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I. !NTRODUCTlON 

Basic ideas of the ~heory of nonlinear waves were developed with 
the study of related problems in fluid mechanics,however,almost any 
part of physica i~ associated in some ~ay with the wave m9tion. 

In the process of developrnent of the theory of nonlinear waves 
ther~ ;nere discovered certain "representative" nonlinear wave equa
tione that were, in a sense, universal. Thus, for example, the ' 
Korteveg - de Vries equation (KdV),origina1ly introduced in connec
tion with the study of waves on water, combines weak nonlinearity 
and dispersion and, as such, rapres~nts a general physical processo 
Almost al1 of ~hese representative equations have solutions of the 
type of solitary wave s, Their interection gives r-í.ae , to(pure no:çl1i
near ellects. 

Altar the remarkable paper of Gardner, Greene, Kruskal and 
roiura /1{ who were the first to desoribe the method of solving the 
KdV equation using the inverse 8cattering theory, the interest to 
solitons increased. 

A soliton is usually defined to be a solitary traveling wave 
'.Vith the additional property of persisting through an intera.ction 
with another soliton. Aíter they pass through one another, they 
emerge in the aame shape and velocity, having suffered no more t han 
perhaps a phase shift. 

Zakharov and Shabat have shovm that there are aIso other simi
lar equations and employed /2,3/ the method of the inverse problem 
for the Dirao operator to the non1inear Schr6dinger equation (NLS) 
with cubic nonlinearit~. Non1i~ear evolution equations integrable by 
nu inverse transformation form infinite-dimensional Hamiltonian sys
tema. Complete integrability in the language of the Hamiltonian sys
tema has the following interpretation: The transformation of the 
initinl values to scattering values being the basia of the inverse 
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sc~ttering method appears to be a nonlinear canonical transformation 
to the action-angle variables. This significant interpretation was 
initially proposed by Zakharov and Faddeev 141 for the KdV equat10n. 
The most 1nteresiing application of this approach is linked to the 
problem of quantization of nonlinear equations. 

Afterwards there bas been done much research, in fact thare 4 1 

appe~red a new direction in the theory of nonlinear differential equa
tions using diverse mathematical techniques. 

In the present paper we focus ouz- attention maf.n.ly onto the 
questions of stability of solitary waves. 

Studies of stability at an intuitive leveI were 'carried out in 
many physical works. Some of them contain interesting ideas. The 
stability, as it is understood in physics, of a solitary wave 
CPc (x, t) is investigated via the queet for a solution to the ini-, 
ti~l equation in the form u Cx, t} -= <fc(x, t) + ei w t 1((X). If, in 
the linear approximation with respect to 'f • the valuea of W 

are real or if they are from the upper half-plane, then ~ c(x, t) 
is Baia to be stable. Thus the Liapunov theory of atability in the 
linear approximation is in. a na1ve way extended to infinite-dimen
sionai spaces. . 

Inthe mathematical literature there has been done a lot of 
research on the strict analog of the Liapunov theory in Banach spa
ces Isee eg. 51. These works contain various sutficient conditions 
that, upon being fulfilled, allow ua to decide the queation of 
stability (instability) of a nonlinear problem through the stability 
(insta6ility) of its linear approximation. Besides, studying the sta
bility in the linear approximation, it is necessary to consider the 
contribution of the continuous specirum of the linearized di!feren
tial operator. However, for many important equations of mathemati
cal phyaics the above~entioned sufficient conditions are not ful
filled. For instance, the solution of the linearized KdV equation is 
unstable 16/. Neverthelesa, as has been shown by Benjamin, who was 
the first to suggest exact mathematical approach in the atudy of the 
stability of solitary waves 17,8/, the solution of the nonlinear 
problem is stable. The second exemple is the following. Chen and 
Kaup 191, using the line~ approximation theory, obtained the insta
bility result of a single-soliton solution of the Benjamin-Ono equa

110tion. !nyway, Benet et aI. { applying Benjamin's method, have 
rigoropsly proved the stability of the shape of a aingle-soliton 
solution of the Benjamin-Ono equation. The paper contains an ana
lysis of Chen and Kaup's error. In both cases the question of stabi
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li.ty requires exact mathematical methods and to alI the investiga
tion at an intuitive leveI it is inevitable to give an heuristic 
explanation. 

Therefore, we think it to be natural and essential, not only 
for ~~e mathematics but also for applicat1ons, to perform rigorous 
research in the nonlinear differential equations of theoretical 
physice in exact mathefuatical manner. In other words, conforming to 
the clasaieal Hadamard concept 154/, it is necessary to investigate 
the questiona of existence of solutions of the initial value problem, 
uniqueness of solutions and continuous dependence of solutions upon 
the initial data. An exact investigation of the stability of solitary 
waves is alwaya connected with the specific metric. 

We present now some apecial re~ults of these investigations. 

11. The KdV AND NEJAMIN-BONA-MANONY (BBM) EQUATIONS 

ut + U 
x 

+ uU x + Uxxx 1:1 O, u(x, O) 1:1 g(x), x c R, t~ O (1) 

(KdV) 

°U 
t 

T U 
x 

+ uU x - Uxxt = 0, u(x, O) 1:1 g(x), x € R, t ~ (2) 

(BEM) 

describe weakly dispersive processes in nonlinear media. 
In 1111 Bona and 3mith have proved the existence. and ~iquenesa 

of a global solution of initial value problem and the continuous 
dependence on the initial conditions in the Sobolev space HS with 
the usual norm 

(+00

/I f a~ ~ j~) (x) I2dx,

j olI:l 

where f € L
2; 

f(j) 1:1 djt/dxj ie the generalized derivative, 
1 ~ j ~ s. They used the method of peeudoparabolic regularization 
adding - 6 ~ to Eq. (1). Alter a substitution of.variables 
th~ regularized Equati~n (1) reduces to Equfltion (2). Theorems corres
ponding to (2) can be easily deduced from the fixed point principIe. 
The regul8ir1ty theory tor Equat10n (1) ia obta1ned by takins the 
li1rlit e ---+ o. In such a wa,., comparativel,. easy, not resorting to 
any complicated mathematical methods, we obtained quite general 
result for the KdV equation. 

'l'he first complete proo! of the existence theorem for the KdV 

c' 
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equation with periodic initial conditions was given by Temam /12/. 
He used the method of parabolic regularization, i.e. he added 

EUx:x:x:x to Eq, (1) and then took the liJnit for e -..... O. This method 
was further	 developed in /13-15/. Actually, there is proven the 
existence of a unique local (global) solution of the KdV in the 
case when	 the initial data belonged to HS 

, 3/2 < s < 2 (2 ~ s), 
tin them. The same	 result follows irom Kato's theory of quasilinear 

abstract evolution equations /16,17/, besides, there also follows 
for s > 3/2 the continuous dependence on the initial data in HS 

from there.	 We mention the work /18/ for the non-integer values of 
s, and /19/ for	 the proof of the existence of a global solution for 
certain classes of discontinuous initial conditions. Benjamin gave 
a dexte+,ous proof	 or the stability "of the shape." of the sqlitary 
waves 

<p(z) = 3c.sech1	 (~c 1/2z), (J)
 

(c 1/2z/2(1
~(z) = 3c.s~ch2 + c)1/2),'	 (4) 

where c > O, z ;: x - (1 +c)t. ~ (z ) and 1IJ(z) are the solutions
 
of Eqs. (1) and (2) respectively.
 

The stability of the shape is defined as the stability with
 
respect to the given on the space H1 pseudometric
 

d (!, g) ""	 in! M f ( • + y) - g (.) 11 1 • (5) 
y 'i R 

The question of stability in the metric (5) for Eqs. (1) and (2)
 
is natural as it reflects the translational invariance of the SQlu

tions ~f Eqs. (1) and (2).
 

III. THE NLS EQUATlON 

with the power-type nonlinearity 

iu + U -	 u(a - 'uI 2p) = 0, a ~ R, x ~ R, t ~ O (6 )x xx 

appears in various problems, models many phenomena such as the beha
viour of non-ideal Boze-gas with a weak partiele interaction, the 
spreading of tbe heat impulse in solids, the Langmuir waves in plasma, 
etc. Ieee ~. 1,2,20-31/. 

The interest in NLS haa risen after it became clear that it 
was universal and fundamental equation in the same sense as the KdV 
equation and that in the case of a cubic nonlinearity it could be 
integrated by the method of the inverse problem /2/. Equation (6) 
hae the two-parameter set of solutions 
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i(ot-W2)t~cp (x, t) = r (x - 2 w t ) e:í.6>x +	 (7) 

where 

r(y) = «p + 1) (a. + <)( »1/2p(coshpy.,'a + O( ) -1/p, (8) 

a + ()( >	 O and O( ,u.J E: R. Particularly, for co = O we have 
the standing wave solution and for p "" 1, a = O, O( "" ~ 2 we get
 
Zakharov-Shabat's aingle-soliton aolution. Casenave and Lions /32/
 
call the stability of a standing wave in the pseudometric
 

d (u , <p );:	 in! 2 11 u(x, t) - ei'l cp (x - ç , t) 11 1 (9)
 
l~ , ~) € R j
 

the orbital stability, what reflects the translational and rotatio
nal invariance of the solutions of Equation (6) and, particularly, 
in the real-valued case, the stability of the ahape. lt i8 easy to 
show the instability of <p (x, t) in a more complex metrie eg 

d 1(u , <p )	 "" Ucp - u U1 • 

In the paper /32/, via the use of the ooncentration-compactness 
. principIe introdueed by Lions in /33/, the authors prove the orbi
tal stability of a stationary solution (standing wave) for multi 
-dimensional NLS equation with a more general nonlinearity. The 
boundary dividing stable and UIlstable solutions in one-dimensional 
case /34/ is the nonlinearity U( I ui). u, where the nonlinear func
tion U( lul ) has the power-type growth 2p "" 4. Let us mention that 
the first who pointed out this fs.ct was Makhankov /25,26, 35/. 

lt i8 well-known /36-38/ that the initial value problem for 
.	 1 

Eq. (6) under the assumptions 0< 2p< 4, u(x, O) u g(x) ~ H (R) 
has a unique global solution (in a generalized-functions spaee)
 

H1(R».
u(x, t), with u(· , to) € C( CO, cd, 
In /39,40/, developing the idesa propounded by Benjamin /7,8/, 

we have proved the following 

THEOREM. For any & > O there exist s 8 > O such that if 

u(x, t) ia a aolution of Eq. (6) with °< 2p ~ 3, u(x, O) a 

... s (x) ~ H1(R) and d(u, <p ) 1tI:O <:: cS ,then d(u, CP) < & 
for alI t e Co, co) /d(u, cp ) and cp are given by the formu
las (9) and (7) respectively/. 

A fulldamental rôle in the proof have played the three runc

tione.là
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+ OO in this case, in order to obtain the needed estimate, one has to 
take into acoount the positive contribution of the continuous 

Q Q i r- üxudx, p lu 1 2dx , spectrum.~J-oo -o() 

~CO 
E .~ j_~' IUX , 2 + a I u I 2 - I.u ,2 (p + 1»J(p + 1))dx, 

which are time-invariant whenever the solutions of Eq. (6) belong 
to C ( CO, (0), H1 (R». The difficult part of the proof is concer
ned with estimating an effective lower bound for the second varia
tion of the f'unc t í.ona'L M = E + (<X + w2)p - 2 W Q, what we achie
ved via suitable choice of the speetral problems. We remark, that 
though in the spectral decomposition of the KdV und BBM equations 
it was sufficient to consider only the contribution of the discrete 
spectrum, in t4is case we have had to take into account the posi
tive contribution of the continuous spectrum, too. It seems likely 
that a more subtle evaluation of the contribution of the conti 
nuous spectrum in the spectral analysis would give the possibility 
of the second proof (using spectral theory) of Cazenave and Lions's 
result in one dimension. 

The stability of the solitary wave (7) has been rigorously 
proved by Zhidkov /41/ for the case p c 1. 

Beside the NLS equation, in description of waves in media with 
a weak dispersion governed by cubic nonlinearity one can encounter 
also the modified Korteveg-de Vries equation (mKdV) /see also /42/ / 

u + E; [u ]2ux + UJOO{ cO, u (x , O) li g (x), x E: R, t ~ O ( 1°) t 

which, as it is noted by Zakharov in /27/, has a universal nature, 

too. 
Complex-valued Equation (10) was studied by Zakharov /27/, 

Fornberg and Whitharn /43/, Makhankov /25,26,35/ and others. Let us 

mention that for the real-valued u(x, t) Wadati /44/ have solved 
Eq. (10) by the inverse scattering method. Repeating the arguments 
given in /21, § 8-10/ the complex-valued analog of Eq. (10) can 

also be eolved by the inverae-problem method. 
In /45/ the existence of unique global solution 

u(x, t) € C ( LO, 00 ), nS 
) of the initial value problem for Eq. (10) 

with initial data u(x, O) = g(x) ~ HS(R) ,e ~ 0, using the theory 
of qvasilinear evolution equati~ns /16, 17/, ia eatabliahed. The 

/ 45rcontains the proof of the orbital stability ofearne work /1.e, 
a solitary wave using the spectral theory. Let us note again that 

Numerical solution of the BEM equation with step-type initial 
conditions waa investigated in /46/ and the existence theorem is 
given in /47/. 

The KdV equation with the initial data having different limita 
at ± 00 was originally studied in /48, 49/. where, upon assuming theCl' 
existence of a global solution, the authors, making use of ~~itham's~ 1 
approximation method, have fotind its asymptote at t --+ + 00. 

With the sarne assumption, i.e. the existence of a solution of the 
initial value problem for the KdV und mKdV equations with the 
step-type initial data, the'authors of /50,5 1 / , USD1g the inverse 
scattering method, have found an asymptotical solution at t - + 00. 

We use x", s ~ 1, to denote the set of f unc t Lona. f (x) defined 
on the real axis R, with the following property: For every function 

f (x) there ir+~ constunt cf such that 8 ( .. 00 

IH f UI; a J_~ - cfSgn(x») 2dx + f;' 1 )~~k) (x) I 2a:x < CO (11) 

-Linear set XS 
, s ~ 1, normed by (11), forms the Banach space 

of absolutely continuous, on each finite interval, functions f(x) 
sueh that 

lim f(x) c - lim f(x) c cf' 
x--... + 00 x--+ - 00 

Moreover, there holds the estimate 

I cf i ; ~u~ R J:f(x) I ~ const , /11 f 111 s ' (12 ) 

that implies 

2 2 s( )f - cf € H R. 

1 

On the assumption that the initial data belong to XS 
, e ~ 3, 

one can, with the help of the peeudoparabolic regularization 
method /52/, show the exietence, uniqueness and eontinuous dependen
ce on the initial data of a globa~ aolution of the real-valued 
mKdV equation 

4
 ~ - u2
Ux + ~ = 0, utx, O) • g(x), x E: R, t ;: o. (13)
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Further, orie can prove the stability of the shape of the solita

ry-wave solution of Eq~ (13) that belongs to XS for alI t ~ o.
 
Here we understand the stability of the shape/pertaining to the
 
inequality (12) las the stability with respect to the pseudometric
 

deu, CP) = in,f lHu(x, t) - 'P(x - ~,t) IH 1.
 
~ E; R \
 

The KdV equation in higher-dimensional real spaces or in 
more general higher-dimensional complex spaces, as well as the 
multi-dimensional anelog of NLS equation, BBM equation, and other uni
versal equations of mathematical physics, such as the Klein-Gordon 
equation, ete./s ee ego 30,35, 53/, are beyond the scope of this sur
vey. Let us just cite, very briefly, some works for completeness. 

The existence and stability of the	 multi-dimensional NLS equa
36-38,55/, thetion is studied for example in /23, 28, same problem
 

for the Klein-Gordon equation is studied in/55-58/, either of them
 
and others can be found in /30/ and still other problems in /59/.
 

IV.	 CONCLUSIONS 

Summing up, one could say that the problem of finding the soli 
ton solutions and the problem of analyzing their stability have, in 
principIe, been solved. Yet, the development of the theory ia at 
its very beginnings. 
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npHHHMaeTCR nOAnHCKa Ha npenpHHT~ H C006~€HHR 06De~HH€HHOrO HHCTHTyTa 

RA€PH~X HCCfle,QOBdHHH. 

YcraHoeneHa cneAY~~aR croHMOCTb noAnHCKH Ha 12 MecR~ee Ha H3AaHHR OHRH, 
BKfl~4BA nepec~nKy, no OTACnbH~I~ TeMaT~4€CKHM KaTeropHRM! 

HH,QEKC TEMATHKA UeHa noAnHcKH 
Ha rOA 

1. 3KcnepHM€HTdflbHaR ~H3HKa B~COKHX 3HeprHH 1 o p. Bo Kon. 

2. TeopeTH'-IeCKBR ¢H3HKa BbiCOKI-1X 3HePrHH 17 p. 80 KOn. 

3. 3KcnepHM€HTdflbHBR HeHTpOHHBR ~H3HKd 4 p. 8o Kon. 

4. TeopeTH4€CKBA ¢H3HKa HH3K~x 3HeprHH fl p. 80 KOn. 

5. MaTeMan.,Ka 4 p. 80 KDn. 

6. R.QepHaR cneKTpocKonH~ ~ paAHOXHMHH 4 p. 80 Kon. 

7. ~3HKa TA*efl~X HOHOB 2 p. 85 KDn. 

8. Kp11oreH11Ka 2 p. 85 KOn. 

9. YcKopi1Ten« 7 p. 80 KOn. 

10. ABTOMdTH3aUHR o6pa6oTKH 3KcnepHMCHTanbH~x 
.QBHHWX 7 p . 80 Kon. 

'' Q.._ .. ., .. ,..nu..- ... "' ''::'"' .,.., ... ....,.,..., ... ·•:: r On --- ·~ - ,. 

12. XHMMII 1 p. 70 KOn. 
·---

13. TexHHKa ~H3H4ec~oro 3KcnepHMeHra 8 p. 80 Kon. 

14. HccneAoBaHH~ TBep~~x ren H ~HAKocre~· 
IIAePHYMH MeTDAaMH 1 p. 70 KOn. 

15. 3KcnepHMeHT8nbH8R ~H3HKa RA€PHWX peaK~~~ 

npH HH3KHX 3HeprHRX 1 p. 50 Kon. 

16. .QoaHMeTpHR 11 ~11311Ka 3a~11TY 1 p. 90 Kon . 

17. TeopHR KOHAeHcHpoBaHHoro cocTOIIHHII 6 p. 80 Kon. 

18. Mcnon~aoaaHHe pe3y!lbTaToe 11 MeTOAOB 
• YHA8MeHTa!lbHYX $113114eCKI1X 11CC!leADBaHI1H 2 p. 35 KDn . 
a CMe*HWX o6naCTRX H8YKH H T€XHHKH 

19. 6H~I1311Ka 1 p. 20 KOn. 

noAnHCKa MO*eT 6wTb o¢opM!leHa C !1C6oro MeC114a TeKy~ero COAa. 

no eceM eonpocaM Q$opMneHHR noAnHcKH cneAyeT o6pa~arbcA a ~3A8TenbCKH~ 
oTAen OHRH no aApecy: 101000 MocKBa, rnaeno4TaMnT, n/A 79. 

fperym M., KHpqes K.IT., lliHAKOB E.IT. ES.-86-63 
3aAaqa KoiiiH H yCTOHqHBOCTb pemeHHH BHAa yeAHHeHHblX BOJIH 
HeKOTOpblX HeJIHHei:fHbiX ypaBHeHHH MaTeMaTHqecKOH cPH3HKH 

AaHHbiH o63op rrocBH~eH HccneAoBaHHW ycTo:ti:qHBOCTH yeAH
HeHHbiX BOJIH HeKOTOpbiX HeJIHHeHHblX ypasHeHHH MaTeMaTHqeCKOH 
cPH3HKH. PaCCMOTpeHbl BOITpOCbl Cy~eCTBOBaHHfl H eAHHCTBeHHOCTH 
pemeHHH 3aAaqH KomH B HeKOTOpbiX clJYHK~HoHaJibHbiX rrpocTpaHcT
sax. 

Pa6oTa BbiiTOJIHeHa B Jla6opaTOpHH BbJqHCJIHTeJibHOH TeXHHKH 
H aBTO!>taTH3a~HH OIUUL 

llpenpHHT 06J.e,[I,HHeHHOI"O HHCTHTyta ll,[l,epHbiX HCCne,[I,OB8HHH. ,lly6Ha 1986 

Gregus M., Kirchev K.P., Zhidkov E.P. ES-86-63 
An Initial Value Problem and the Stability of Solitary-Wave 
Solutions for Nonlinear Equations in Mathematical Physics 

A review of selected results on the stability of soli
ton solutions of several one-dimensional universal nonline
ar equations of mathematical physics is given. The questi
ons of existence and uniqueness of solutions of initial 
value problem in some functional spaces are discussed, too. 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1986 


