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This and subsequent papers are devoted to the notion of a
joint distribution of eobservables in a o-finite measure on a
quantum logic for a given system of observables defined on an
arbitrary collection of o-independent Boolean sub—g¢—algebras.

In this paper we study the problem of existence of a joint
distribution for mutually compatible observables in a measure.
It is shown that in this case the joint distribution in a mea-
sure always exists, however a joint observable may not: exist.

We postpone a detailed study of the existence of a joint di-
stribution in a measure for noncompatible observables to a sub-
sequent paper.

1. PRELIMINARIES

Assume that the set, £, of all experimentally verifiable pro-
positions of a physical system forms a quantum logic. So, we
suppose, according to /!’ that £ is ao-lattice with the first
and the last elements O and 1, respectively, with an orthocom-
plementation 1: a - at,a,at ¢ £, which satisfies: (i) (a‘)* =
=a for any ac £; (ii) if a<b, thenbl<at; (iii) avat =1
= for any ac £; (iv) if a<b, then b=aVv(b Aat) (the or—
thomodular law).

In particular, it is of interest also the notion of an or-
thomodular lattice (OML in abbreviation), this is, a lattice
£ with (1)-(iv) above. .

Two elements a,b € £ are (i) orthogonal, and we write alhb,
if a<b*: (ii) compatible, and we write & «+b if there are
three mutually orthogonal elements a,, by, c € £ such that a=
=ay Ve, b=bigVe. It is known that g «»b iff a=(aAb) V
Vi(a ab).

Let £1 and £ be logics. A map h: £, - £, is called a oc-homo-
morphism of £; into £ if (i) h(1) = 1; (ii) h(a) Lh(b) when-

ever alb, a,bc £,; (iii) h(i‘s 1a.,) = _@ lh(al) for any
oc = i=

fa, 3,2, c&,, a;lag, i#4j. A kernel of a g—homomorphism

is the set Ker h: = {a € ®,: h(a) =0}.

An OML £ (logic $£) is called a Boolean algebra (Boolean ¢-
algebra) if the distributive law holds on £, that is, for all
a,bce £ (aAb) Vve=(a Ve)A (bve) . Due to {1, Corol-
lary 6.15] the notiem of a Boolean algebra (¢-algebra) coin-
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cides with that in’®/. The notions of sub OML, sublogic, sub-
algebra and sub-o—algebra of o are defined in a straightforward
way, see /% 273/ for instance.

Physical quantities of physical systems are identified with
the observables of a quantum logi¢. Let @ be a Boolean algebra
and £ be an OML. We say that a map x: @-+82 is an (f-observable
of £ if (i) x(1) = i; (ii) x(B) 1 x(F) whenever EAF =0,
E.Fc@ (iii) x(E VF) = x(®) V x(F) if EAF=0, B, Fc@. IfQ
is a Boolean g-algebra and £ is a quantum logic, then an®-ob-

servable x of £ is called and@-o—-observable of £ if x( i\/ 1Ei) =
=i¥1 2Bi) for any E;};_, cd, EyAE; =0, 1 4],

(Shortly observable, o-observable, respectively, if @ is speci-
fied.)

For the quantum mechanics is of a great importance the case
when @ is a Boolean {o-) algebra of subsets of a set X, in par-
ticular, when X =R! and @ = (R !y is a Borel o-algebra of sub-
sets of the real line R

The range of an (-(oc-) observable x, R(x) : = x(E): E & (.
is a Boolean sub-(oc—) algebra of £. A Boolean oc-algebra B is
separable if it is genmerated by countably many elements. A P is
separable sub-g-algebra of £ iff there is a $(R!) - ¢ -observa-
ble x such that 3= R [/!/, Lemma 6.16].

An G-observable x-and a $-observable y are compatible if
*(E) <« y(F) for any E€ @, Fe® . It is known (/Y Lemma 6.14,
Corollary 6.15] that if x, is an @, ~(0—-)observable of £ and
fx,;t ¢ T} are mutually compatible observables, then there is
a Boolean sub- (0 -)algebra of £ containing all ranges Rx ).

teT.
Physical states we shall identify with measures. A map m:

£ 5[0, ©»] is a measure if (i) m(9) =0; <(ii) m(i\;_olal)=l.-21m(ai)

whenever a;La,,i # j. A measure m is (i) finite if
m(l) < »; (ii) a state if m(1) =1; (iii) o-finite if there is

a sequence of mutually orthogonal elements of £, faylioy,
o0

such that V (317 1 and fifa ;) <« , for any i3> 1. An observa-
i= !

ble x is o—-finite with respect to m if there is a seguence

{E i }0;=\1 c @

=1 and mEX(E;)) < =, i>1.

We say that a system, {@,: t& T, of Boolean sub- {g-)algeb-
ras of a Boolean (¢-)algebra ( is independent (o -independent)
if for any finite (countable) subset a CT

2

such that Ei’\Ej +0 whenever i#j, .\71 Ly =
i=

ANA,E£O, (1.1)

tea
for any 0£A;, ¢ @,;, and any t € a.

For example, let (X, St)' ‘t ¢ T, be a measure space, that
is, §y is a (o-) algebra of subsets of a set X (= . Denote
by X the Cartesian product of all spaces X,, f.e., the set of
all ¢ ={ow tG.T;»“’tGXt for teT. Let »y be the t-th pro-
jection function of X onto X, that is wiw =w,, o €X. Let §% =
={n71(A): Ac§,}, teT. Then S;is (o~} isomorphic to S’f.
The ‘minimal sub— (o -) algebra of X generated by all 8* is deno-
ted by S = ch St' and the system {S‘:: t c T} of Boolean sub-
(0~) algebras of 8 is (o~)independent 27,

Let {@ :tceTl be a system of (0~) independent Boolean
sub-(o~) algebras of a Boolean (o~)algebra (. Denote by T
the system of all Boolean rectangles téa A, defined for any

A, e, ,tca, and each finite ¢ CT. As in the Cartesian pro-
duct of (o~)algebras of subsets of X , one may verify the mi-
nimal subalgebra, R, of @, generated by all {,, t< T, consists
of all finite joins of orthogonal elements from §, The minimal
sub-g-algebra of ( generated by all sub-g—algebras {@ (i tE T}

is denoted by TF @&

teT bt

2. JOINT DISTRIBUTION OF COMPATIBLE OBSERVABLES

One of important problems of the quantum logic theory is a
determination of a joint distribution for noncompatible obser-
vables, as it is indicated in [Mf Problem VII ). Following to
Gudder %/ we give the next generaltization of the notion of the
joint distribution.

Definition.Let m be a measure on a quantum logic £. We are
said that (i) a finite system x,..,x,, where x; is an @ -o-
observable of £, i =1,..,n, and @y,..., {, are independent
Boolean sub-o-algebras of a Boolean o-algebra (, has a joint
distribution in m if there is a measure p on the minimal Boo-
lean sub-o-algebra (,x..x( of @ generated by $,,... 8, such
that

b A A = m( A x;(8,)) . (2.0)
i=1 i=1

for any Ayec @y, i =1,..,0n;

(ii) an infinite system {x,:t ¢ T}, where x,is an Q-0
observable, te€T, and {@t: t ¢ Tl areo —independent Boolean
sub-o-algebras of a Boolean g-algebra (, has a joint distribu-

.
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tion in an m if {x,:t& a} has a joint distribution inm for
any finite a C T.

S.P. Gudder introduced the notion of a joint distribution
only for B(R1)-o- observable and states. The necessary and
sufficient conditions for the existence of a joint distribution
for B(R1) -o-observables in a given state may be found in5=11/

“The ,case of o -finite measure, including also a logic | =
= Q(H) of a separable Hilbert space H, is investigated in/127,

It is known /8:7/  that the existence of a joint distribu-
tion in a measure closely depends on mutually compatible o —ob-
servables of some quantum logic. Therefore in this section we
concentrate ourselves to the study-of a joint distribution of

mutually compatible observables,

Lemma 2.1. If x;,i»1, are mutually compatible $(X)-o-ob-
servables of a quantum logic £, where X is a separable Banach
space and %(X) is the Borel g-algebra of subsets of X, then

there is a unique aﬁ $(X) -o-observable x of £, with

-1 0 -~ .
O TED S 8 8 E)

for any E; € $(X), i€ a, "and any finite subseta of {1,2,.. 1.

00
Here n; denotes the i-th projection function from [I X onte X,

1=

Proof. According to.P.Ptak 713/ there is a.. $(X) -s-obser-
vable z of £ and the Borel measurable functions f,: X+ X such
that, x (A)-= z(f"! (8)) - for any A & B(X). Define f(t) =(f,(t),

fp®..0:X > M x. ° Then 2:B »x(f @), Bc I 8® s
: i= ' ’ =

the o-observable in question. Q.E.D.
Theorem 2.2. Let {@,: t € T} be a system of o-independent
Boolean sub-g-algebras of a Boolean og-algebra (. Let x, be an
@c~_—a—observab1e of a logic £, teT. If {x,:t<c T} are mutual-
ly compatible observables and at least pne of them is o-finite
with respect to m, then {x,: t< T} have a joint distribution

in m. Moreover, there is a unique ¢-finite measure y on [ @,
teT

with
By A = B8 5 @

for any A, ¢ Cft and any finite subset @ # a C T.

. o4

Proof. (i) First of all we show that if X, is an @, -observa-
ble of £, t&T, where {@,: t €T} is a system of independent
Boolean subalgebra of a Boolean algebra (, then there is a uni-
que R~observable of £, x, such that

4

hat™ ¥

&

X NA))= AN x (A ,
ot T g BB | (2.2)

for any A, €@, and any finite subset aCT. Here R denotes the

minimal Boolean subalgebra of @ containing all @t’ teT.
Taking into account the simple observation that any two Boo-

lean rectangles A A, and A By can be assumed on the same
tea sefl

finite index subset a U B. Indeed, if we put Af=A, if tc a

* v - . ’

A¥=1 if t€ B-a, and B*=B,, if t€B~-a, B*=1, t € a,then
- * . .

té\aAt‘ {A*: tca UBH, s%BBszAiB‘*' t ¢ aU B}, Therefore

(i) t/éaAF-o, A,ced,, tea,

(ii) 0 # t/G\aA‘ < t%a

‘#tea At: t/G\a Bt
Hence, the map x defined via (2.2) is well defined on the

set £ of all Boolean rectangles. Using the remark on the form
of the minimal subalgebra, K, containing all @,, t€ T, and the
fact that there is a Boolean subalgebra of £ containing all ran-
ges R(x t)“/’, % may be uniquely extended to an R-observable of
L. The uniqueness of x follows from (2.2).

. (ii) Now we show that if x, is an ({, -o—observable of a lo-
gic £ and {A;: t €T} are o-independent Roolean sub-g-algebras
of a Boolean g-algebra @, then, for an R-observable x of § we

haver if A, cQ, n>1,and A = D:l.lAnG R, then x(a) = V x(A).
n= n=1

iff at least one A, =0;"
B, iff A, <B, for any tca; (iii) 0 #
iff Ay =B; for any t<& a,

To prove this it is necessary only to show that if Ac T and

IAn}n:1CfD, A A A_=0 whenever n#m, A =n\'_/__lAn,then

XA) = V x(A,). (2.3)

Let us put Ag=A. For any n >0, there is a Finite subset
ay of T such that A = A{A‘; ttea l, where A% G(ft . Without

loss of generality we can assume that ayCa,C.., so that, the-

re is a set of nondec i indi > i
reasing indices {k;};_, with L<kgsk, g

<. such that a n = it i t2' vesy tkn l, n= 0,1, 2,.. . Denote

by @é{, k _>11 » the minimal Boolfan sub-g-algebra of ﬁ,kgenerated
by {A tyr A £y oo }. Clearly, | ak }x-1 areo ~independent Boo-

lean/ls‘:ﬂ;;;,—algebras of (. Due to the Loomis-Sikorski theo-
rem 12for any k = 1,2,.., there is a measurable space (X, ,
Sy)and a o—~homomorphism h, of §, onto @, .Let {BC,6 BL, . b
be a countable system of subsets of Sk such that h:(B“) = AD
=A%,

2 > 0. Denote hy Syo the minimal sub—g—algebra of Sk génerated
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by {BY . BI,..}. The function e,: x - (Ige (1) . T g3 (@) uee )
. ) k
X € X,, (where I, is the indicator function of a setA) is § -
14

measurable from Xk into the compact metric space Y = 0 1. \

It is elear that §, = {ck (F): F Borel subset inYj. Due to Ku-
ratowski 71/, there is a Borel isomorphism @ of Y onto R! such
that d,: x » d(ck(x)) xeX,, is an ‘Sko —measurable real—valu—
ed functlon, and, §,, = @y} ®): Ec R ER ‘

Define X;: = x, | q,. The maps yk E - % (h, @7 E)),

Ec PR 1), k >1,are compatlble b(R )—robservables of £. The- '

refore from Lemma 2.1 we have that there is a unique $(R”™) ~o—
observable ¥ of £ such that

i( 0 n—l(m N = A X, (E), , (2.4)

for any E, G RR!), i€a. and any finite @ C 11, 2 ..}, where
it R% R is the i-the prOJectlon function.
Analogically, there is a unique $ (K )-o-observable of @, h,.

whete ‘B(R”) = .ll (R ), such that

¢

n -1 A oy =1 .
Pl B = g e ED, (2.5)
for any E ;¢ $(RY), i €a, and any finite subset a of {1.2,..1}.

Now we claim to show that (xoh)(E) = (x°h) (E} = X(E) for all
cylindrical subsets E of $(R™), where % is a unique ({; -obser-
vable of £ determined by (2.2), and (.-‘f(,ls the minimal Boolean
sub~s-algebra of ( containing all (f ty . Indeed, let a be a2 fini-

te subget of {1,2 ... }. Then
(0 ] L&) - X</,\ah<"71<*33>)> =5£(1q1ni<d:‘ (E))) =

- ~1
- ARG @ E) - A KED = X0 TlE )

Moreover, we see that the .‘B(Rmﬁ‘o—observable Xof £ is a unique
extension of an R (R™)-observable xoh of £ toa B(R™) —o-obser—
vable, where R(R™) is the minimal subalgebra of subsets of R™
containing all measurable rectangles.

‘To prove. (2. 3) we choose the Borel subsets E .(B(Rl) “such
that Ak—h (d‘ (E‘?)) n>0, R>1. Then
Kn K,
VA =x( VoA AD =x( VoA @] ED) -
n=1 n=1 i=1 n=1
Al
k
n
n

* GRS PP ~1,.n
=x(V BN 2 7ED) =xh Y Do T ED) -

o0 ' 00 . 00 n
=8 U A 7@ = Vv ECN ®) = v oA FED -
pn=1i=1 n=1 = a=1 i=
kp, kp . , .
> b= -1 ,_.n o0 - . °n X - oo
-V A T.h.@ r -V Ax@A™M = V XA)= V x(A),
n=1 i=1 i@y E) n=1i=1 i(A) n=1 (&) n=1 Ay

and, consequently, (2.3) is proved for A, A, & T, n>1.
Let now A, Aq,Ag,... € R, ApA Ay =0 whenever n #'m, and

let A = oYy A,. The simple usage of the just established pro-
perty-on & yields x(A) = vy x(A,) . For the general case, let

A,A 1,A2, ... €R with Azn\_/__1 A, be given. Define B;= A;, B, =

n
= A N V A) , for n>2. Then ByABp=0 if n #m, and

=] . o0 n \
B V..V B, = A V...VA .Hence, x(A) = n\=/1 x(Bn) = n¥1 i\__/_1 x(B‘i)

= n: £(A,) .

We note that for the existence of ¥ with (2.2) and (2 3) we
do not need the existence of a measure on £. ;

(ii1) Let x be the R-observable on £ guaranted by the f1rst
part .of the present proof. Let m be a measure on e fulfllllng
the conditions of Theorem. Then, due to (i)-and (ii), u(A):
=m(x(A)), Acf, is ao-finite v—~additive measure on R. Using
the familiar Carathéodory extension method concerning with the
extension of a.s-additive ¢- f1n1te set function defined on an
algebra of subsets to a measure. defined on the minimal o-alge-
bra generated by the algebra, 717/, we may obtain the analoguo-
us result also for Boolean subalgebra R and th d: . It is

clear that p is the joint distribution of {x,: t& T} inm, and

the proof is complete. Q.E.D.
We note that for the R-observable x of £ with (2.2) one may

exist no extension of X to a l] @ , ~o-observable of £. To es-

tablish this interesting fact we need the following notions.
Let @ be a Boolean o-algebra. The non-empty subset 4§ c@ is

said to be a o-ideal if (i) A, €g, n>1, then {7A g, (ii)

if A<B and B < then A ¢ 4. The factor o- algebra, Q/9 is

the system of all [A]yg : ={Be@: BA A'v AAB" cd)Ac@rThe

Boolean operatlons in (f/fj are defined via [A]ﬂ v[B]'q

=[a vBlg, (Al (At Y] ‘
‘The next resui]t is a 51mp1e consequence of the last Theorem

(see Preliminaries).
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Corollary 2.2.1. Let X, be an St—abobser'vable of a quantum
logic £, t€ T, and letx <X 4 for any s,t& T, where §, is
a o-algebra of subsets of a set Xy. If at least one of X;5 is
o-finite with respect to m, then {x,: t€ T} has a joint dis-
tribution in m, and there is a unique os-finite measure u on
IS, with
=

t
~1

. n =

u(tGa"t &0 m(t/G\axt(E )

for any E ;€ 8,, t €a, and any finite subset P #a C T.

€

Example 1. There is a quantum logic £ with a non-empty set
of states (even with two-valued states), and with two compati~-
ble o-observables x ;1§ ;» £, where §, is a separable o-algebra
of subsets of a set Xy, i=1,2, such that there is no Sy XSZ -
o-observable x of £ with

x(E x F) =x,E)Ax(F), E GSI, * GSz . (2.6)

On the other hand, x, and x4, have a joint distribution in any
o-finite measure m on £,

Proof. Let C be some analytic subset of R! which is not a
Borel set. Let X1=R1—C, X2=R1 and &;: =53(R1)n(R1 -C): =
={BNC:Be §(RYH}, Sp:=% (R!). It is clear that S, and S,
are separable g-algebras of subsets, i.e., they contain gene—
rators with countably many elements. Denote by §' the o-ideal
of the Borel o-algebra $(R?) of the real plane R? generated by
all sets Bx R!, where B< $(R!) and B C C. Let us put £ =
= BR2)/9’. formulae .

x,(BNnXy):=1[B lelg,, Be B8R,
X o(B) = [R‘xB]g, , Bec d®rY,

determine two compatible g-observables x,: §; » £, i=1,2. Mo-
reover, X; 1s a o-isomorphism of §; into £. As it has been
shown in /18, p.17; 2, § 37, Example A/, there is no Six 8 -
o-observable of £ with (2.6).

Now we claim to prove the second part of the proposition.
Define the o-ideal of B(R2), §, as follows: J={Ac BR?Y:
A CCxRY.1t is obvious that §°CY. We show that 4’is a proper
subset of §. If it was 4’= 94, then $(R2)/ﬂ would be o-isomor-
phic to § = BR¥*)N(R*-C)xRY):={B NER!-C) xR Bc $(R2) |
(a g-isomorphism, h, of B(R)/J onto § is defined by
h(B ﬂ((Rl—C) x R1)) =[B]‘I for any B & $(R?)). Consequently, £
possesses the strong ¢ —-extension property (for definition see
below or /2/ ) and, therefore, there is an x with (2.6) which
contradicts the first part of the proof.

8

Now we define an £ -o-observable, z, of a quantum logic £y: =
= B(Ry)/g via z([A]kj') = [A]”q, Ac BR?). The z is defined well,
because if [A4] g ={A 2]}]» Jthen A1N A% VA NAT €92
and [A{1q=1{Aol¢. ‘

The logic ﬁlis o-isomorphic to the o —algebra of subsets,
BR2) ((Rl- C) xRY), her'ice,}?1 has an order determining sys-—
tem of states (and also an order' determining system of two-va-
lued states.) (We recall that a system M of states on some quan-—
tum logic is order determining if m{a) < m(b) for any mcHM< iff
a<b). :

Let m be a measure on £1’ then m: & » m(z(@), ac®, is a
measure on £. Let now m be aoc—-finite measure on £ and let

ivlai=17 ajlaj whenever i#j, aic £, 0<m@a;) < =,
i>L) Then my@a) =m(ara;),ac®,is a finite measure for any
i>1

2
21. Using the result of Corollary 2.2.1 we see that x, x,

have a joint distribution in any m;, i>1, consequently, in m =
o0
LT Q.E.D.
1= .
Motivating the above we say that mutually compatible ;-obser-—
vables x,:@, -~ & of a quantum logic £, t& T, where [(,: tc T}
is a system of 4 ~independent Boolean sub-o~algebras of a Boole~

an g-algebra ( has a joint g-observable if. there is a g @t -
te T
o-observable x of £ with (2.2).

Lemma 2.1 determines gn important class of compatible obser-—
vables which has a joint o-observable. According to /2/, we say
that a Boolean o-algebra @’ has the strong o—extension proper-—
ty if, for every Boolean o-algebra (@, every map'f (from a set
Go-generating @) into @’ satisfying the following

€ (i) - oA

it A BSD -0,  then N )
i=

i=1 °

(2.7.)

for every sequence iEi}Tr-:l«C @, and for every function ¢(i) &
€ {0,1}, i »1,can be extended to aw-homomorphism h from & in-
to @’ here E°: =E, E!: =E.

Theorem 2.3. Let x,: (., > £,t<T, be compatible o-observa~
bles of a quantum logic £, where {&:‘ tcT! is a system of o-—
independent Boolean sub-o-algebras of a Boolean o-algebra @,
and let the minimal sub-g-algebra of ! generated by all ranges
?'(xt), t € T,have the strongo —extension property (in particu-
lar, it is o —isomorphic to some o —~algebra of subsets). Then
{g,: t € T} has a joint o-observable of L.

Q.E.D.
9

Proof. It follows immediately from ,2, Theorem 37.17.



It may be interesting in the frame of the study of a jeint
o-observable of compatible observables, in particular, in.a con—
nection with Lemma 2.1, “to mote that P.Ptak /13’ found the exam-
ple of a quantum logic with two compatible $(X)-o-observables x
and y such that the equalities x = zo 1, y=2og~! do not
multaneously hold for any two Borel mappings f,g: XX and
any $(X)-o-observable z of £. Here X is a Banach space of non-
measurable cardinality, $(X) is its Borel o-algebra and £ =HX)«x
x B(X)'. However, in this case there is the joint g-observable of
x and y, because x and y are induced by point transformations

T;? XxX >X such that x=T7! y=1T,L

si-
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IBypeueHCKHH A. E5-86~-55
3amMeTKa O COBMECTHOM pacrnpelesleHHH B KBaHTOBbIX JIOTHKax.
KoMnaTu6uiipHble HabGmomaemsle

HU3yuyaeTca coBMeCcTHOe pacrnpepelleHHe B O—KOHEYHbX Mepax
o HaGmogaeMblX KBaHTOBOM JIO'HKH — aKCHOMATHYECKO$ MoesH
KBAaHTOBOH MeXaHHKH, OINpe[es/IeHHbX Ha NPOH3BOJIBHOH CHCTeMe O-
HEe3aBHCHMBIX OylleBHX O-nopanrebp 6yneBoll o—anreb6pei. B HacToa-
mef nepBOH 4YAacTH 3aMeTKH Mbl H3ydyaeM COBMeCTHOE pachnpejelieHHe
KOMNaTHOHIIBHER HabmomaeMbx. IloKka3aHO, YTO OHO BCerga CymecT-
ByeT, XOTA COBMecTHasd HabmomaeMas MOXeT H He CymeCTBOBAaTh.

Pa6oTa BhInOJHeHa B JlaBOpPAaTOPHH BLMHCIIHTENBHOH TEXHHKH
H aBToMaTH3aluuH OUAU.

Tpenpint O6beNHHEHHOrO HHCTHTYTa AOEpHBIX McciaefoBanuil. Jly6Ha 1986

S o=
= NpuHumae TCA NOANMCKA Ha NPenpuHTH M coobuennn 06BEAMHEHHOrO MHCTHTYTa
% : AQEpHLX MCCNeaOBaHMNA,
o u (4e] YcTaHoBneHa CNeaynwan CTOMMOCTb NOANKCKM Ha 12 mecRues Ha wnanamua OMAK,
> m BIJWUAA NEPECHNKY, NO OTAENbHUM TEMAITMUECKUM KATErOpPWAM:
= S
(@) g MHAEKC TEMATHKA Uerna rnoanmcem
= “a roq
=
m (&} 1 IKCNEepUMEHTANLHAR DUINKA BMCOKMX 3IHeprui 10 p. 80 xon.
()
¢ = 2. TeopeTuuecKan OU3INMKAE BRCOKMX IHEPrun 17 p. B0 xon.
:a > 3. IKCNEpUMEHTANBHARA HENTPOHHAR GM3IMKA 4 p. B0 wkon.
m St
fo é 'S Teope THHECKAA OUIMK3 HMIKMX IHEPruii 8 p. B0 xon.
<
o 8‘ 5. MaTemaTmKa 4 p. B0 xon.
o
() g 6. fnepran CNEKTPOCKOMNMA M PAAHOXMMMA 4 p. B0 won,
8‘ - 7. Ou3NKA TAMENWX MOHOB 2 p. B5 xon.
8 = 8. Kpuoremmka 2 p. B5 xon.
= 2
9. Yckopute nm 7 p. 80 won.
S S
8 [—1 10. ABTOMaTMIAUUR GOPABOTKM 3IKCNEPUMEHTANBHBIX
(] RaHHX 7 p. B0 xon.
- o
o = 1 BMUMCWMITENRHAR MATEMATHKA W TEXHUKA . 6 o. B0 xon.
§ (&) e, AnR ' p. /0 won.
—
= () 13. TexHnxa GM3IUNECKOro IKCNEepuMeHTa 8 p. B0 xon.
fo o
:: 14, HCeCneQoBaMMA TBEpANX TeN M MMAKOCTEen
£
= Q AQEDHMHM ME TORAMM B 1 p. 70 xon.
=1 i 15. IKCNepUMEHTaNbHan GM3MKA RAEPHEX DE KU
g = NPpK HMIKMX IHEPrHAX 1 p. 50 xon.
§ Sg 16. [O3Mme TPUR M OHIMKAE 3ALUMTH 1 p. 90 xon.
E "o: 17. TeopMn KOMREHCMPOBAHHOTr O COCTORMMA 6 p. 80 xon.
(=9 18. Mcnone308aHue PEe3ynsTaToB M METOAOR
(@) » OYHAIMEHTANDMMX PUIMNECKMX MCCNEAOBAHMIA 2 p. 35 xon.
- B CHexHux OBNACTAX HAYKW M TEXHUKK
s |
g (s 19. Brodnanka 1 p. 20 xon.
o X
m = Noanucxka momeT GuWTe OOOPMneHa ¢ mboro mecmua Yexywero ropa.
=
2 O Mo BCeM BONPOCAM OPOPMNEHMA NOANHMCKNM cnegyeT OOPSWATLCA B MINATENBCKMIA
= > oOTaen OMAK no aapecy: 101000 Mockea, Mpaenoutamnt, n/r 79,
e =
Q=

Dvurelenskij A. E5-86-55
Remark on Joint Distribution in Quantum Logics.
Compatible Observables

The notion of a joint distribution in o-finite measures
of observables of a quantum logic - an axiomatic model of
quantum mechanics - defined on an arbitrary system of o-in-
dependent Boolean sub—o-algebras of a Boolean o-algebra is
studied. In the present first part of the paper we study a
joint distribution of compatible observables. It is shown
that it always exists, although a joint observable of compa-
tible observables can fail. .

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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