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1. Introduction 

The tbeory of self-adjoint extensions i8 a part of functional analyeis 

which ie commonly regarded a8 claaeical. Recently, it has attracted a 
new interest connected with appl~cations in quantum physics whieh in­

1-8/,elude, e.g., rigorous treatment of point interaetions/ 8 model of 

three-part1ele resonaneee/9/ , the so-called metallic modela of molecu­
/101 .les ,some propert1es of singular potentials sueh aa tunneling 

. /11/ . 112-14/effeet in one d1mensio~ or various regularlzation procedures 
etc. 

The theoty of self-adjoint extension givee us also a poseibility 

to eonstruet modele deseribing experimenta in the quantum point-eontact 
speetroeeopy, where one etudiea deviations from the Ohm's law on metal­
lic contacts whoee diameter ia small comparing to the mean free path 
of the eleetrona in metal/15/ . In a reeent series of papera/16- 18/, 

we have analyzed very simple modele, in which the electrons are suppo­

sed to be free and spinles8, for two typieal situationa usually dubbed 
spear-and-anvil eontaet end thin-film cont~ct. Despite their simplic~ty, 

the modele are able to reproduce the basic non-linear shape of the ob­
served current-voltage eharaeter1sties of the ~point~ contaete as we 

have illuetrated on examples in Ref.18. On the other hand, one cannot 
obtain in this way the fine struetUre of the current-voltage eharaete­
ristiee, which 15 not surprising, because we heve neglected completely 
atructure of thc metal (whieh Night be modelled by adding a suitable 

periodic potent1al). Another open question eoncerne the.choiee of the 

rlght self-lldjoint extension whieh should play the role of Hamiltonian; 
one would invite a choiee guided by some physieal consideratione rather 
than a fit to experimental data. 

Before dealing with these problema, however, one must analyze 

basie features of this elaes of modela. The preaent paper ia a part of 
th1s program : we eoneentrate our attention here to the problem how 

the eurrent-voltage eharoeteristic of a thin-film contáet is influen­

'fn~t'i.lIiHt'IiHI.i-n RilCrtrryr I 
tUteJ13iWI, cu:r,'~jiana,Hnf1 , 
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ced by thickness of/ oxide layer 
the metallic films.i metallic film i A typical experiment 

is sketched schemati­

cally on Io'ig.'. TwoL.....lIIIJIItd
/1. 1ft, /J!/;~1. 1.11 , d 

metallic films are 
produced on a substra­

te by an evaporation 
Fig.1. Scheme of the point-contact technique, separatedexperiment with thin films. 

by a very thin oxide 

leyer in which a crack 

is produced by an elec­

tric breakdown or me­

chanically. It is well 

known trom the pioneer­

ing experiments/19/ that thé current-voltage characteristic. at low 

en~rgies exhibits oscillations whose frequency is inversely propórti ­

onal to the thickness d of the films. 

We are going to discuss two extreme situations. In the first of 

them, the film is sup~osed to be very thick, i.e., d=OO ; then we 

have ~o analyze motion of a particle in two halfspaces separated by a 

pla~e with one point "hole". One must choqse, of course, suitable boun­

dary conditionu on this plane. Since we have in mind motion of elect­

rons in metal, the Neumann condition i8 an appro.priate choice. Other 

possibilities are discussed in Section , ; in particular, we show 

ther~ that one cannot construct a model of this type, in which the 

electron i8 allowed to pass from one halfspace to the other, with Di­

richlet condition. 

Starting from the free namiltonian in halfspace, we construct a 

four-parameter family of self-adjoint extenaione ~U which may be 

used as Hamiltonians for 8 (spinless) electron moving on the descri ­

bed configuration manifold ; each of tbem is characterized by Buitable 

singular boundary conditions at the point connecting the halfspaces. 

Among the ad~is6ible Hamiltonians, there i6 a physically interesting 

two-parameter family containing the operators commuting with tbe modi­

fi~~ parity operator which exchanges the halfspaces. -In Section,6, we 
calculate the transmission coefficient for each of the operators HU' 

The ~econd extreme ia represented by the situation, when the film 

ie very thin so one can set d= O . The configuratior- manifold can be 

modelled in this case by two planes connected at one point. Thís prob­

lem ha~'~een discussed in Ref.17 ; in Section 7, we rewrite the bounda~ 

ry conditions obtained there in a more convenient way and calculate 
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the transmiBsion coefficient. Since it yieldu easíly the current-volta­

ge characteristics', we are able to compare results for the two situa­

tíons. This i6 done in the concluding section ;	 the result ie that for 

thin films, the observed deviations from the Ohm's law are (at least, 
in part) a global quantum (or geometrical) effect rather then a conse­

quence of the electron-phonon interaction. 

2. The Operator hO_ 

Consider	 first the Laplacían in halfspace specified by the Neumann
 
2(R2


boundary condition, i.e., the operator h on L X R+) defined by 

(2. , a)
h'l( = -A'If 

with 

2 2 2
D(h) f 1f~L (IR x IR.) : A~€.L2 (IR KiR+) in the s ens e of 

(2. , b ) 

distributions, -!-",(x)
aX 

Ix 3
-O- = O J . 
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Points of lR
2 

x IR+ aTe denoted as x= (x, ,x 2,x 3
') with X, ,X 2 E IR and
 

x 3 € IR+ •
 
The operator h i8
 self-adjoint. Our construction will start
 

from its non-selfadjoint restríction
 

(2.2a)
h := h ~ DOO
 

D(h ) { "f ~ Dt h ) : 1f(x) = O for x of some neighborhood

O (2.2b) 

of the point O J 

Let us look for the' deficiency indices of	 It ia useful to workhO•
 
in the spherical coordinates with the center at O,
 

x, = r sin{hcosrp X = r einjlJ sin~ x, = r co s ~ (2.,3 ) 
2 

The Hilbert space decomposeewhere r~R+ ' tpfê[O,2J;) and $.E.[O,l'J 

conventionelly as 

L2(1R 2 x IR+) = L 2 (1R+ , r 2dr)s L2(S~2) ,dQ) (2.4) 

where S(2) ie the halfaphere of unit radiuB and dQ the rotationally 
+ 

3 



invarient measure on it. The operator h can be rewritten in the 

coordinates (2.3) as 

-L .1:.( 2 éH) -.L I\fhf (2.5a)r2 ar r ar + r 2 ' 

where A ie the modified squared angular momen~um operator defined 

by the differential expression 

2 
1 a ( ~ B) .1 8 (2.5b)A:: - sinl\ ô-Oo sin 'I 8Ítl - Bin2~ ay;2 

together with the boundary condition 

(2.5c)~ f ( ,q. ,p)I:. =:)1/2 :: o 

which ~ol1ows from the Neumann condition in (2.1b). 

2.1 Froposi tion: A hBS a purely point spectrum, Afl :: 1 (l+ 1 )f1 ' 

1=0,1,,2, •.• , m=-I,-1+2, ... ,1 ,where f1m=Y1mts:2) ~th l+m m 

even. 

Proof : It is easy to see thet fI are eigenvectors of A . It rema­
m 2 (2)

ins to check that they span the space L (S+ ). Suppose that a func­

tion g€ L2tS:2)) fulfils 

.'1'/2 2)( • 

./ sin~ d~ { d'{J ~flm(~'~) = O (2.6a·) 

for all 1= 0,1,2, ... and m::: -1,-1-+2, ... ,1 . We extend g to the 
(2) . 

sphere ..S by 

( g(~,rp) 0~~~Jl/2 

g(.f•'P) : =l g (. _ ~. 'P) 
Jl/2 < ~ s :J[ 

e o g ia an even function wi th respect to ~~ 1{ --1' (wí, th a possib1e 

exception of a zero measure set). It holds Ylm(:Jf-';','f)::; (-l)l+mYlm(~'~)' 
and therefore (2.6a) gives 

fi[ 2:Jrt sin'" dJ' i dI! g(~,tp)Y1m(J.,~) = O (2.6b) 

for l+m even; the same re1ation holds trivially for l+m odd. 

L2(S(2))Since LY1m1 forms an orthonormal basis in , it follows 

tha t g;: O , i. e., g ::; O . .. 

We denote further by k 1 the eigenspaces . L'í n -[fIm: m = -1,-1+2, 

... ,1 J ; then the Hilbert space (2.4) decomposes as 

4 

uo 

L2(1R2 (2.7a)
X li+ ) ED LI
 

1=0
 

where 

2(1R+, 2dr) (2.7b)
LI = L r ~ ~ 

and for h we obtain 

(2.8)h = ~ h(l)~ I
 
1=0
 

where 

J.... -ª-( 2 df)+ lll+1)f (2.9a)h(l)f 
r 2 dr r dr ~ 

with 

{f€L 2(lR+,r2dr)D(h(l)) = : f,f'E, AU[lR+J and 
(2.9b) 

L2(1R+,r 2dr) 1 . h(l)f € 

In the same way, we get the expansion of h O 

(2.10)h = ~ h(l)18l I
 
O l=G O
 

where h~l) ia again given by the rhs Df (2.9a) and 

D(h~l)) = {f e D(h(l)) : r Cr) =0 on some neighborhood of 03 (2.11) 

Hence the se1f-8djointness prol)lem for h O is reduced to analysis of 

the operators h~l) . They are e.s.a. for 1~ 1 (cf.Theorem X.10 of 

Ref.20), whi1e h~O) can be easi1y seen to have the deficiency indi­

ces equa1 to (1,1) - solutian to the deficiency equations wiIl be 

presented below. Consequent1y, we have . 

2.2 Proposition The deficiency indices of h O are (1,1) . 

Before using tbis information, we are gaing to make a short digression 

concerning a more general type af boundary conditions. 

3. The Mixed Boundary Conditions 

If we rep1ace the Neumann boundary condition in (2.1b) by the Dirich1et 

one, the corresponding operator h O wil1 be e.s.a. In order to see 

thie, one has to realize that the modified squared angular momentum 

5 



operutor A i8 specified in this case by the boundary condition 
f(Jr/2,tp) = ° instead of (2.5c). An argument similar to proof of Propo­
sition 2.1 then sliows that it hs s apure point apec t rum , I\f = 

(2)	 l m=	 1(1+ 1)fIm ,	 where now fIm =Yl mt S+ wi th l+m odd. It maana that 
I	 =1,2, ..• and alI terms in the decomposition analogous to (2.10) are 
e.s.a. 

These boundary conditions represent particular cases of a more
 
general condition of the mixed type, namely
 

a~ 1f'(X)j = ~~(x)	 O. ta)3 x 3=0 

where c is a real number. In the spherical coordirates, this condi­

~ion is independent of r and looks as follows
 

- a~ f(,f''f)l = cf(Jr/2,,/J) 0.1 b)'" J.= lT/2 

The condition (3 .• ) can be interpreted as adding a surface-interaction 
term which i8 repulsive (with respect to the origin) if c> ° and 
attractive for c< O • The Dirichlet condition corresponds to the case 
of infinitely strong repulsion, while the Neumann one means that the 
surface ter~ is absent. Somcwhere between them there i8 a criticaI 

point cns a in which the repulsin becpmes v1eak enough that the ope­
rator hO ceases to be e.G.~., i.e., the deficiency indiC~8 jllIDp 
from (0,0) to (1,1) - cf.Fig.2 . There i8 another criticaI point in 
which the attraction becomes so strong that the particle can collapse 
into the singularity, i.e., the spectrum of h i6 unbounded from 

ObeIow. 

hO below Neumann Dirichlet 
unbounded	 h i9 e.a.a.O , I ;J I ~ L 

I o o	 I o 

-1 1·	 c c col l °	 nsa 2 

Fig.2. The criticaI values of the boundary condition (3.1).. 
6 

The aim of this section is to find the above named critical points. 

In the same way as above, one can decompose hO into an orthogonal sum, 

and to reduce therefore the pr~blem to analysis of the operators 

h6") ": h~ll)f ....!.. ~(2 df)+ ~f	 (3. 2a)r2 dr r dr r 2 

wlth 

= {fE L2{lR+,r2dr)
D(hf/))	 : s,s :« AC[R+J , f(r)=O in some 

O·2b)
nelghb.orhood ofO and h~") f fi: L2 (IR.... ' r-2dr) J . 

The numbers ~(v+l) are obtalned by s~lying the eigenvalue problem 

v.; = \1(,,+1 )f)111	 0.3) 

for the modified squared anglllHr momentum operator, whlch 18 no ... glven 
by the expression (2.5b) together with the boundary ~ondition (3.1h) 
(at the same time, of ~ourse, one must demand the functions f~m to 

~	 be regular at the po l e (.,. =O) ). Conventlonelly, we .aubeti tute 
f"m(~''P) =g(C08 ti> eimtp for m= O,:t1,±2, •.• obtaining in thls way 

the eigenvalue problem for the nrd1nary different1al operator 

22 " ~ mL	 : L g = (z -1) g + 2 zg + --2 g (3.48 ) 
m m 1-z 

i.e., the Legendre equation, with the boundary conditione 

g regular at z = 1 
O.4b)

g7(OJ=cg(O) 

In distinction to the particular cases c = 0,00 , the eollltlon to <,." need 

not generally exhiuit degeneracy with respect to m ; only the dege­
neracy with respect to the Si~l of m persiste. Hence for each m = 
= 0,±t,±2, .•• , we have a sequenc-e of va Lue s v(y+1) which obey 0.3). 
The equation is eolved by the first-order Legendre fun­Lmg=v(v+l)g 
ction g( z ) = pUl( z) ; the ao Lut í.on Qm ie excluded by the firet one 
uf the conditions (3.4b) - cf.Ref.21, 8.711.4 • The second cor.ditlon 
leads to the equation 

f{l" + 1m +1)r(1y _1m+1)
c 222222

2 tg[~("+m>] 1 1 1 1	 (3.5)
f( '2 ~ + 21!l + 1 ) f ("2 y - 2m -+ 1 ) 

{ c f , Ref .22, -s. 6) solvlng it for ~ one can obtain the eigenvaluee 
of 0.3). 

7 



Fortunately, it is not nccessary to perform the t~sk in the gene­
ral setting. As we h~ve mentioned, the operator hO(~) i8 e.s.a. iff 

' ....', ( ) 
v (.)+1)~ i . It ia a Lso well known (see, e.g., Ref.23) that h~'> ~s 
bounded from below iff V (.,>+ 1) ~ - ~ . Rence the lowest eigenvalue in 
<3.3) ia decisi ve for b ot h .o'f our , p ro bLeme , rt' is an , el;ls~ consequ­
ence of the minimex pr nc í p Le (Rei.20, "Theorem XrrI.1) that the "groundí 

states" of Lm are not Iower ~han that af LO ' i.e., inf õ(LO)~ 

~ inf 6(Lm) for each m. It is thereíore sufficient to solve the 
equation (3.5J ror m=O when ~t ~cguires,the form 

2 tg (~ v) ~. c r,r< iv'"~ »)2 <3. 6a)\r(2)1 + 1) 

The eigenvaIue "'(y+1) ha s to be real ao V ia ei ther real belon&ihg to 
[.- ,~ ,(0) 'or )) = -~ +if wi th f ~ RI • Trre rhs 'of <3.68) Ls a- monoto­
no ue functiori of V)_n [- ~ , õc) (dec~ea8ing for c> O) ;' w€ denote 
i t as cF{ v) • rt means 'tha t a solutlon in (- ~, ~) which co r-r-es ponrt's' 
to J(~+l) € (- t ,t) "exista' iff cF(v') ~ (-1',1) . On the other hand , for 
y = - ~ + 1~ the e'q , '( 3.68') can be after simple mani pú l ab í ons' rewri tt en, 
in the forro 

ch()rf» = -c~2Ir(t-+ifi)I-4 <3.6b) 

It is clearly sufficient to consider ft~o . The rhs (which we denote 
as -cG(f3» is increasing for c < O , but not s o f'a s t as ·ch{.JrP) ; 
ite asymptotics for large fi Le -ie e:x~-3/2 13- 1[hO(ji-1)] . Rence 
X3.6b) has a s oLut i ori if -'ct(O)~;l"'); 'one Icàn che'ck ch(.:;;'f»G(,A)/G(O) 
for e11 4 f O só t.here 'is no aoLut í on i':t ( -'c'G'(Ó') <- 1 . ' 

The' above 'conu'idera't1ons a l l ow us to' ce í.cuâa t e the sought cri tic'a'l 
vs'Lues .: we obta'ln 

" k" ,'(r.~5~41')2 1. dg'42'2 ..• c p S.8 ~ r, 3 4, ' (3. 7a) 

and 

_2(E13/4 »)2 _J[-'2 rO/4)4cc ol l fIffm -0.2.2847 ..• '(3.7b) 

8 

4. The Admissible Hamiltonians 

As mentioned in the introduction, our model consists of a free spinless 
particle moving in two halfRpaces (with Neumann boundery conditions) 
which are connected at one point. The state Hilbert space of such a 

system is 

2(IR2X 2(1R2 (4.1)tJ(= L iR+) 6lL X fR+) 

Since the particle i8 assumed to beoíree anywhere except at the point 

singularity, a suitable starting operator for constructing the Hamil­

tonian is 

(4.2)
HO = Hot1 (1) HO,2 

where H , j = h for j = 1,2 . According to Proposi tion 2.2, the defi ­
o O 

ciency indices of H are (2,2) so there is a four-parameter family
O 

of self-adjoint extensions H specified by 2)( 2 uni tary matrices
U 

~ U . The decomposition (2.10) ShOW8 that e8ch extension i8 of the form 

oo 
00 h(l)811 ~ h(l)03l1 (4.3)A @ EB ~HU U 0,1 0,2

1=1 1=1 

j= 1,2 (it makes no difference how we number 

the halfspaces) and AU 
i8 some self-adjoin~ extension of the opera­

tor AO 

A == (h(O)~ I) e (h{O)~I) (4.4a) 

where hb:~=h~l) for 

O 0,1 0,2
 

which aete on the Hilbert space
 

(4.4b) 

(4.5a)~~+) =(:0) (+) :(0 )
'f2 f 

O 
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where i sin f)U = eiS ( cos f3 (4.9)
-ir J7i / 4 i s í.n fi cosI'fO(r) = _e__ e = e (4.5b)
r 

wi th fi, j ê [o, 2Ji) . 
and 

/{J(-) - r(+) 5. Chara9terization of th.e Extensions Throl1gh Boundary Condi tions=1,2 (4.5c)j - j 

l According to (4.6a), every extension aete as the differential operator
According to the von Neumann theory, we have 

(2.9a) with 1=0 on each comoonent of the wDve function. The ~xpressi­

on (4.6b) of the domain DU ' however, i8 not very suitable for practi­
AU c AO (4.68 )" cal calculations ; one would prefer rather to heve some toundary condi­

tions in the eonnection point. Since the deficiency functions (4.5)
~nd every extension is specified by its dom8in, 

are singular there, 0ne must introduce regularized boundary vólues 8i­

( (~) c-: (-» milarly as in Refs.4,16,17D(AU) :: DU 1 f ='P + C 1(r1 + 1.1 1 IIp1 + U 121fJ2 + 
(4.6b) 

(+) (-) (-) LO(f) lim r f Cr) (5. la)+ c2(~? +u?1~1 +u22~2 ) c 1 ' c 2 € 11: , ~E D(Ao) ~ , 
1' .. 0+ 

where u are the m~trix elements of U. L (f) = lim [f(r) - ] (5.1 b ) 1
Lo(f)r-

1 
j k r~O+

Not every extension 18 interesting, hopever. It is reosonable to 

suppose that the two h8lferacRE ore physicully equivalent, i.e., to Before proceeding furT.her, we shall make one more rcstriction in the 

require the extensions HU to eorr~ute with the ~odified parity opere­ class of considered extensions. If the m~trix U is diagonal, then 

tal' P which i8 defincd on ~ by one c~n see directly from (4.3) and (4.6b) together wit~ t~e Ton Neu~ 

mann formula fuI' ~Uf that HU is reduced by the projections E
j 

on 

the subspaces af ~ referring to the two halfspaces ; the situation is
(4.7)p(~) = (~~) completely analogous to what huppens for a di~go~81 U in th~ modela 

treated in Ite f s , 16,17. In such a case, motion in t he two parte of the 
In the Jollowine, we restr1ct therp.fore our attention to such extensi­ configuration manifold is ~eparated ; the, pBrticle cannot pasa through 
ons AU which fuIfil the singularity to the other halfspaee. Since thi~ situHtion is n~t in­

teresting from the viewpoint of modelling D thin-film contact, we re8­
POAU C AUP O (4.8a) trict our attention in the following to the op~re.tor8 H

Ú 
corre~ponding 

to non-diagonal matrices. U only. 
where P =P t:1(o ' 01' rr.ore e x pLí cítLy , PODU C a nd POAU =AUPO o DU 

1
5..1 Froposition: ~8ch operetor HU ·which ia not reduced by tHe pro,

for 1/-EDU • An inspection of the relations (4.6) shows that it is 
jéctions E i6 of the forro (4.3), where the opera tal' AUC A~ i8 

equival~nt to j 
cheracterized uniquely by its dOffiÚin specified by the following requi­

~ rements : (f )'. (4.8b)U 1 1 = u 22 u 12 = u 2 1 , ] (O) 2 2(i) f = f 1 wi th fj,fjE AC(IR... a nd h fjE: L (1R+,r dr ) , j = 1,2 
2 

eince Po~~±j =~~±) ond POAO C AOPO . The family of extensions a~lec­ (1i) the functions f j fulfil the following boundary conditiona at 

ted in this way i8 therefore two-parametric and its elementa can be 1'=0 

specified by the matrjces L ( f aL (f + bL ( f O 1) O 2) 1 2) (5.2) 
L (f ) cL (f + dL ( f 

1 1 O 2) 1 2) 

10 II 



II 

where the coefficients a,b,c,d are related to the elements of 

a non-diagon8l 2x 2 ~nitary matrix U by 

-'/2 - -,. . d)a 2 e u'2(l. -t l.U" - et U (5.3a)u 22 ­

2-'/2 i u,;(' +tr U+det U) (5.3b)b 

c = 2-1/2 u-', 2 (-1 - i tr U + det U) (5.3c) 

-, /2 - -, . t U) (5.3d)d 2 e u'2(-i + "t t " :l.~22+ de 

In particular, for the ex~ensions commuting with the operator 

(4.7) we have 

e = -d = coa? + cos f - s í,n f (5.48) 
sinp 

b = 2'/2 coa f + cos p (5.4b) 
ain? 

c = 2'/2 BinS - cos fi , (5.40) 
sin? 

where the parameters fi:f=o and j refer ~ the matrix (4.9). 

Proof: Each ~E D(A ) fulfils the condition (i), and the same iaO
true for any linear combinatlon of the deficiency functions. In view 
of (4.6b~ and (5.'), the condition (5.2) yield the following equBtions 

for the coefficientB a,b,c,d 

, + U, 1 = aU'2 - beu'2 

u :;: a(' + u - b(e +tu22 )2 1 22) (5.5) 

-e -~ u" :;: cU, 2 -deu'2 

-f:u21 :: cC' +u22)- da +€U 22) 

Solving lt, we obtain (5.3). and substituting from (4.9) for U , we 
arrive at the relations (5.4). It remains to check that the map u~ 

~ {a,b,c,d} is injective. Suppose that two matricee U,U' lead to 

the same values of the coefficients. The relations (5.3) then give 

. i + iU; , - u;2 - det U' = IX. (i + iu" - det U)u22 ­

, +tr U' + det U' =C(t + tr U +de:t; U) 
(5.6)

" -'-itrU'+det U' = ,((-t-itrU +det U) 

-i+u;,-iU;2+det U' =CG(-i+u,,-iu22+det U) 

12 

where IX = u;!u'2 ; this numbe r Ls non-jsero by assumption. 'raking 
suitable linear combinations of the~e relations, we get 

u;, - u; 2 = «. (u" - u2 2) (5. 7a) 

2'/2 +Etr U' = o:(2'/2 + s tr U) (5.7b) 

r s + t: det U' = ex ( E. + ~ det U) (5.7c) 

I·
 + u;, =IX (' + li, , ) (5.7d)
 
I 

'rhe first two of the.in give t he r-e La t í.on , - i + 2U{', ='li:{' ... i + 2u', , ) 
which ia coinpatible with t5.7d) b:llly~lf' ix.=' .'Bence we have u;~= 

= u'2 ' and using (5.7a,b) again, we get '-Pj'j.,=u ... Fina11y, combi­
" J J ' 

n í ng these resulta with (5.7'0'), we ?,.btaih - ' ll~/, =!12'" • 

/" 

6. The Transmission Coefficient 

L""et us now examine the si tuation when the par t í.e Le passes from one half­
space to the other one through the point singu1arity ; our àim ie to 
finp probabi1ity per unit time of the tronsmission. Similar1y as in 
Refs.t6-'8, we use'the time-indep:nde~t np;roach, eince 7i makes the 
pr ob.Lem more managea bLe . We a ta r t wi th, .t.he functt,on 

-ikr Lkr_e__ + A _e__
f, (r) r r 

i kr
 
f ( r ) = B e


2 r 

and demand it to belong loca\1x to D(A U) . Clearíy 
(O) 2· 2 2

and h f
j 

:: k f j beLongs to L10c (~+;r dr ) . The 

i (5.2) applied to'(6.,fyie1d s í.mpLe equa t Lons whí.ch 
I 

; 

• 2,ik(a+:i) + c - bk
A(k)

\ ik(a-d) - é -~ 

•i and 

2ik 
B(k) = 2 

Lk í a-sd ) - c -bk 

f:: \f~) , where, 

(6.' ) 

f.,f~€ AC[~ J 
. J J +
ôo undary conditions 

a r e vsoLved by 

(6.2a) 

(6;2b) 

We are interested in the extensions comm~t~ng with the,operator (4.7), 

then the laat relations reduce in the pararnetrization (4.9) to the form 
, 2 (6.30) 

sin~ - c os ~ - k (c-.9aj' + 906ft)
A(k) 

i 2'/2k(~OS f -~ co~ J-sin'f) -sinj + cosj3 .: k2(cos~' + cosf) 
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:I 
----~ 

http:Pj'j.,=u


i 2 ' /2 k sin ft 
B(k) 2(COeJ

i 2 ! 2k ( COS f + coe5 - sinj)-einj + C06~ -k + coaf>' 
' 

(6 ..3b) 
tt ia ~asy to see that these coefficients fulfil 

IA(k)1 
2 

+ IB(k)1
2 = 1 (6.4) 

Let ue ask now how the transmission coefficient ean be derived from 
here. The S-matrix approach ia not applicable, at lesat without a more 
soph1sticated formulatiQn, since we heve no free Hamiltonian to ~ompa­
re. Instead, we ehal1 ~alcQlate the probabil1ty current through the 

halfspheres ~f radius R in the two halfspaces. One obtains 

2 [ ar (r)] 2;!,(R) =-lf 2 Im f , ( r ) .::.L.:...:. " =~k(1- lA(k)1 ) (6.5a) 
ar r=R 

where we set ~ =2m= 1 and the Bign i6 chonen to correspond to the 

incoming probab111ty current, and similarl~ 

j2(R) = .1tki:B(k)1 
2 (6.5b) 

These quantlties do not depend on R , 60 it 1e natQrsl to interpret 

them as the probability current through the connection point. The 
tranemisBion coe!f1c1ent at thc energy E= k2 i6 therefore equal to 

j(E) := 1B(k)f2 
(6.6) 

2 k 2 sin2~ 

"2Tk2~o;:P~ ~~~ g - oin.f )2 + (s í n j' - COB f3 + k2 (COB J + cosf!» 2 

lt i6 easy to aee that there are two extensions (in the "par1ty preeer­

ving" c'l.a aa ) , namely those corresponding to ! = t and fi::: ~ ,1[- , 
whi.ch yield full transmission, IA(k)l2::: 1 • These are s Lso the only 

cases in which the transmission coeff1cient ia energy independent. 
Notice that the second named exteneion (wi th P= 74'k ) co r r-ea pond e to 

the eituation when thl.3 wavefunct10ne are "glued together" in such a 
way that the regularized function r ~ rf( r) ie continuoue at r=O 

,together with its firet derivativa. 

7. The Case of Two Planes 

In thi~ section, we ore going to discUSB the second extreme case menti­

oned in the introduction, B ~ree particle moving on two planes connec­

ted in one point. Th~s situ~tion has bcen analyzed in Ref.'7, and our 
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aim here 18 to rephra8~ the results in a moro Guitable way. RecaI] that 

the boundary conditions can be written in terms of the re~ularized boun­
áary values 

LO(f) = 1im f(r) L 1(f) = lim [f(r) - LO(f) In r ] (7. , ) 
'r""O+ ln r r~O+ 

The admisslble Hamí Lt on í ana are of the form H
U 

= A
U 

tB fi ) where h ia 

a self-adjo1nt oper8tor analogous to the second and third term in (4.3) 
(cf.Proposition 1 of Ref.17) and A is 8 self-8djoint operator onU2 2
L(lR+ , r dr) @(L :R.; (r d~~l)~WhiCh a o t s as 

f - r dr r dr
1AU(fJ= _.!.-.2..(r df2\ . (7.2) 

r dr dr J. 
The 

and 

domain of AU ~onsists of 

AUfj € L
2 

(IR+, r dr) , which 

the functions f 

are (for a given 
with f.,f~~ACrlR 1

J J L' + 
U ) specified by sui­

tBble boundary condit~ons. 

7.1 Proposition: The boundary conditions formulatect in Proposition 3 
·of Ref.17 can be replaced for a non-diagonal U by 

LO(f 1 ) aL ( f + bL (f )
O 2) 1 2 

(7.3)
L1 (f 1 ) cL ( f ) + dL (f )

O 2 1 2 

where the coefficients a,b,c,d are related to the matrix elements 
of U as follows 

a u11[J(u11 - 1) + ~(det U - u22)] (7.4a) 

2i -1 [ ]b ~ u , 2 1 - tr U + det II (7.4b) 

371 -1 [2 - -2 ]
c = "2 u , 2 ~ + '~~ tr U +J det U (7.4c) 

-1[ - ]d ::: u , 2 1(1 -u22) +7-(u 11- de t U) (7.4d) 

where "j..=L,(fo)=~+~/(J'-ln2) and ! = 0.577216 ... ie the Euler's 
constant. 

irQQf can be performed in a COMplete analogy with that of Proposition 
5.1 or'of Proposition 3 of Ref.i7 . Alternatively, one can write 

down and solve the linear re1ations between the boundary conditions 
(7.3) and those of Ref.17. •
 

Similarly as ubove, we are interested primarily in the extenaions 

which commute with the modified parity operator which is defiIled on the 

state space of the present prob1em again by the relBtion (4.7). The 
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admissible matrices U, are then of the forro (4.9) Bnd the coefficients 

(7.4) can be rewritten as 

stn! +$(!-ln2Hcosp- cosS) (7.5;))
8 -d 

sin 

b = .1 c o s i -c o s f (7.5b) 
JT sinJ3 

c = 2 :inp [~(! - In ~') sin.f +( ~- ;2(!- In 2 )2)(COS J + COSf)J (7.5c) 

Now we want io calculate the transmission coefficient. We start 

wi th f =(~~) , whe r e 

f 1 (r) = J!~ 2 ) (kr ) + A ( k )H~ 1) (kr ) . ( 7 • 6a ) 

f ( r ) B(k)H~l)(kr) (7.6b) 
2 

and demand it to belong locally to D(A ) • A simple calculationU

yields expressions for A,B which reduce in the "parity preserving"
 

case to the form 
k [~2 k2]c - 2a (1 + In "2) - b 4" + (t + In "2) 

('7.7a)A(k) 
c - 2a(?i + cr +ln ~) - b(~ +/ + In ~)2 

-i:7i (7.7b)B(k) 
c - 2a (* +f + In ~) - b (~ + f + In ~) 2 

it can.be aeen easily that they fulfil the relation (6.4). Then one 
can calculate the incoming (outgoing) probability current through the 

circle of radius R in the first (second) plane; it holds 

j1 (R) = 4( 1 - IIt(k)1
2 

) j2(R) = 4IB(k)1 
2 (7.8) 

Notice that if we use instead the anaa t of Ref .,17, i. e., if the firstà 

term on the rhs of (7.6a) is replaced by JO(kr) , then j1(R) = 

= 1 - 11 + !A(k)1 2 = 1-IS (k )!2 ,where SO(k) ia the s-wave ecatteringo
matrix. The relations (7.8) show that thc transmission coefficient is 

equal to 

j(k2 ) = IB(k)1 2 (7.9) 

In di~inction to the case of two halfapacee, no extension provides UB 

w~th an energy-independent transmission coefficient. There ia again 
one extension, namely the one c~rresponding to the matrix (4.9) with 

J=ft=-erctg($(f-I~2)) , such that the wavefunctions are joined 
"cont í.nuouaIy" at r=O as well a e their "derivativeB", but even in 
this case the transmission probability dependa on energy : 

J(k
2) 

= [1 + .Jr~(K + In ~ )2J-1 

8. Conclusions 

With the knowledge of the trannmission coefficient ~(E)as a function 

of energy,we are able to calculate the current-voltage characteris­
tics. If the metaIs involved have the same Fermi energy, then the cur­
rent ~B given by/24/ . 

I -1f J
o.:' 

J(E) [fT(E) - fT(E-eU) J dE (8.1 a) 
O 

where e is the electron charge, U is the ap~lied voltage, and 

E - E )J - 1 fT(E) = 1 + exp(7 (8.1 b ) [ 

ia the electron-gas density at the temperature T and Fermi energy 
EF . The resulta are porticularly simple in the zero-temperatur~ limito 

The differential resistance, e.g., i6 then given by 

" -1dU = ...E.. j( EF-i'eU) (8.2)dI 2e 

this formula is of interest .because dU/dI is a measured quanti ty, 
and the measurements are usually performed at temperatures of few K. 
To be just, we must mention that the formula (8.1) has be~n challenged, 
however, the alternative proposed in Ref.25 differs by an additive 
conetant, which is unimportant for the argument presented below. 

Let us turn now to the two extreme si~uations mentioned in the 
introduction. In the ca s e when the "filme" are very thick, which we 

can model by two halfspaces, we found two admissible Hamiltoniane 
which yielded a transmission coefficient wh1ch ís energy-independent, 
i.e., which gives a linear relation between the current and applied 
voltage. As we have remarked, the problem of choosing the right self­
adjoint extens10n remains open. Vfuat is important, however, is that 
there are extene10ns leading to the Ohm's law in this simple modelo 

The situat10n ia entirely different if the films are very thin. 
The analysia of Section 7 shows that thc transmission coefficient is 
energy-dependent in th1a case for every extension. This is in contraet 
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.with the usual eXPlanation/ 151 of the non-linear shape of current­
voltage characteristic6 &S a result of electron-phonon interaction. 
Our model shows that the Ohm's law should be expectcd to be violated 
for sufficiently thin films independently of any interaction. 
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3KcHep n., We6a n. 
OpocTaR MOAenb T04e4HOrO KOHTaKTa B TOHKHX nneHKaX 
B ABYX H Tpex H3MepeHHRX 

ES-86-693 

PaccMaTpHaaeTCR CBoOOAHaR 6eccnHHOBaR KBa~tTQBaR 4aCTH~a, ABH*~aRCR Ha 
KOH~Hrypa~HOHHOM MHOroo6pa3HH, COCTOR~eM H3 A8YX HAeHTH4H~X 4aCTeH, COeAH­
HeHH~X 8 OAHOH T04Ke. 6onbwe ecero M~ 3aHHMaeMCR Tpexpa3MepH~M cny4aeM, KOrAa 
3THMH 4aCTRMH R8nRoTCR nonynpocTpaHCTBa c rpaHH4H~M ycnoeweM HeHMaHa; o6cy*­
AaeTcR KopoTKO TaK*e cny4aH 5onee o5~ero rpaHH4HHro ycnoBHR. Opw noM~H Teo­
pHH caMoconpR*eHH~x pacwwpeHHH nocTpoeH Knacc AonycTH~x raMHnbTOHHaHOB, Cpe­
AH HHX OC05eHH~H HHTepec npORBnReTCR K AByxnapaMeTpH4eCKOMY ceMeHCTBy, 3ne­
MeHT~ KOTOPOro HHBapHaHTH~ no OTHOWeHHO K 3aMeHe nonynpoCTPaHCTB; B~4HCnReT­

CR K03~H~HeHT OPOXO*AeHHR AnR Ka*AOro H3 3THX pacwwpeHHH. 05CY*AaeTCR TaK*e 
A8H*eHHe Ha ABYX nnoCKOCTRX paCCMOTpeHHOe B HaweH HeAa8HeH pa5oTe; nony4eHa 
APYraR xapaKTepH3a~HR AonycTHM~x raMHnbTOHHaHoe. B 3aKn04eHHe npweeAeHo 
cpa8HeHHe 3THX A8YX cny4ae8 KaK MOAeneH AnR 3KCnepHMeHTOB KOHTaKTHOH cneKTPO-
CKOOHH B TOHKHX nneHKaX. 

Pa6oTa 8~nonHeHa 8 na6opaTOPHH TeopeTH4eCKOH ~3HKH ~HH. 

Coo6UieRHe OO!.eJlHHeJUioro HHCTIIT}'Ta .llllepHhlX uccneAoBaHHii. JlytiHa 1986 

Exner P., Seba P. 
A Simple Model of Thin-Film Point Contact 
iP Two and Three Dimensions 

ES-86-693 

We treat a free spinless quantum particle moving on a configuration 
manifold which consists of two identical parts connected in one point. Most 
attention is paid to the three-dimensional case when these parts are half­
spaces with Neuma~n condition on the boundary; however, we discuss also 
briefly a more general boundary condition. The class of admissible Hamilto­
nians is constructed by means of the theory of self-adjoint extensions. Among 
them, a two-parameter family is particularly important whose elements are 
invariant with respect to exchange of the halfspaces; we compute the trans­
mission coefficient for each of these extensions. We discuss also the motion 
on two planes considered in our recent paper, obtaining another characteri­
zation of the admissible Hamiltonians. In conclusions the two situations are 
compared as models for point-contact spectroscopical experiments in thin 
metal] ic films. 

The investlqation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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