

ОбЬеДИНЕННЫЙ
 ИНСТИТУT
 ядерных
 исследований
 дубна

E5-86-56

A.Dvurečenskij

REMARK ON JOINT DISTRIBUTION
IN QUANTUM LOGICS.
Noncompatible Observables

Submitted to "Aplikace Matematiky"

This paper is a continuation of the first part under the same title, hereafter refered to as $/ 1 /$. Sections, theorems and formulae are numbered consecutively, starting with Section 3. References ${ }^{/ 1-19 /}$ are listed at the end of $/ 1 /$.

3. JOINT DISTRIBUTION OF NONCOMPATIBLE OBSERVABLES

In the present section we concentrate ourselves to the main aim of this paper. We shall study the problem of existence of noncompatible σ-observables. We give the new results which are valid also for measures on \mathcal{L} with infinite values, and which generalize the known results for states. We note the methods developed in $6 \cdot 11,19,20 /$ are not applicable for our case.

The existence of a joint distribution closely depends on the concept of a commutator. Let \mathfrak{Q} be an OML: For a finite subset $F=\left\{a_{1}, \ldots, a_{n}\right\}$ of \mathcal{L} let us put, following to L. Beran /21/
$\operatorname{com} F:=\stackrel{1}{\vee}_{j_{1} \ldots j_{n}=0}^{\wedge_{i=1}^{n}} a_{i}^{j_{i}}$,
where $a^{\circ}:=a^{\perp}, a^{1}:=a$. The element $\operatorname{com} F$ is called the commutator of a finite set $F \subset \mathscr{L}$. For two-element set $F=\{a, b\}$ a com F has been defined by Marsden ${ }^{\prime 22 /}$.We recall that independently of $/ 21 /$ the commutator of F^{\prime} has been used in $/ 7 /$ to show that the socalled question observables $q_{a_{1}}, \ldots, q_{a_{n}}$ have a joint distribution in a state m iff $m(\operatorname{com} F)=1$ (here q_{a} is a $\mathcal{B}\left(R^{1}\right)-\sigma$-observable with $\left.q_{a}(\{0\})=a^{\perp}, q_{a}(\{1\})=a\right)$. The elements com ${ }^{\perp} F$ and com F are called in ${ }^{21 /}$ as the upper and the lower commutator, respectively, of F. It is clear that $a_{1}, \ldots, a_{n} \in \mathscr{L}$ are mutually compatible iff com $F=1$, where $F=\left\{a_{1}, \ldots, a_{n}\right\}$.

Now, for any $M, M \subset \mathscr{L}$, put
$\operatorname{com} M=\Lambda\{\operatorname{com} F: F \quad$ is a finite subset of $M\}$,
if the element on the right-hand side of (3.2) exists in \mathscr{L}.
Definitorically we put $\operatorname{com} \emptyset=1$. The commutator of M, $\operatorname{com} M$, has been firstly introduced in ${ }^{16 /}$ for the study of joint distributions.

The following notion has been defined in ${ }^{/ 9 /}$. We say that a subset M of $\mathscr{\&}$ is partially compatible with respect to a, $a G \mathscr{L}$,if (i) $a \leftrightarrow b$ for any $b \in M$; (ii) $\{b \% a: b \in M\}$ is a set of mutually compatible elements of \mathfrak{L}. It is known $/ 11 /$ that if $a=$ com M exists, then M is partially compatible with respect to a.

Let $\left\{a_{8}: s \in S\right\}$ be an indexed set of elements of \mathscr{L}. The element $a \in \mathscr{L}$ is said to be countably obtainable over $\left\{a_{s}: s \in S\right\}^{1 / 0,8}$, if $a=M_{s}$, and if there is a countable subset $S_{o} \subset S^{s}$ with $a={\hat{s} \in S_{o}}_{a_{s} .}^{s \in S}$. From[${ }^{\prime 10}$ Prop.2.3] it follows that if there is at most countable subset N CMof a quantum logic \mathcal{L} which generates the minimal sublogic \mathfrak{L}_{0} of $£$ containing M, then com M exists and is countably obtainable over (com F : F is a finite subset of M\}.

The following result, due to W.Puguntke $/ 23 /$ is of particular interest for the present study: There is an OML \mathscr{L} and $M \subset \mathscr{L}$ for which the commutator of M does not exists in $\mathcal{L} .\{$

Let x_{i} be an \mathbb{Q}_{i}-observable of $\mathcal{L}, i=1, \ldots, n$. Define

$$
\begin{equation*}
a\left(E_{1}, \ldots, E_{n}\right)=\vee_{j_{1} \ldots j_{n}=0}^{\stackrel{1}{n}} \wedge_{i=1}^{n} x_{i}\left(E_{i}^{j_{i}}\right) \tag{3.3}
\end{equation*}
$$

where $E_{i} \in \mathbb{Q}_{i}, i \stackrel{1}{=}, \ldots, n$. Then, due to ${ }^{\prime 10 /}$, for $M=\bigcup_{i=1}^{n} R\left(x_{i}\right)$. where x_{i} is a $\mathscr{S}\left(\mathrm{R}^{1}\right)-\sigma$-observable, $\mathrm{i}=1, \ldots, \mathrm{n} \leq \infty$. The commu-
tator com M exists in a quantum logic \mathfrak{L} and it is countably obtainable over fcom $F: F$ finite subset of M \}, and, moreover, com M is countably obtainable over $\left\{a\left(E_{1}, \ldots, E_{n}\right): E_{i} \in \mathscr{S}\left(R^{1}\right), i=\right.$ $=1, \ldots, n\}$. If there is $a_{o}=\operatorname{com}\left(\underset{t \in T}{\cup} R\left(x_{t}\right)\right)$, we call a_{o} as the commutator of σ-observables $\left\{x_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\}$.

The following result has been proved in ${ }^{112 /}$.
Theorem 3.1, Let x_{1}, \ldots, x_{n} be $\Re\left(R^{1}\right)-\sigma$-observables of a quantum $\operatorname{logic} \mathscr{L}$ and let m be a measure on \mathscr{L}. Let us denote $a_{0}=\operatorname{com}\left(\bigcup_{i=1}^{n} R\left(x_{i}\right)\right) I f$
$m\left(a_{0}^{1}\right)=0$,
then there is a joint distribution in m. If at least one x_{i} is σ-finite with respect to m, then the joint distribution is unique.

If x_{1}, \ldots, x_{n} have a joint distribution in m and at least one x_{i} is σ-finite with respect to m, then (3.4) holds.

Moreover, maps $x_{i o}: E \rightarrow x_{i}(E) \wedge_{a_{0}}, E \in \mathscr{B}\left(R^{1}\right)$, are mutually compatible σ-observables of a quantum logic $\mathscr{L}\left(0, a_{o}\right):=$
$=\{b \in \mathscr{L}: b<a\}$ (here an orthocomplementation " " is defined as $\left.b^{\prime}=b^{\perp} \wedge a_{0}, b<a 0_{0}\right)$.

It is known $/ 7,8 /$ that $\mathscr{B}\left(R^{1}\right)-\sigma$-observables x_{1}, \ldots, x_{n} have a joint distribution in a state m (finite measure, too) iff
$m\left(a^{\perp}\left(E_{1}, \ldots, E_{n}\right)\right)=0$,
for any $E_{1}, \ldots, E_{n} \in \mathscr{B}\left(R^{1}\right)$. This is equivalent to the next condition $/ 7,{ }^{1} 19,20 /$
$m\left(\bigwedge_{j=1}^{n} x_{j}\left(E_{j 1} \cup E_{j 2}\right)\right)=\sum_{k_{1} \cdots k_{n}=1}^{2} m\left(\bigwedge_{j=1}^{n} x_{j}\left(E_{j k_{j}}^{\prime}\right)\right)$,
for any $E_{j 1} \cap E_{j 2}=\emptyset, E_{j 1}, E_{j 2} \in 马\left(R^{1}\right), j=1, \ldots, n$.
For measures with infinite values this equivalence has been proved only in particular cases 12% (3.5) for measures with carriers, and (3.6) only on a σ-continuous logic. In the below the equivalence of (3.5) with (3.6) and with the existence of a joint distribution in measures attaining even infinite values will be proved.

In the following we shall suppose that $\mathbb{A}_{1}, \ldots, \mathbb{Q}_{n}$ are independent Boolean sub- σ-algebras of a Boolean algebra A and x_{1} is an $\mathbb{Q}_{1}-\sigma$-observable of ${ }_{j}$ logic $\mathcal{L}, i=1, \ldots, n$. A decomposition of 1 in a logic \oint is a system $\left\{\mathbf{a}_{\mathbf{i}}\right\} \subset \mathfrak{C}$ such that $a_{i} \perp a_{j}$ whenever $i \neq j, \quad \underset{i}{ } a_{i}=1$.

Lemma 3.2. Let $h_{i}: \mathscr{B}_{i} \rightarrow \mathcal{P}_{\mathrm{i}}$ be a σ-homomorphism of a Boolean sub- σ-algebra \mathscr{B}_{i} of $\mathbb{G}_{1}, i=1, \ldots, n$. Then x_{1}, \ldots, x_{n} have a joint distribution in a measure m iff $x_{1} o h_{1}, \ldots, x_{n}$ o h_{n} have a joint distribution for any σ-homomornhism $\boldsymbol{h}_{\boldsymbol{i}}$ and any Boolean sub- σ-algebra S_{i} of $\dot{G}_{i}, i=1, \ldots, n$.

Proof. It is evident.

Q.E.D.

Lemma 3.3. Let x_{1}, \ldots, x_{n} have a joint distribution in a measure m. Then
$m\left(\hat{i}_{n}^{n} x_{i}\left(E_{i}\right) \wedge \wedge_{k=1}^{K} a\left(E_{1}^{k}, \ldots, E_{n}^{k}\right)\right)=m\left(\hat{i}_{n}^{n} x_{i}\left(E_{i}\right)\right)$,
for any $E_{i}, E_{i}^{k} \in \mathbb{Q}_{i}, i=1, \ldots, n, k=I, \ldots, k$, where k may be an integer or $+\infty$.

Proof. It is the same as that of Lemma 2.2 in $^{\text {/12/ }}$
Q.E.D.

Theorem 3.4. Let at least one of x_{1}, \ldots, x_{n} be σ-finite with respect to m. If the commutator, a_{o}, of x_{1}, \ldots, x_{n} exists and if it is countably obtainable, then x_{1}, \ldots, x_{n} have a joint

distribution in m iff

$m\left(a \frac{\perp}{0}\right)=0$.
Proof. From ${ }^{/ 6,10 /}$ it follows that if a_{o} is countably obtainable over \{com $F: F$ finite subset of ${ }_{j}{ }_{=}^{n} \mathscr{R}\left(x_{i}\right)$ \}, then a_{o} is countably obtainable over $\left\{a\left(E_{1}, \ldots, E_{n}\right)^{i=1} E_{i} \in \mathbb{Q}_{i}, i=1, \ldots, n\right\}$ and vice versa.

Let $x_{\mu} \ldots . . x_{n}$ have a joint distribution in m, and let x_{1} be σ-finite with respect to m. Using (3.7) we may establish that if $m\left(x_{1}(E)\right)<\infty$ for some $E \in \mathbb{Q}_{1}$, then $m\left(x_{1}(E) \wedge a_{0}^{3}\right)=0$.Therefore, if $\left\{\mathbb{E}_{k}\right\}_{k=f} \mathcal{\mathbb { G } _ { 1 }}$ is a countable decomposition of 1 with $m\left(x_{1}\left(E_{k}\right)\right)<\infty, k \geq 1$, then
$m\left(a_{0}^{\perp}\right)=m\left(a_{o}^{\perp} \wedge x_{1}\left(\underset{k=1}{\infty} E_{k}\right)\right)=\sum_{k=1}^{\infty} m\left(a_{o}^{\perp} \wedge x_{1}\left(E_{k}\right)\right)=0$,
when we use the property of the partial compatibility of a_{o}. Let now (3.8) hold. Then putting $\bar{m}:=m \mid £\left(0, a_{o}\right)$
$m\left(\wedge_{i=1}^{n} x_{i}\left(E_{i}\right)\right)=m\left(\wedge_{i=1}^{n} x_{i}\left(E_{i}\right) \wedge a_{0}\right)=\bar{m}\left(\wedge_{i=1}^{n} x_{i 0}\left(E_{i}\right)\right)$,
where $x_{10}(E):=x_{1}(E) \wedge a_{o}$ is an $\mathbb{Q}_{i}-\sigma$-observable of $\mathscr{L}\left(0, a_{o}\right)$, $i=1, \ldots, n$, which are mutually compatible. Appealing to Theorem 2.2 of $/ I /$ we see that x_{1}, \ldots, x_{n} have a joint distribution in m .

We note that if x_{t} is an $\mathbb{Q}_{t}-\sigma$-observable of quantum logic $\mathcal{L}, t \in T$, where $\left\{Q_{t}: t \in T\right\}$ is a system of σ-independent Boolean sub- σ-algebras of a Boolean σ-algebra \mathbb{A}, and if $\left\{x_{t}: t \in T\right\}$ have a countable obtainable commutator a_{a}, then Theorem 3.4 is valid for $\left\{x_{t}: t \in T\right\}$,too.

Lemma 3.5. Let x_{1}, \ldots, x_{n} have a joint distribution in m and let x_{1}, say, be σ-finite with respect to m. Then
(i) $m\left(a^{\perp}\left(E_{1}, \ldots, E_{n}\right)\right)=0$,
for any $E_{i} \in \mathbb{C}_{i}, i=1, \ldots, n$;
(ii) $\mathrm{m}\left(\operatorname{com}^{\perp} \mathrm{F}\right)=0$,
for any finite subset $F \subset \underset{i=1}{\bigcup_{i=1}^{n}} \mathbb{R}\left(x_{i}\right)$.
Proөf. Any finite $\emptyset \neq F \subset \underset{i=1}{U_{1}^{n}} \Re\left(x_{i}\right)$ generates a finite decomposition, \mathcal{K}_{i}, of 1 in each \mathbb{Q}_{i}.in the following manner. If in F there is no elements of \mathbb{Q}_{i}, then we put $\mathcal{K}_{i}=\{0,1\}$. If $\mathbb{U}_{i} \cap F=$ $=\left\{E_{-1}, \ldots, E_{k}\right\}$, then we put $\mathcal{K}_{1}=\left\{E_{1}^{j_{1}} \wedge \ldots \wedge E_{k}^{j_{k}}: j_{s} \in\{0,1\}, s=\right.$
$=1, \ldots, k\}$. Let $\left\{F_{j}\right\}_{j=1}^{\infty}$ be a countable decomposition of 1 in \mathbb{Q}_{1} with $m\left(x_{1}\left(F_{j}\right)\right)<\infty, j \geq 1$. Denote by \mathscr{S}_{1} the minimal sub- $\sigma-a 1-$ gebra of \mathbb{Q}_{1} containing $\left\{F_{j} \cap A: A \in \mathcal{K}_{1}, j \geq 1\right\}$, and, for $2 \leq i \leq n$, we put $\mathscr{B}_{i}=\sigma\left(\mathcal{K}_{i}\right)$. Then $\bar{x}_{i}:=x_{i} \mid \mathscr{B}_{i} \quad$ is a $\mathscr{B}_{i}-\sigma$-observable of \mathcal{L} and, due to Lemma 3.2, they have a joint distribution in m . Since the subset $\mathbb{M}=\left\{\right.$ com $G: G$ is a finite subset of $\left.\bigcup_{i=1}^{U} \mathbb{R}\left(\bar{x}_{i}\right)\right\}$ of $\&$ has at most countably many elements, there is a commutator a_{o} of $\bar{x}_{1}, \ldots, \bar{x}_{n}$, and, moreover, a_{o} is countably obtainable. Because \bar{x}_{1} is σ-finite with respect to m, appealing Theorem 3.4 we have $m\left(a_{o}^{\perp}\right)=0$. Since $F \in \pi \quad$ and $a_{o}<\operatorname{com} F$, we obtain (3.10).

To prove (3.9) it is sufficient to put $F=\left\{x_{1}\left(E_{1}\right), \ldots\right.$,
$\left.x_{n}\left(E_{n}\right)\right\}$.
Q.E.D.

The next technical lemmas will be useful in the following. If $F=\left\{c_{1}, \ldots, c_{i}\right\} \subset \mathcal{L}, \mathcal{L}$ is an $O M L$, then we put $\operatorname{com}\left(c_{1}, \ldots, c_{i}\right):=$ $=\mathrm{com} \mathrm{F}$.

Lemma 3.6. Let $\mathcal{\&}$ be an OML. If a_{1}, \ldots, a_{k} are mutually orthogonal elements of \mathscr{L}, then, for any b_{1}, \ldots, b_{n}
$\left(\underset{i=1}{\vee} a_{i}\right) \wedge \operatorname{com}^{\perp}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)=\bigvee_{i=1}^{k}\left(a_{i} \wedge \operatorname{com}^{\perp}\left(a_{i}, b_{1}, \ldots, b_{n}\right)\right)$

Proof. Lemma 2.1 of $/ 8 /$ implies that
$\operatorname{com}\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)=$
$=V_{d \in D^{n}}\left(a_{1} \wedge b^{d} \cdot \vee \ldots a_{k} \wedge b^{d} \vee\left(a_{1} \vee \ldots \vee a_{k}\right)^{\perp} \wedge b^{d}\right)$,
where $D=\{0, l\}, b^{d}:=b_{1}^{d_{1}} \wedge \ldots \wedge b_{n}^{d_{n}}, d=\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$.
Calculate
$a:=\left({\left.\underset{i=1}{k} a_{1}\right) \wedge \operatorname{com}^{\perp}\left(a_{1}, \ldots, \dot{a}_{k}, b_{1}, \ldots, b_{n}\right)=}^{V}\right.$
$=\left(\underset{i=1}{k} a_{i}\right) \wedge \underset{d \in D^{n}}{\wedge}\left(\left(a_{1}^{\perp} \vee b^{d \perp}\right) \wedge \ldots \wedge\left(a_{k}^{\perp} \vee b^{d \perp}\right) \wedge\left(a_{1} \vee \ldots \vee a_{k} \vee b^{d \perp}\right)\right.$.
Since, for all $i, j=1, \ldots, n$ and each $d \in D^{n}, a, \leftrightarrow a_{j}^{\perp} \vee b^{d \perp}$, $a_{i}^{\perp} \rightarrow\left(a_{1}^{\perp} \vee \ldots \vee a_{k} \vee b^{d \perp}\right)$,then, according to [$/ 1 /$ Lemma 6.10], we may apply the distributive law. Hence,

$$
\begin{aligned}
& a=\vee_{i=1}^{k}\left(a_{i} \wedge \wedge_{d \in D^{n^{\prime}}}^{\left.\left(a_{1}^{\perp} \vee b^{d \perp}\right) \wedge \ldots \wedge\left(a_{k}^{\perp} \vee b^{d \perp}\right)\right)=}\right. \\
& =\stackrel{k}{\vee}{ }_{i=1}\left(a_{i} \wedge \wedge_{d \in D^{n}}^{\wedge}\left(a_{i}^{\perp} \vee b^{d \perp}\right)\right)=\vee_{i=1}^{\vee}\left(a_{i} \wedge \operatorname{com}^{\perp}\left(a_{i}, b_{1}, \ldots, b_{n}\right)\right) .
\end{aligned}
$$

Lemma 3.7. Let \mathcal{L} be an $O M L$. If for $F=\left\{a, b_{1}, \ldots, b_{n}\right\}$ we have $\mathrm{m}\left(\operatorname{com}^{\perp} \mathrm{F}\right)=0$ then
$m(a)=\sum_{d \in D^{n}} m\left(a \wedge b^{d}\right)=m(a \wedge \operatorname{com} F)$.
proof. $m(a)=m(a \wedge \operatorname{com} F)+m\left(a \wedge \operatorname{com}^{\perp} F\right)=m(a \wedge \operatorname{com} F)=m\left(\vee a^{a \wedge b)}\right.$, when we use the notations from Lemma 3.6.

Lemma 3.8. Let \mathscr{L} be an OML. Let $F=\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right\} \subset$ $\subset \mathfrak{Q}$ where a_{1}, \ldots, a_{k} are mutually orthogonal elements. If $\mathrm{m}\left(\operatorname{com}^{\perp} \mathrm{F}\right)=0$, then
$m\left(\left(\vee_{i=1}^{k} a_{i}\right) \wedge \wedge_{j=1}^{n} b_{j}\right)=\sum_{i=1}^{k} m\left(a_{i} \wedge \wedge_{j=1}^{n} b_{j}\right)$.
Proof. Using [${ }^{/ 8 /}$,Lemma 2.1] and the distributive law we can obtain

$\left.\left.\vee\left(a_{1} \vee \ldots \vee a_{k}\right)^{\perp} \wedge b^{d}\right)\right)=m\left(\widehat{i}=1_{k}^{V}\left(a_{i} \wedge \wedge_{j=1}^{n} b_{j}\right)\right)$.
The following notions are needed for the main result of this section. Let \mathscr{L} be an OML. A non-empty subset $\mathcal{I C} \mathfrak{L}$ is said to ${ }^{*}$ be a p-ideal $/ 22,3 /$ if (i) if $a, b \in \mathscr{I}$, then $a \vee b \in \mathscr{I}$; (ii) if $b \in \mathscr{G}, a<b$, then $a \in \mathscr{I}$; (iii) $b \in \mathscr{I}$ implies $\left(b \vee a^{\perp}\right) \wedge a \in \mathscr{I}$ for all $a \in \mathscr{L}$. If instead of (i) there holds (i) if $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathcal{I}$, then $\bigvee_{n=1}^{\infty} a_{n} \in \mathscr{G}$, then \mathscr{G} is called $a_{\sigma}-p$-ideal of \mathscr{L}. If h is a σ-homomorphism of a quantum logic \mathcal{L} into a quantum logic \mathfrak{L}_{1}, then Ker h is a $\sigma-\mathrm{p}$-ideal of \mathfrak{L}. We say that $\mathrm{a}, \boldsymbol{b}$ iff $(a \vee b) \wedge(a \wedge b)^{\perp} \in \mathscr{G}, a, b \in \mathscr{L}$. Then a relation " \sim " is the relation of an equivalence on \mathfrak{L}, and it holds (i) if $a \sim b$, then $a^{\perp} \sim b^{1}$; (ii) $a_{1} \sim b_{1}, a_{2} \sim b_{2}$ imply. $a_{1} \vee b_{1} \sim a_{2} \vee b_{2}$. Denote by $\mathscr{L} / \mathscr{I}$ the factor OML defined via $\mathscr{L} / \mathscr{I}=\{[a] \mathscr{G}, \mathrm{a} \in \mathscr{L}\}$, where [a] $\mathfrak{f}:=$ $=\{b \in \mathscr{L}: b-a\}, \quad$ and $[a]_{\mathscr{I}}^{1}:=\left[a^{\perp}\right]_{\mathfrak{g}},[a] g \cup[b] g:=[a \vee b] \mathfrak{g}$. The map $h: \mathscr{L} \rightarrow \mathscr{L} / \mathscr{G}$ which assigns $[a] \mathcal{G}^{\text {t }}$ any $a \in \mathscr{L}$, is a homomorphism of \mathscr{L} onto $\mathscr{L} / \mathfrak{J}$.

Finally, we present a theorem which generalizes all kniwn conditions concerning the existence of a joint distribution in a measure into two main aspects; (i) measures may attain the infinite values, too (ii) the conditions do not depend on the existence of the commutator of a given system $\left\{x_{t}: t \in T\right\}$ of σ-observables.

Theorem 3.9. Let $x_{t}: \mathbb{Q}_{t} \rightarrow \mathcal{\&}$ be a σ-observable of a quantum logic $\mathcal{S}, \mathrm{t} \in \mathrm{T}$, where $\left\{\mathbb{Q}_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\}$ is a system of σ-independent Boolean sub- σ-algebras of a Boolean σ-algebra \mathbb{A}. Let at least one σ-observable, $\mathrm{x}_{\mathrm{t}_{0}}$ say, be σ-finite with respect to a mea-
sure m. Then the following conditions are equivalent
(i) $\left\{x_{t}: t \in T\right\}$ have a joint distribution in m :
(ii) $m\left(\operatorname{com}^{\perp}\left(\left\{x_{t}\left(A_{t}\right): t \in a\right\}\right)\right)=0$,
for any $A_{\mathfrak{t}} \in \mathbb{Q}_{\mathfrak{t}}, \mathbf{t} \in a$, and any finite $\emptyset \neq a \subset T$;
(iii) $m\left(\operatorname{com}^{\perp} F\right)=0$,
for any finite subset F of $U\{\mathbb{R}(x): t \in T\}$;

for any $A_{1 t} \wedge A_{2 t}=0, A_{1 t}, A_{2 t}^{t \in \alpha} \in \mathbb{Q}_{t}, t \in \alpha$, and any finite $\rho \neq \alpha \subset T$;
(v) $m(\hat{t}_{\hat{\wedge} \in a} x_{t}(\underbrace{\infty}_{k=1} A_{k t}))=\sum_{k=1}^{\infty} m\left(\hat{\mathrm{~N}}_{\mathrm{t} \in a} \mathrm{X}_{\mathrm{t}}\left(\mathrm{A}_{\mathrm{k}_{\mathrm{t}}} \mathrm{t}\right)\right)$,
for any $\left\{A_{k t}\right\}_{k=1}^{\infty} \subset Q_{\mathrm{t}}, A_{i t} \wedge A_{j t}=0, i \neq j, t \in a$, and any finite $\emptyset \neq a \subset \mathrm{~T}$;
(vi) There exists a Boolean σ-algebra $\mathcal{B}, \mathcal{B} \neq\{0\}$, and a σ-homomorphism h of the minimal sublogic \mathscr{Q}_{o} of $\mathcal{\varrho}$ containing all $R\left(x_{t}\right)$ onto $: S$ such that $m(a)=0$ for all $a \in \operatorname{Ker} h$;
(vii) There is a quantum logic $\mathscr{Q}_{1} \neq\{0\}$ and a σ-homomorphism h of \mathscr{L}_{0} onto \mathscr{L}_{1} such that $\left\{\mathrm{h} \circ \mathrm{x}_{\mathrm{t}}: t \in \mathrm{~T}\right.$ \}are mutually conpatible σ-observables of \mathscr{L}_{1} and $m(a)=0$ for all $a \in$ Ker h;
(viii) There is a (unique) measure μ on $\underset{t \in T}{H_{t}(\mathbb{t}}$ such that
$\mu\left(\hat{t}_{\hat{\prime}} A_{t}\right)=m\left(\hat{t}_{t \in a} \mathbf{x}_{\mathrm{t}}\left(\mathrm{A}_{\mathrm{t}}\right)\right)$,
for any $\mathrm{A}_{\mathrm{t}} \in \mathbb{C}_{\mathrm{t}}, \mathrm{t} \in a$ and any finite $\emptyset \neq a \subset \mathrm{~T}$.
Proof. We shall prove the following implications: (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) $\Rightarrow(v) \Rightarrow(i)$, and (i) $\Rightarrow(v i) \Rightarrow(v i i) \Rightarrow$
\Rightarrow (viii) \Rightarrow (i).
(i) \Rightarrow (ii). Let a non-empty finite subset $a \subset T$ be given. If $t_{0} \in a$, then we appeal Lemma 3.5 and (3.9). If $t_{0} \notin a$, we change a to $a \cup\left\{\mathrm{t}_{\mathrm{o}}\right\}$ and use a monotonicity of m .
(ii) $\Rightarrow\left(\right.$ iii) 0. Let a finite $F \subset U\left\{\mathcal{M}\left(x_{t}\right): t \in T\right\}$ be given. Then there is a finite subset $a \subset T$ with diveres indices t_{1}, \ldots, t_{n}. Analogically as in the proof of Lemma 3.5, for each $i=1, \ldots, n$, F generates a finite decomposition $K_{i}=\left\{A_{1}^{i}, \ldots, A_{\mathbf{k}_{1}}^{1}\right\} \subset \mathbb{Q}_{t}$
of 1. Theorem 2.2 of $^{/ 8 /}$ yields $\operatorname{com} F=\operatorname{com}\left(\sum_{i=1}^{n} K_{i}\right)$ and a repeated application of (3.11) gives us
${ }^{\mathrm{k}}{ }_{1}$
$0 \leq m\left(\operatorname{com}^{\perp} F\right)=m\left(1 \wedge \operatorname{com}^{\perp}\left(\bigcup_{i=1}^{n} K_{i}\right)\right)=m\left(\left({\underset{i}{1}=1}_{V_{1}} x_{t_{1}}\left(A_{i_{1}}^{1}\right)\right) \wedge \operatorname{com}^{\perp}\left(\cup_{i=1}^{n} K_{i}\right)\right)=$
$=\sum_{i_{1}=1}^{k_{1}} m\left(x_{\mathrm{t}_{1}}\left(A_{i_{1}}^{1}\right) \wedge \operatorname{com}^{\perp}\left(\left\{\mathrm{x}_{\mathrm{t}_{1}}\left(A_{\mathrm{i}_{1}}^{1}\right)\right\} \cup \sum_{\mathrm{i}=2}^{\mathrm{U}} \mathcal{K}_{\mathrm{i}}\right)\right) \leq$
$\leq \sum_{i_{1}=1}^{k_{1}} m\left(\operatorname{com}^{\perp}\left(\left\{x_{t_{1}}\left(A_{i_{1}}^{1}\right)\right\} \cup \bigcup_{n=2}^{n} K_{i}\right)\right) \leq \ldots \leq$
$\leq \sum_{i_{1}=1}^{k_{1}} \cdots \sum_{i_{n}=1}^{k_{n}} m\left(\operatorname{com}^{\perp}\left(x_{t_{1}}\left(A_{i_{1}}^{1}\right), \ldots, x_{t_{n}}\left(A_{i_{n}}^{n}\right)\right)\right)=0$.
(iii) \Rightarrow (iv). Let now a non-empty set $a=\left\{t_{1}, \ldots, t_{n}\right\} \subset T$ bé given. Let $A_{1 t_{i}} \wedge A_{2 t_{1}}=0, A_{1 t_{i}}, A_{2 t_{i}} \in \mathbb{Q}_{t_{i}}, i=1, \ldots, n . D e-$ fine $a_{k}=x_{t_{1}}\left(A_{k t_{1}}\right), k=1,2, b_{j}=x_{t_{j}}\left(A_{1 t_{j}} \vee A_{2 t_{j}}\right), j=2, \ldots, n$. Repeated appealing Lemma 3.8 we see that (3.16) is true.
(iv) $=>(\mathrm{v})$. To prove (3.17) we 1imit ourselves to the following case. Let a non-empty subset $a=\left\{t_{1}, \ldots, t_{n}\right\} \subset T$ be given. Let $\left\{A_{k i}\right\}_{k=1}^{\infty} \subset \dot{\mathscr{A}}_{\mathrm{t}}, \mathrm{A}_{\mathrm{ki}} \wedge \mathrm{A}_{\mathrm{kj}}=0$ whenever $\mathrm{k} \neq \mathrm{j}$, be given for any $i=1, \ldots, n$. There are two possible cases (i) $\mathrm{t}_{\mathrm{o}} \in a$, then we put $\mathrm{t}_{1}=\mathrm{t}_{\mathrm{o}}$; (ii) $\mathrm{t}_{\mathrm{o}} \notin a$, then without loss of generality we can change a to a U\{t $\left.{ }_{0}\right\}$ and we also put $t_{1}=t_{o}$. There is a countable decomposition $\left\{E_{v}\right\}_{v=1}^{\infty} \subset \mathbb{P}_{\mathrm{t}_{1}}$ of 1 with $\mathrm{m}\left(\mathrm{x}_{\mathrm{t}_{1}}\left(\mathrm{E}_{\mathrm{v}}\right)\right)<\infty$,
$v \geq 1$. Define \mathscr{B}_{1} as the minimal Boolean sub- σ-algebra of $\mathbb{A}_{t_{1}}$ containing $\left\{E_{v} \wedge A_{k 1}, E_{v} \wedge A_{1}^{\perp}: v, k \geq 1\right\}$, where $A_{i}=\underset{k=1}{\vee} A_{k i}, i={ }^{\prime}$ $=1, \ldots, n$, and let $\mathcal{B}_{i}, i=2, \ldots, n$. be the Boolean sub- σ-algebras of $\mathbb{C}_{t_{i}}$ generated by $\left\{A_{t}^{1}, A_{k i}: k \geq 1\right\}$.

A mapping $\overline{\mathbf{x}}_{\mathrm{i}}:=\mathbf{x}_{\mathrm{i}} \mid \mathscr{S}_{\mathrm{i}}$ is a $\mathscr{ß}_{\mathrm{i}}-\sigma$-observable of $\mathscr{L}, \mathrm{i}=1, \ldots, \mathrm{n}$, and \vec{x}_{1} is σ-finite with respect to m. It is clear that \vec{x}_{1}, \ldots, \bar{x}_{n} have a countably obtainable commutator a_{o} over \{com F:Ffinite subset of $\left.\bigcup_{i=1}^{n} \mathcal{R}\left(\bar{x}_{i}\right)\right\} ;$ because the last set has at most countably many elements.

We claim to show $\mathrm{m}\left(\mathrm{a}^{\perp}{ }_{\mathrm{o}}\right)=0$. Let $\mathrm{a}_{\mathrm{o}}=\wedge_{\mathrm{k}=1}^{\infty} \operatorname{com} \mathrm{F}_{\mathrm{k}}$. It is evident that if. F and G are two finite subset of \mathfrak{L} with $F \subset G, t h e n$ comG<comF. Therefore, we can choose F_{k} to be nondecreasing and containing $\bar{x}_{1}\left(E_{v}\right)$ for any fixed $v \geq 1$. Indeed, put $G_{k}=$ $=\bigcup_{i=1}^{k} F_{y} \cup\left\{\boldsymbol{x}_{1}\left(E_{v}\right)\right\}$, then $a_{o}=\bigwedge_{k=1}^{\infty} \operatorname{com} F_{k}>\bigwedge_{k=1}^{\infty} \operatorname{com} G_{k}>a_{o}$.

Using the continuity of m from above and the properties of the commutators we obtain $m\left(\bar{x}_{1}\left(E_{v}\right) \wedge a_{0}\right)=\lim _{k} m\left(\bar{x}_{1}\left(E_{v}\right) \wedge \operatorname{com} F_{k}\right)=\lim _{k} m\left(\bar{x}_{1}\left(E_{v}\right)\right)=m\left(\bar{x}_{1}\left(E_{v}\right)\right)$.
i In the previous step we used Lemma 3.7 and (3.12). This implies $m\left(\bar{x}_{1}\left(E_{v}\right) \wedge a_{0}^{t}\right)=0$ for any $v \geq 1 s$ and, consequently, $m\left(a_{0}^{1}\right)=$ $=\sum_{v=1}^{\infty} m\left(\bar{x}_{1}\left(E_{v}\right) \wedge a_{0}^{1}\right)=0$. Theorem 3.4 entails that $\bar{x}_{1}, \ldots, \bar{x}_{n}$ have a joint distribution in m.so, in particular, (3.17) holds. (v) \Rightarrow (i). Let $\emptyset \neq a \subset T$, a finite, be given. Without loss of generality we may assume that $t_{0} \in a$. The property (v) and the Carathéodory method of measure extension applied to Boolean algebras, ${ }^{17,18 /}$ guarantees that there is a (unique) measure μ_{a} on $\prod_{t \in a} \mathbb{Q}_{\mathrm{t}}$ such that

$$
\mu_{a}\left(\hat{t}^{\wedge_{a}} A_{t}\right)=m\left(\wedge_{t \in a} x_{t}\left(A_{t}\right)\right), \text { for any } \quad A_{t} \in \mathbb{Q}_{t}, t \in a
$$

$$
\begin{align*}
& \quad(i) \Rightarrow(v i) . \text { Let } \mathscr{L}_{0} \text { be the minimal sublogic of a logic } \mathcal{L} \\
& \text { containing } M=\underset{t \in T}{\cup \cup}\left(x_{t}\right) \text {. Define } \\
& \mathscr{I}=\left\{a \in \cdot \mathscr{L}_{0}: a<\bigvee_{i=1}^{\infty} \operatorname{com}^{\perp} F_{i}, F_{i} \text { finite subset of } M, i \geq 1\right\} \tag{3.19}
\end{align*}
$$

From $11 /$ it follows that \mathcal{I} is a σ-p-ideal of \mathscr{L}_{0}. Theorem 5 of $/ 22 /$ says that the factor logic $\mathscr{L}_{0} / \mathcal{I}$ is a Boolean σ-algebra. Let us put $\mathcal{B}=\mathscr{L}_{0} / \mathfrak{g}$. A map $h: \mathscr{L}_{0} \rightarrow \mathcal{B}$ defined by $h(a)=[a] g$ is a σ-homomorphism of \mathscr{L}_{0} onto \mathfrak{B}.

Now we claim to show that $m(a)=0$ whenever $h(a)=0$. In other words $m(a)=0$ whenever $a \in \mathscr{I}$. From the definition of it follows that there is a sequence, $\left\{F_{i}\right\}_{i=1}^{\infty}$, of finite subsets of M such that $\mathrm{a}<\bigcup_{\mathrm{V}=1}^{\infty} \operatorname{com}^{\perp} \mathrm{F}_{\mathrm{i}}$. Let us put $\mathrm{G}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}} \cup\left\{\mathrm{x}_{\mathrm{t}_{\mathrm{o}}}\left(\mathrm{E}_{\mathrm{i}}\right)\right\}, \mathrm{i} \geq 1$, where $\left\{\mathrm{E}_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{\infty}$ is a decomposition of 1 in $\mathbb{Q}_{\mathrm{t}_{\mathrm{o}}}$ with $\mathrm{m}\left(\mathrm{x}_{\mathrm{t}_{\mathrm{o}}}\left(\mathrm{E}_{\mathrm{i}}\right)\right)<\infty$. For any G_{i}, there is a finite subset $a_{i_{i}}$ of T such that for any $b \in G_{i}$ there is $t \in a$ with $x_{t}(A)=b$ for some $A \in \mathbb{Q}_{t}$. Put $G=$ $=\bigcup_{i=1}^{\infty} G_{i}$ and $a=\bigcup_{i=1}^{\infty} a_{i}$. We order the elements of a as follows
 rated by $\mathbb{Q}_{4} \cap$ and $\left\{\overrightarrow{\mathrm{x}}_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{\infty}$ have a countably obtainable commutator $\mathrm{a}_{0} .\left\{\mathfrak{B}_{\mathrm{i}}: \mathrm{i} \geq 1\right\}$ is a system of σ-independent Boolean sub- σ-algebras of a Boolean σ-algebra Q. Since at least one of $\left\{\overline{\mathrm{x}}_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{\infty}$. is σ-finite with respect to m , Lemma 3.2 and Theorem 3.4 s ay $\mathrm{m}\left(\mathrm{a}_{0}^{\perp}\right)=0$.

An easy calculation shows
$a<V_{i=1}^{\infty} \operatorname{com}^{\perp} F_{i}<\bigvee_{i=1}^{\infty} \operatorname{com}^{\perp} G_{i}<a_{0}^{\perp}$,
so that, $m(a)=0$.

It rests to show that \mathcal{B} is not a degenerate Boolean σ algebra. In the opposite case $0=1$ in \mathcal{B} and, therefore, $h(0)=h(1)$ so that, $m(1)=0$ which is a contradiction.
(vi) \Rightarrow (vii). Let (vi) hold. Defining $\mathscr{L}_{1}:=\mathfrak{B}$ and taking the σ-homomorphism from (vi) the condition (vii) is proved.
(vii) $\Rightarrow(v i i i) \cdot$ Let (vii) hold. Define a measure \bar{m} on \mathfrak{l}_{1} as follows: $\overline{\mathrm{m}}(\mathrm{h}(\mathrm{a}))=\mathrm{m}(\mathrm{a})$. We show that $\overline{\mathrm{m}}$ is defined well. Let $h(a)=h(b)$. Then $h(a \vee b)^{\prime}=h(a \wedge b) \quad$ and $h\left((a \vee b) \wedge(a \wedge b)^{\perp}\right)=0$. Therefore $m\left((a \vee b) \wedge(a \wedge b)^{\perp}\right)=0$. Using the orthomodular law we have $m(a \vee b)=m(a \wedge b)+m\left((a \vee b) \wedge(a \wedge b)^{L}\right)=m(a \wedge b)$.
that, $m(a)=m(b)$.
Clearly, $\overrightarrow{\mathrm{m}}(0)=0$. Let now $\left\{\mathrm{h}\left(\mathrm{a}_{\mathrm{i}}\right)\right\}_{\mathrm{i}=1}^{\infty}$ be orthogonal elements in \mathscr{L}_{1}. In \mathscr{L}_{0} we define $b_{1}=\dot{a}_{1}, b_{n}=a_{n} \wedge\left(\bigvee_{n=1}^{\infty} a_{i}\right)^{\perp} \quad, n \geq 2$. Then $\left\{b_{n}\right\}_{n=1}^{\infty}$ are orthogonal elements and $h\left(b_{n}\right)=h\left(a_{n}\right)$. An easy check shows
$\bar{m}\left(\bigvee_{n=1}^{\infty} h\left(a_{n}\right)\right)=\bar{m}\left(\bigvee_{n=1}^{\infty} h\left(b_{n}\right)\right)=\bar{m}\left(h\left(\bigvee_{n=1}^{\infty} b_{n}\right)\right)=m\left(\bigvee_{n=1}^{\infty} b_{n}\right)=$

$$
=\sum_{n=1}^{\infty} m\left(b_{n}\right)=\sum_{n=1}^{\infty} \bar{m}\left(h\left(b_{n}\right)\right)=\sum_{n=1}^{\infty} \bar{m}\left(h\left(a_{n}\right)\right)
$$

Since at least one σ-observable of Ω_{1} from thox $x_{t}: t \subseteq T$ ins σ-finite with respect to m , then Theorem 2.2 of ${ }^{I /}$ entails that there is a unique measure μ on $\mathbb{U L}_{t \in T} \mathbb{T}_{t}$ such that

$$
\mu\left(\hat{t}_{\hat{\in}} \mathrm{A}_{\mathrm{t}}\right)=\overline{\mathrm{m}}\left(\hat{\mathrm{t}}_{\in a} \mathrm{~h} \circ \mathrm{x}_{\mathrm{t}}\left(\mathrm{~A}_{\mathrm{t}}\right)\right),
$$

for any $A_{t} \in \mathbb{Q}_{t}$ and any finite $\emptyset \neq a \subset T$. Using the definition of $\overline{\mathrm{m}}$ we prove (3.18).
(viii) \Rightarrow (i). This implication is evident.

Theorem is completely proved.
Q.E.D.

Remark 1. As an example of a particular interest for the present stụdy might serve the implication (vii) \Rightarrow (i) when in its proof we do not apply Theorem 2.2.

So let (vii) hold. First of all we show that \mathscr{L}_{1} is a Boolean σ-algebra. For $\mathrm{b} \in \mathscr{L}_{0}$, denote by $\mathrm{K}(\mathrm{b})$ the set of all $\mathrm{a} \in \mathfrak{Q}_{0}$ such that $h(a) \leftrightarrow h(b)$. If $b=x_{t}(A)$, where $t \in T$ and $A \in \mathbb{Q}_{t}$ are arbitrary, then $K(b)$ is a sublogic of Ω_{0} containing $U\left\{R\left(x_{t}\right): t \in T\right\}$. So, $x_{t}(A) \leftrightarrow a$ for each $a \in \mathscr{L}_{0}$. Let now $b \in \mathscr{L}_{0}$, then the same argument shows $K(b)=\mathfrak{L}_{0}$. Hence, $h(a) \leftrightarrow h(b)$ for any $a, b \in \mathscr{L}_{0}$. In other words $£_{1}$ is a Boolean σ-algebra.

It is known that Ker h is a σ - p-ideal of \mathscr{L}_{0}. The factor $\operatorname{logic} \mathfrak{£}_{0} / \operatorname{Ker} h$ is σ-isomorphic with $\mathscr{L}_{0}[24, \mathrm{p} .41]$, hence, $\mathfrak{L}_{0} / \operatorname{Ker}_{\mathrm{h}}$ is a Boolean σ-algebra. One result of Marsden ${ }^{\prime 22 /}$ shows that in this case Ker h contains as a subset the $v^{\prime}-p-$
ideal \mathcal{I} from $(3,19)$. Hence, $m(a)=0$ for any $a \in \mathcal{H}$, in particular, $m\left(\operatorname{com}^{4} F\right)=0$ for any finite subset F of $U\left\{\mathscr{R}\left(x_{t}\right): t \in T\right\}$. Appealing the condition (ii) of the last theorem, this is equivalent with (i).
O.E.D.

Remark 2. (a) The implication (v) \Rightarrow (i) has been proved by Gudder $5 /$ for $\mathcal{B}\left(R^{1}\right)-\sigma$-observables and states.
(b) The implication (iv) \Rightarrow (v) was proved by Pulmanova ${ }^{1 / 1 /}$ for states and σ-observables defined on Borel σ-algebras of topological spaces equipped with a tight topology and using results of compact approximations on these spaces $/ 25 \%$
(c) The implication (ii) \Rightarrow (iv) has been proved in $7 /$ for states and σ-observables, where the main tool of the proof has been the following simple observation: of $t_{i} \leq s_{i} i \in\{1,2, \ldots\}$ and $-\infty<\sum t_{i}=\sum_{i} s_{i}<\infty$, then $t_{i}=s_{i}$ for any i. However when at least ${ }^{i}$ one of $t_{i}\left(s_{i}\right)$ is $+\infty$, then this is not true, in general.
(d) A very elementary proof of (ii) \Rightarrow (i) for $\mathcal{B}\left(\mathrm{R}^{1}\right)-\sigma$-observables and states was present in $\mathrm{in}^{\prime 19 \prime}$. It is based on the properties of the distribution function $F\left(t_{1}, \ldots, t_{n}\right):=m\left({ }_{i=1}^{n} x_{i}((-\infty\right.$, $\left.t_{j}\right)$), $t_{i} \in R^{1}, i=1, \ldots, n$. This approach is not applicable for general cases.
(e) The equivalence between (i) and (vi) has been established in ${ }^{/ 11 /}$ for a system of $\mathscr{B}\left(\mathrm{R}^{1}\right)-\sigma$-observables and states.

Finally, in the rest of this section we deal with some corollaries of Theorem 3.9.

Proposition 3.10. Let the assumptions of Theorem 3.9 hold. If (i) of Theorem 3.9 is valid, for any $a \in \mathscr{L}_{0}, m(b):=m(a \wedge b)$, $\mathrm{b} \in \mathscr{L}_{0}$ is a σ-additive σ-finite measure on \mathscr{L}_{0}.

Proof. If $m(a)=0$, the proposition is evident. Let $m(a)>0$, and $\overline{1 e t} b={\underset{i}{ } \underline{V}_{1} b_{i}}_{\infty},\left\{b_{i}\right\} \subset \mathscr{L}_{0}, b_{i} \perp b_{j}$ if ifj. Due to (vi), there is a Boolean σ-algebra \mathfrak{B} and σ-homomorphism h from \mathfrak{L}_{0} onto \mathfrak{B}. Therefore $\overline{\mathrm{m}}(\mathrm{h}(\mathrm{a})):=\mathrm{m}(\mathrm{a})$ is a σ-finite measure on \mathfrak{B}. Then

$$
\begin{aligned}
& m_{a}\left({\left.\underset{i=1}{\vee} b_{i}\right)=m\left(a \wedge \underset{i=1}{\vee} b_{i}\right)=\bar{m}\left(h\left(a \wedge \bigvee_{i=1}^{\infty} b_{i}\right)\right)=}^{\infty}\right. \\
& =\bar{m}\left({\underset{i=1}{\infty}\left(h\left(a \wedge b_{i}\right)\right)=\sum_{i=1}^{\infty} \bar{m}\left(h\left(a \wedge b_{i}\right)\right)=\sum_{i=1}^{\infty} m_{a}\left(b_{i}\right) .}_{\text {. }}\right.
\end{aligned}
$$

Remark 3. If $a \in \mathfrak{L}_{0}$ and $0<m(a)<\infty$, then $m(b) / m(a), b \in \mathscr{L}_{0}$, as a conditional probability on $\check{\Omega}_{0}$ may be treated

Proposition 3.11. Let the assumptions of Theorem 3.9 hold. Then $\left\{x_{t}: t \in T\right\}$ have a joint distribution in a measure m iff, for any $a \in U\left\{\dot{R}\left(x_{t}\right): t \in T\right\}$, the function $m_{a}(b):=m(a \wedge b),: b \in \mathscr{L}_{0}$, is additive on \mathscr{L}_{0}, that is, $\mathrm{m}_{\mathrm{a}}\left(\mathrm{b}_{1} \vee \mathrm{~b}_{2}\right)=\mathrm{m}_{\mathrm{a}}\left(\mathrm{b}_{1}\right)+\mathrm{m}_{\mathrm{a}}\left(\mathrm{b}_{2}\right)$ whenever $\mathrm{b}_{1}, \mathrm{~b}_{2} \in \mathscr{L}_{0}$ and $\mathrm{b}_{1} \perp \mathrm{~b}_{2}$. Moreover, m_{a} is always σ-additive σ-finite measure on \mathfrak{L}_{0}, and $m_{a}(b \vee c)=m((a \wedge, b) \vee(b \wedge c)), b, c \in \mathfrak{L}_{0}$.

Proof. One part of the proposition follows from Propositi-on 3.10 .

To prove the second part we claim to show that (iv) of Theorem 3.9 holds. First of all let $a=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\} \subset T$ and $\mathrm{A}_{1 i}, \mathrm{~A}_{2 \mathrm{i}} \in \mathbb{Q}_{\mathrm{t}_{\mathrm{i}}}$, $A_{1 i} \wedge A_{2 i}=0, i=1,2$, be given. Then
$m\left(\sum_{i=1}^{2} x_{t_{i}}\left(A_{1 i} \vee A_{2 i}\right)\right)=m_{b}\left(x_{t_{1}}\left(A_{11} \vee \dot{A}_{21}\right)\right)=m_{b}\left(x_{t_{1}}\left(A_{11}\right)\right)+$
$+m_{b}\left(x_{t_{2}}\left(A_{21}\right)\right)=m_{a_{1}}\left(x_{t_{2}}\left(A_{12} \vee A_{22}\right)\right)+m_{a_{2}}\left(x_{t_{2}}\left(A_{12} \vee A_{22}\right)\right)=$
$=\sum_{j_{1}, j_{2}=1}^{2} m\left(\wedge_{i=1}^{2} x_{t_{i}}\left(A_{j_{i}}\right)\right)$,
when we use $b=x_{t_{2}}\left(A_{12} \vee A_{21}\right), \quad a_{j}=x_{t_{1}}\left(A_{i_{1}}\right), j=1,2$.
The general case of (iv) is obtainable from the just established fact using the mathematical induction, which proves $\{x: t \in T\}$ has a joint distribution in m.

The last assertion of Proposition follows from Proposition 3.10.
O.E.D.

Corollary 3.11.1. Under the hypotheses of Theorem 3.9 we have (i) leta \mathfrak{i}, $m(a)>0$; if $\left\{x_{t}: t \in T\right\}$ have a joint distribution in m, then $\left\{x_{t}: t \in T\right\}$, as σ-observables of \mathfrak{L}_{0}, have a joint distribution in m_{a}; (ii) $\left\{\mathrm{x}_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\}$ have a joint distribution in m iff (3.10) holds for any finite $F \subset \mathscr{S}_{0}$.

Proof. (i) If $\mathfrak{G} \in U\left\{\mathscr{R}\left(\mathrm{x}_{\mathrm{t}}\right): \mathrm{t} \subseteq \mathrm{T}\right\}$, then the assertion follows from Proposition 3.11. In the general case, according to (vi) of Theorem 3.9, there is a Boolean σ-algebra \mathcal{B} and a σ homomorphism h from \mathscr{L}_{0} onto \mathscr{B} such that $m(a)=0$ whenever $h(a)=0$. Hence, if $F \subset U\left\{\mathcal{K}\left(x_{t}\right): t \in T\right\}$ is a finite subset, then $h\left(a_{1}\right), \ldots, h\left(a_{n}\right)$ are compatible in $乃$, where $F=\left\{a_{1}, \ldots, a_{n}\right\}$. Therefore
$\mathrm{m}_{\mathrm{a}}\left(\operatorname{com}^{\perp} \mathrm{F}\right)=\overline{\mathrm{m}}\left(\mathrm{h}\left(\mathrm{a}^{\prime}\right) \wedge \mathrm{h}\left(\operatorname{com}^{\perp} \mathrm{F}\right)\right)=0$,
where' $\bar{m}(\mathrm{~h}(\mathrm{a})):=\mathrm{m}(\mathrm{a}), \mathrm{a} \in \mathfrak{L}_{n}$, is a measure on \mathscr{B}.
(ii) Let $\left\{\mathrm{x}_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\}$ have a joint distribution in m . Analogically as in the first part we may prove that $h\left(\operatorname{com}^{\perp} F\right)=0$ whenever F is a finite subset of \mathfrak{L}_{0}. Hence $m\left(\operatorname{com}^{\perp} F\right)=0$.

We say that a measure m on a logic \mathfrak{g} has a Jauch-Piron property if $m(a)=m(b)=0$ imply $m(a \vee b)=0$.
> $\frac{\text { Corollary } 3.11 .2 \text {. }}{\text { Let the assumptions of Theorem } 3.9 \text { hold. }} \begin{aligned} & \left.\text { } \mathrm{x}_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\} \text { have a joint distribution in a measure } \mathrm{m} \text {, then }\end{aligned}$ $m\left({\underset{i}{i=1}}_{\infty} a_{i}\right)=0$ whenever $m\left(a_{i}\right)=0, a_{i} \in \mathscr{L}_{0}, i \geq 1$.

Proof. This is a consequence of Corollary 3.11.2 and the observation that for a measure \bar{m}, on \mathfrak{B} we have
$\bar{m}(h(a) \vee h(b))+\bar{m}(h(a) \wedge h(b))=\bar{m}(h(a))+\bar{m}(h(b)), a, b \in \sum_{0}$
(this is a valuation property of $\overline{\mathrm{m}}$ and m , respectively). Q.E.D.

4. JOINT DISTRIBUTIONS AND COMMUTATORS

We have seen that the cornerstone of the theory of a joint distribution of σ-observables in a measure is the commutator of observables. Although it may not exist, in general, for instance see ${ }^{123 /}$, and in Theorem 3.9 it does not exhibit, it appears implicitely in partial steps of Theorem 3.9. In the present section we shall study some relationships between the existence of a joint distribution of observables and the existence of a commutator of observables.

First of all we remark that the following is true. Let x_{t} be an $\mathbb{Q}_{t}-\sigma$-observable of a quantum $\operatorname{logic} \Omega, t \in T$. Then
$\Lambda\left\{\right.$ com $F: F$ finite subset of $\left.U\left\{\mathbb{R}\left(x_{t}\right): t \in T\right\}\right\}=$
$=\Lambda\left\{\operatorname{com}\left(\left\{\mathrm{x}_{\mathrm{t}}\left(\mathrm{A}_{\mathrm{t}}\right): \mathrm{t} \in \alpha\right\}\right):\left(\forall \mathrm{A}_{\mathrm{t}} \in \mathbb{Q}_{\mathrm{t}}\right),(\forall \mathrm{t} \in a), .(\forall a\right.$ finite subset of T) \}.

This is understood as follows: if one of the element in (4.1) exists in \mathfrak{L}, the second one exists, too, and both are equal. This assertion may be proved similarly as Propositions 2.1 and 2.2 from 10%

Let $\emptyset \neq \mathrm{M} \subset \mathfrak{L}$, by $£_{0}(M)$ we denote the minimal sublogic of $£$ containing M .

Proposition 4.1. Let $\emptyset \neq M \subset \mathcal{L}$ and $\mathscr{I}=. \mathscr{G}(M)$ be the σ - p -ideal of $\mathscr{L}_{0}(\mathrm{M})$ defined by (3.19). Then (i)
$\mathrm{a}_{0}^{\perp}=\dot{\mathrm{V}}\{\mathrm{x}: \mathrm{x} \in \mathscr{G}(\mathrm{M})\} \quad$ (in \mathcal{L}).
This means that if one of the elements in (4.2) exists in \mathcal{L},
then the second one also exists, and both are equal; here a_{0} is the commutator of M.
(ii) The commutator of M, a_{0}, is countably obtainable if, and only if, $a_{0}^{1} \in \mathscr{I}(M)$.

Proof. (i) and (ii) follows immediately from the definitions of $\overline{f(M)}$ and a_{0}.
Q.E.D.
$\mathscr{L}_{a_{0}} \frac{\text { Proposition 4:2. Let there be } a_{0}=\operatorname{com} M \text { and let } a_{0} \neq 0 \text {. Let }}{\text { be minal }}$ sublogic of a logic $\left.a_{0}\right)$ containing $\left\{a \wedge a_{0}: a \in M\right\}$. Then $h_{a_{0}}: a_{h \rightarrow \infty} \wedge a_{0}, a \in \mathscr{L}_{0}(M)$, is a σ-homomorphism of $\mathscr{L}_{0}(M)$ onto $\mathscr{L}_{a_{0}}$, and

$$
\begin{equation*}
\operatorname{Ker}_{h_{a_{0}}} \supset \mathfrak{g}(M) \tag{4.3}
\end{equation*}
$$

Proof. Since the set $K==\left\{a^{\prime} \in \mathscr{L}_{0}(M): a_{\leftrightarrow} \leftrightarrow a_{0}\right\}$ is a sublogic of $\mathscr{L}_{0}(M)$, the map $h_{a_{0}}$ is well defined and is a σ-homomorphism. Now we show that it transforms $\mathscr{L}_{0}(M)$ onto $\mathscr{S}_{a_{0}}$. Denote by $\mathcal{B}=$ $=\mid \mathrm{a} \in \mathscr{L}_{\mathrm{a}_{0}}$: there is $\mathrm{c} \in \mathscr{L}_{0}(\mathrm{M})$ with $\left.\mathrm{c} \wedge \mathrm{a}_{0}=\mathrm{a}\right\}$. Then \mathbb{B} is a sublogic of $\mathcal{S}_{a_{0}}$ containing $\left\{a \wedge a_{0}: a \subseteq M\right\}$.

Using the result of Marsden '22' we can establish (4.3), because $\mathcal{L}_{a_{o}}$ is a Boolean σ-algebra. (4.3) follows also from a simple observation: $\operatorname{Ker} h_{a_{0}}=\forall \mathfrak{b}^{\circ} \subseteq \mathscr{L}_{0}(M)$: b.i.a $\left.{ }_{0}\right\}$.

We say that an element $a, a \in \mathscr{L}$, is a carrier of measure . m if $m(b)=0$ whenever $b \perp$. It is clear that if a carrier exists, then it is unique.

Proposition 4.3. Let the assumptions of Theorem 3.9 be fulfilled, and let the commator, a_{0}, of $\left\{x_{t}: t \in T\right\}$ exists in \mathcal{Q}. If a is a carrier of m, then the following conditions are equivalent
(i) $\left\{x_{t}: t \in T\right\}$ have a joint distribution in m :
(ii) $m\left(a_{0}^{\perp}\right)=0$;
(iii) $a<a_{0}$.

Proof. Using the properties of the carrier and the commutator and appealing (ii) or (iii) of Theorem 3.9, the equivalence may be proved.

This result may be applied to an important case of quantum logics - to a logic of all closed subspaces, $\mathcal{L}(\mathrm{H})$, of a Hilbert space H whose dimension is a nor-measurable cardinal. We recall that the set X has a non-measurable cardinal if there
is no trivial measure ν on the power set 2 X such that $\nu(\{x\})=0$ for all $\mathrm{x} \in \mathrm{X}$.

Theorem 4.3. Let $\mathcal{L}=\mathcal{L}(\mathrm{H})$ be a quantum logic of a real or complex Hilbert space whose dimension is a non-measurable cardinal $\neq 2$. Let the assumptions of Theorem 3.9 be fulfilled. Then the following conditions are equivalent
(i) $\left\{\mathrm{x}_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\}$ have a joint distribution in m ;
(ii) $m\left(\mathrm{a}_{0}^{1}\right) \leftarrow 0$;
(iii) $x_{t_{i_{1}}}\left(E_{i_{1}}\right) \ldots x_{t_{i_{n}}}\left(E_{i_{n}}\right) f=x_{t_{1}}\left(E_{1}\right) \ldots x_{t_{n}}\left(E_{n}\right) f$,
for any permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $(1, \ldots, n), n \geq 1$, any $E_{i} \in \mathscr{C}_{t_{i}}$, and finite $\emptyset \neq a=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right\} \subset \mathrm{T}$ and any vector $\mathrm{f} \in \mathrm{a}$, wherea is the carrier of a measure m.

Moreover, a Boolean σ-algebra in (vi) of Theorem 3.9 may be chosen as a Boolean sub- σ-algebra of a quantum logic of some Hilbert space.

Proof. Since $\mathscr{L}(H)$ is a complete lattice, the commutator a ${ }_{0}$ of $\left\{\mathrm{x}_{\mathrm{t}}: \mathrm{t} \subseteq \mathrm{T}\right\}$ always exists in $\mathcal{L}(\mathrm{H})$. According to $/ 25 /$, any σ-finite measure m on $\mathscr{L}(H)$ possesses a carrier which is a separable subspace of H. Proposition 4.3 yields the equivalence of (i) and (ii). The equivalence of (i) and (iii) is a simple modification of the results in ${ }^{12,25 / .}$

The last assertion follows from Proposition 4.2 and (4.3). Moreover, we note that $x_{t_{0}}: E \rightarrow X_{t}(E) \wedge a_{0}$ is an $\mathbb{Q}_{t}-\sigma$-observable of $\mathcal{L}\left(\mathrm{a}_{0}\right)$ and $\left\{\mathrm{x}_{\mathrm{to}}: \mathrm{t} \subseteq \mathrm{T}\right\}$ are mutually compatible.

Q.E.D.

We finish this section with the following remark. If the commutator a_{0} of $\left\{x_{t}: t \in T\right\}$ exists and (3.8) holds, then $\left\{x_{t}: t \in T\right\}$ have a joint distribution in m. The converse implication is known only for special cases, for example, if a_{0} is countably obtainable or m has a carrier or $a=1$. Therefore it would be of interest to exhibit the conditions when (i) and (ii) of Proposition 4.3 are equivalent.

REFERENCES

1. Dvurečenskij A. JINR, E5-86-55, Dubna, 1986.
2. Lutterová T., Pulmannová S. Math.Slovaca, 1985, 35, p. 361.
3. Pulmannová S. Found ©hys., 1980, 10, p. 641.
4. Beran L. Math.Nachrichten, 1979, 88, p.129.
5. Marsden E.L. Pac.J.Math., 1970, 33, p. 357.
6. Puguntke N. Colloq.Math., 1980, 33, p. 651.
7. Grätzer G. General Lattice Theory. Birkhauser Verlag, Basel, 1979.
8. Dvurečenskij A. JINR, E5-86-54, Dubna, 1986.

Двуреченский- А.
Заметка о совместном распределении в квантовых логиках. Заметка о совместном распреде
Некомпатибильные наблюдаемне

Предлагаемая работа является продолжением первой части работы с тем же названием. Изучаются совместные распределения в σ-конечных мерах для некомпатибильных наблюдаемых квантовой логики - аксиоматической модели орих мые и достаточные успояия дпя сушествования совиестного распределения мые и достаточные условия для существования совместного распределения. В частности пределение тогда и только тогда, когда она может быть внедрена в систему компатибильных наблюдаемых некоторой квантовой логики. Использованные ме
тоды отличаются от методов, известных для конечных мер. В коние работы тоды отличаютсп от методов, известных для конечных мер. в конце работы и сущестооданиом коммутатора наблодаемых, а также упоминается квантовая логикн несепаробельного гильбертова пространства.

Работа дыполнсна в Лаборатории вычислительной техники и автоматизации Оияи

Проприит Объепинепного института мдерных исследований. Дубна 1986

E5-86-56
Dvuretonakl」 A.
Remark on Jolnt Distribution in Quantum Loaics. Noncompatiblo Observables

This papar is a continuation of the first part under the same title. We study a joint distribution in o-finite measures for noncompatible We study a joint distribution in o-finite measures for noncompatible
obscrvablos of a quantum logic - an axiomatic model of quantum mechanics obscrvablos of a quantum logic - an axiomatic model of quantum mechanics deflnad on an arbltrary system of σ-independent Boolean sub- σ-alqebras
of a Booloon a-algebra. We present some necessary and sufficient condiof a booloon o-alqebra. We present some necessary and sufficient condithat on orbltrary system of observables has a joint distribution in a meathat on arblerary system of observables has a joint distribution in a n
suro iff it may be embedded into a system of compatible observables of some quantum logic. The used methods are different of those known for finito moasures. Finally, we deal with a connection between the existence of a Jolnt distribution and the existence of a commutator of observables, and tho quantum logic of a nonseparable Hilbert space is mentioned.

The lnvestigation has been performed at the Laboratory of Computina Tachniques and Automation, JINR.

