condi-
tions in the connection point. Since the deficiency functions (4.5)

are singular there, one must introduce regularized boundary vslues si-

milarly as in Kefs.4,16,17 :

Lo(f) = lim rf(r) , (5.1a)
r+0+

L,(f) = lim [f(r) - Lo(f)r"] . (5.1b)
- r-0+

Before proceeding further, we shall make one more restriction in the
class of considered extensions. If the matrix U 1is disgonal, then

one can see directly from (4.3) and (4.6b) together with the von Neu~
mann formula for AUf that HU is reduced by the projections E. on
the subspaces of & referring to the two helfspaces ; the situation is
completely analogous to what huppens for a diagonel U in thg models
treated in Refs.16,17 . In such a cese, motion in the two parts of the
configuration manifold is separated ; the. perticle cannot pass through
the singularity to the other halfspace. Since this situation is not in-
teresting from the viewpoint of modelling a thin—film contact, we res-
trict our attention in the following to the operators HU corresponding
to non-dizgonal matrices, U only.

5.1 Froposition : Each operator HU -which is not reduced by thHé pro-
Jjéctions EJ is of the form (4.3), where the operator Ay C AB is
characterized uniguely by its domsin specified by the following requi-
rements

(1) f=(f‘2) with 2,,f € AC(R,] end h(meGLz(lR*.rzdr) L i=1,2,

(ii) the functions fj fulfil the following boundary conditions at

r=0 :
Ly(fy) = aly(£,) + dL,(£,) (5.2
Ly (£y) = eLy(f,) + dL1(f2) )

11



where the coefficients a,b,c,d are related to the elements of

a non~diagonal 2% 2 unitary metrix U by

—1/? -1

a £ u12(i+ iugy -u,, ~det u) |, (5.%a)
-1/2 -1
b= 2 i (1 +tr U +det U)Y , (5.3b)
c '1/2 u"1 -1 ~itrU+det U) |, (5.3c)
o oa-1/2 2 -1, .
d =2 £ u12(—1+-u11— iu,, +det U) (5.34)

In particular, for the extensiomns commuting with the operator
(4.7) we have

cosf + cos§ - sin§

a = -4 = - (5.4a)
sinf
b= 2'/2 _L.—_ﬁ (5.4D)
sinf
o = 1/2 ﬂlns - cosﬂ (5.4¢)

sinﬁ

where the parameters fS# 0 and § refer to the matrix (4.9).

Proof : Each ge€ D(KO) fulfils the condition (i), and the same is
true for any linear combination of the deficiency functioms. In view
of (4.6b} and (5.1), the condition (5.2) yield the following equations
for the coefficients a,b,c,d

1t +u = au - b&u , N

1% 12 12

u '=a(t+u ) - b(€ +&8u,,)

22
21 22 {(5.5)
-5-—£u1, = c:u.‘2 -d£u12 ,

-fuy, = ce(t +u22)-d(£ +£u22) .

Solving it, we obtain (5.3). and substituting from (4.9) for U , we
arrive at the relations (5.4). It remains to check that the map Uv>
lead to
the same values of the coefficients. The relatiomns (5.3) then give

v {a,b,c,d} is injective. Suppose that two matrices u,u’

i+iu“-u22-det U =0L(i+iu'1 —u22-det U |,

t+tr U'+det U' =6&(1+tr U+det U) ,

(5.6)

1-41trU° +det U = x(-1-itr U +det U) ,

= (-1 +u,, ~iu

—i+u“-iu22+detU 1" 22

+det U} ,

' 12

R —

where &= u{z/u12 ; this number is non-zero by assumption. Taking
suitable linear combinations of these relations, we get

Uyq =g, = KU -uy,) (5.78)
22 ietr v s (22 ig Uy, (5.7b)
g+EdetU’ =a(g+zdetU) , (5.7¢)
THug =l +ay,) (5.74)

N ' 4 v : !

The first two of them give the relation 1- id-Eu{1 =6(1+1i +2u}1) ,

which is compatible with (5.7d) only if* & =1 .'Hence we have u{é:
= u;, , and using (5.72,b) again, we get ,gj f—ujj Finally, combi-
ning these results with (5.7c), we obtain™’ uéﬁ =P2A o ]

6. The Transmission Coefficient

Tet us now examine the situation when the particle passes from one half-
space to the other one through the point singularityl; odr aim is to
find probability per unit time of the transm1591on. Similarly as in
Refs.16-18, we use the time-independent Ppuroach, eince Zt makes tthi

problem more manageable. We start with the function f = f1 ’ where
’ : 2 .

-ikr ixr
£,(r) = £ + 42 ,
r :
ikr (6.1)
f2(1") =B T i — - . -

v N \ 1 . o . A -

Clearly fj,f.'e sc(Rr,]
The boundary conditions

and demand it to belong locally to D(A )
and nl®f =1’r, loc(ﬁ+,r az)
(5.2) epplied t0"(6.1) yield simplé equatidbns which are ‘solved by

belongs to

dk(a+d) +¢c - bk2

Ax) s B (6.2a)
ik(a-d) - ¢ - bk . .

"

and o e
2ik
ik(e-d) - ¢ ~-bk

B(k)

We are interested in the extensions commyting with the operator (4.7),
then the last relations reduce in the parametrifation (4.9) to the form

sin§ - cosf - x? (cos§ + cosf) (6.%a)

121/—}cosﬁ +cos§ —sing)—31n§ +cosA -k2(cos§ +c058)

Alk) =

13 :


http:Pj'j.,=u

12'2 ginp
B(x) = /2. >
i2 k(cosﬁ-fcosj —sinj)-sinf +005/3 -k (coef +cos/3)
(6.3b)
i1t is easy to see that these coefficients fulfil
G2 +1Baoi? = 1 . (6.4)

Let us ask now how the transmission coefficient ean be derived from
here. The S-matrix approach is not applicable, at least without a more
sophisticeted formulation, since we have no free Hamiltonian to compa-
re. Instead, we shall calculate the probability current through the
halfspheres of radius R in the two halfspaces. One obtains

of (r)]
ar

2
e = -2 Im[f1(r) =gx(1- AN?2) , (6.58)

r=R

where we set Y =2m=1 and the sign is chogsen to correspond to the

incoming probability current, and similarly
3,(R) = axiB)I? (6.5b)

These quantities do not depend on R , so it is neturel to interpret

them a8 the probability current through the connection point. The
transmission coefticient at the energy E= k2 is therefore egual to

TE) = 1B)l? =
(6.6)

_ 2k2 sinzﬁ
2k2 (cos B+ coss - sinj’ )2+(sinj‘ -cos[i + k2(cosj‘ + cosﬁ))2

It is easy to see that there are two extensions (in the “"parity preser-
ving" class), namely those corresponding to j=24- and ﬁ:%,l} N
which yield full transmission, IA(k)F = 1 . These are slso the only
cases in which the transmission coefficient is energy independent.
Notice that the second named extension (with /3: %% ) corresponds to
the situation when the wavefunctions sre "glued together" in such @

way that the regularized function r#» rf(r) is continuous at r=0
Itogether with its first derivative.

7. The Case of Two Planes

In th;g section, we are going to discuss the second extreme case menti-
oned in the introduction, a free particle moving on two planes connec-

ted in one point. This situstion has been analyzed in Ref.17, and our

14

aim here is to rephrage the results in a more suitable way. Recall that

the boundary conditions cen be written in terms of the regularized boun-
dery values

L.(f) = 1i f(r) ~ 14 .
otf) = lim S, 50 ii&[f(r)_no(f)lnr] . (7.1)

The admissible Hemiltonians are of the form HU =AUéB h , where h is
a self-adjoint operztor analogous to the second and third term in (4.3)

(gf.Proposition 1 of Ref.17) and AU is u self-adjoint operator on
L (R+,r dr) & L2(R+,I'dr) which acts as

d df1)
ar\Y dar,

(f ) —
A= .
U f2 1 a ( dfz) (7.2)

dr dr

Hi=

K-

The domain og Ay consists of the functions f with f,,f ¢ AC[R,]
and Ayf. €L (R+,r dr) , which are (for a given U) specified by sui-
table boundary conditions.

‘7.1 Proposition : The boundary conditions formulated in Proposition 3
of Ref.17 can be replaced for & non-diagonsl U by

Lo(f1) = aLO(fZ)-»bL1(f2) ,

i (7.3)
L,(f,) =

CLO(f2)+dL1(f2) ’

where the coefficients a,b,c,d are related to the matrix elements
of U as follows

a = u?é[}(u11 - 1)-+i(det U - u22)] , (7.48)
b=& oIl -trusaetv] (7.4b)
c = 7{—21 u;;_[—}g +-_'/i7trU+72det U] , (7.4¢)
a = u;; R —uy,) Ky - detU)] | (7.44)
where % =DLy(f0)=3+3(y-1n2) and g=0.577216... 1is the Euler’s

congtant.

Proof can be performed in & complete znalogy with that of Proposition
5.1 or of Proposition 3 of Ref.17 . Alternstively, one can write
down and solve the linear relations between the boundary conditions
(7.3) and those of Ref.17. n

Similarly as ubove, we are interested primarily in the extensions
which commute with the modified parity operator which is defined on the
state space of the present problem again by the relation (4.7). The
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admissible matrices U . are then of the form (4.9) and the coefficients

(7.4) can be rewritten as

sinf +%(I-—1n 2)(cosf - cosf§)

a = -d = 5 (7-53)
sin
b 4 cos§ -cosé ' (7.5b)
I sinﬁ

£y at 18 L2 . o
¢ = QZinF[%(al-ln‘)Slnf +(E"P(J‘-1nd) )(0003 005/5 )] (7.5¢)

Now we want to calculate the transmission coefficient. We start
with f:( ’)
f2

, where

(7.6a)

it

e () = 1B ey +a0OED (ke

(7.6b)

(1)
f2(r) B(k)HO (kr) ,

and demand it to belong locally to D(AU) . A simple calculation
yields expressions for A,B which reduce in the "parity preserving"

case to the form

2
c-2a(f+1n %)-b[%—*»((-vln 1—2‘)2]

A(k) = : > (7.72)
ag g Bov g D
=i
B(k) = > (7.7b)
c- 2&(% +§+1n %)-b(%+g‘+ln —2)

it can_ be seen easily that they fulfil the relation (6.4). Then one
. can calculate the incoming (outgoing) probability current through the
circle of redius R in the first (second) plane ; it holds

5 R) = 40— AGI?) , §,R) = 4lB0)? (7.8)

Notice that if we use instesd the ansatz of Ref.17, i.e., if the first
term on the rhs of (7.6a) is replaced by Jo(kr) , then j'(R) =

= 1=-{1+ RA(k)I2 = 1—430(k)(2 , where SO(k) is the s-wave scattering
matrix. The relations (7.8) show that the transmission coefficient is

egual to
T2y = 130012 . (7.9

In digtinction to the case of two halfspaces, mo extension provides us
with an energy-independent transmission coefficient. There is again
one extension, namely the one corresponding to the matrix (4.9) with
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j‘ =ﬁ = - arctg (‘%(f— ln2)) , such that the wavefunctions are joined
“continuously" at r=0 as well as their "derivatives", but even in
this case the transmission probability depends on energy :

2 4 k -1
f(k)=[1+p(dl+ln§)] .

8. Conclusiong

With the knowledge of the transmission coefficient J(E)as a function
of energy,we are able to calculate the current-voltage characteris-
tics. If the metels involved have the same Fermi energy, then the cur-
rent is given by/24

od
2
I= -5 c{.7’(E)[fT(E)-fT(E-eu)] dE , (8.18)

where e 1is the electron chsrge, U 1is the applied voltage, and

E-—EF -1
fT(E) = {1+exp( k‘l‘ )}

is the electron-gas density at the temperature T and Fermi energy
EF . The results are particularly simple in the zero-temperature limit.
The differential resistance, e.g., is then given by

-

(8.1Db)

%J = %% -.T(EF+eU)'1 ; (8.2)

this formula is of interest because dU/dl is @ measured quantity,
and the measurements are usually performed at temperatures of few K .
To be just, we mus%t mention that the formula (8.1) has been challenged,
however, the alternative proposed in Ref.25 differs by an additive
constant, which is unimportant for the argument presented below.

Let us turn now to the two extreme situations mentioned in the
introduction. In the case when the "films" are very thick, which we
can model by two halfspaces, we found two admissible Hamiltonians
which yielded a transmission coefficient which is energy-independent,
i,e., which gives a lineur relation between the current and applied
voltage. As we have remarked, the problem of choosing the right self-
adjoint extension remains open. What is important, hbwever, is that
there are extensions leading to the Ohm’s law in this simple model.

The situation is entirely different if the films are very thin.
The analysis of Section 7 shows that the transmission coefficient is
energy—éependent in this case for every extension. This is in contrast

17
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,with the usual explanation of the non-linear shape of current-
voltage characteristics as a result of electron-phonon interaction.
Our model shows that the Ohm's law should be expected to be violated

for sufficiently thin films independently of any interasction.
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3kcHep M., We6a N,
MpocTan mopens ToueuHOro KCHTAKTa B TOHKMX NNEHKAxX
8 ABYX M TPex n3aMepeHWAx

E5-86-693

PaccMmartpusaeTtca csoGoaHanr GecCnMHOBaR KBanTOBaRs wacTuya, ABUKYWAACA Ha
KOHOUr ypayMoHHOM MHOroobpaanu, cocToAuweM “3 ABYX MAEHTUUHWX 4acTeil, Coean-
HEeHHWX B OAHON Touxke. bonbwe BCEro Mu 3aHMMaEMCA TpexpaaMepHuM Criyuyaem, Korpgal
3TUMKU UACTAMM ABNANTCA NOAYNPOCTPAHCTBA C MPaHWMUHWM ycrnoBuem Heiimana; ob6cyx-
A3eTCA KOPOTKO Takke cnyuan 6onee obuwero rpaHuunmro ycnoswus. fpuw nomoum Teo-
PUK CAMOCONPAKEHHEX PACWMPEHUH NOCTPOEH KNACC AONYCTUMBIX aMWIlb TOHMAHOB. (Cpe-
AW HUX OCOGEHHWIA MHTEPEeC NPORBNABTCA K ABYXNapaMeTpUUECKOMY CEMeNCTBY, ane-
MEHTH KOTOPOTO WHBAPUAHTHH NO OTHOWEHWK K 3aMEHE NONYMPOCTPAHCTB; BHYMCARET-
CA KOPPUUMEHT NPOXONMAEHUA ANA KakAOro U3 3TuX pacumpennii. 06CywnaeTCm Takke
ABUKEHWE HA ABYX NNOCKOCTAX paccmoTpeHHOe B Hawen HegasHen paboTe; nonyueHa
APYrana xapaxkTepu3auma AONYCTUMHIX raMullb TOHWMAHOB,., B 3aknouenne npueepeHo
CPpaBHeHWe 3TUX ABYx CnyuyaeB KakK MOAENEN ANIA 3KCNEPUMEHTOB KOHTAKTHOW CNeKTpo-
CKONUK B TOHKWMX NNEHKax.

Pabora sunonHena 8 JlaGopaTopuu TeopeTudeckol Guankm OUAN.

Coobuiene OGbelnuHEHHOro MHCTHTYTa A[epHBIX Hccrefopauui. ly6ua 1986

Exner P., Seba P.
A Simple Model of Thin-Film Point Contact
in Two and Three Dimensions

E5-86-693

) We treat a free spinless quantum particle moving on a configuration
manifold which consists of two identical parts connected in one point. Most
attention is paid to the three-dimensional case when these parts are half-
spaces with Neumann condition on the boundary; however, we discuss also
briefly a more general boundary condition. The class of admissible Hamilto-
nians is constructed by means of the theory of self-adjoint extensions. Among
them, a two-parameter family is particularly important whose elements are
invariant with respect to exchange of the halfspaces; we compute the trans-
mission coefficient for each of these extensions. We discuss also the motion
on two planes considered in our recent paper, obtaining another characteri-
zation of the admissible Hamiltonians. In conclusions the two situations are

compared as models for point-contact spectroscopical experiments in thin
metallic films.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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