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I.. INTRODUCTION ' 

Let H be a Hilbert space over the field, C of real or
 
complex numbers. Denote by f(H) the orthocomplemented ortho­

modular complete lattice of alI closed subspaces of H ;f(H)
 
is narned a quantum logic of a Hi Lbe r t space H. By @ M t we
 

. . t ~T 

denote the join of mutually orthogonal sub spaces [.Mt: t ~ TI.
 
A measure on ~(H) Ls va func t on m : f (H) ... [0.00 1 such that
í 

(i)m(O)"",O ; (ii) m(;'M i ) = ~,m(M).Measure fi is (a) finite
 
i=l i=l
 

if m(M) .< 00 for each MG ~(H) ; (b ) O"-fíni te f there is a se-
í 

querice tM .1~-1 such that e Mi =H and m(M i ) .< 00. i 2 1. 
1 1- i= 1 . 

Measures characterize the states of quantum physical sys­
tems (see Varadaraj an/ l./. for Lns t ances ) , 

The crucial result of the theory of quantum logics is the 
famous Gleason theorem/ 21 which asserts that any finite mea­

. sure m on f(H) of a separable Hilbert space H. dimH i:: 2, is in­
duced by .a positive Hermitian trace operator T on H via 

m{P) = tr(TP). P ~ f(H). (I. I ) 

(we ide,ntify P with the orthoprojector T P onto P ). Sherst 
nev/ 3/ and the author 14/ ex t erided (I.1) to a I I bounded s í gne 
measure s on f(H). We r eca l 1 that a function m : f (H) -+ (-00 • 00 1 
for which (i) and (ii) of above hold, and from the values ±~ , 
it attains only one is called a signed measure. In papera of a. 
Eilers and Horst / 51 (for measures) and of Drisch/ 6

/ (for aig­
ned measure-s.) it is proved that the assumption of separabilit 
of H is super f Luous , The separabi li ty of H ia changod to th 
dimension of H with non-real measurability of a cardinal. Wc 
recall that the cardinal of a set I i9 aaid to bo non-roal 
measurable /7/ if there is no measure 11';' O on tho powor so t o 
I with v(lal)=O. for each a <;; I. 

Sherstnev/8 / studied measures on ideais of Q Boparablo Hl 
ber t space , The generalization o f Gieaaon-- a thoorom for (7-P 
nite measures on f(H) of a separable infinito-dimensionRl Hi 
bert space is given in/ 9 / , This re9ult haa becn extended to (7 
.f ní t e signed measures/ 10 / for a Hilbert spacc whose d ímena í of •.í 

is a non-real measurable cardinal ~ 2. 
Let m be a measure. An element P ~f(H) ia said to be a cor 

rier of m if m(M)=O PÇltds' ,:ifF Ml:.P. It ia clear that tf a c c 

2 

rier exists, then it is unique. In/ 11/ there has been proved 
that any (l·-fini te measure on f (H) of a separable Hi Lbe r t space 
has a carr e r ;: Moreover, any measure m wi th m(H) = 00 on f (H) í 

with 4 ..$" dim H <00. for which there·. is a three-dimensional sub­
space Q such that m(Q}<oo. has a carrier. 

In the present note we prove tha t any 'o" -fini te measure' on 
a quantum logic ~f a Hilbert space whose dimensiort is a non­
real measurable cardinal # 2 has a separable carrier. This 
gives the positive answer onto the question posed in/ 111 rela­
ted to the existence of a carrier. Moreover, we prove that 
this measure is totally additive. 

. 2. o - FINITE MEASURES 

Le t H be a Ri lbert space over the field C of real ar c omp> 
lex numbers wi t h' elements x , y , •• O' and the inner product (., ._). 
By f! x I1 : = (x. x ) Vz we denote the norin of x ç H. If O f. x (; H. then 
by Px we denote the subspace of H gene r at ad by x . An orthogonal 
complement to P E f(H) is the sub s pace P :=tx E H:(x,y) = O for 
any y C; P ~. By Tr(H) we denote the c lass of ali bounded linear 
ope r a t ors T in H such that, for every orthonormal basis 
I x a: a ~ 11 of H. the series 1 (Tx a • X ~ ab s o Lu teLy converges 

a ~r
 

and i t is independent of the basis used; the,expression
 
tr T: = 1 (Txa.x a) is called the trace of T. .
 

a~I 

A bilinear form is a func t i on t : D(t)xD(t)-+ C. where D(t) 
is a 'linêar submanifold of H (not necessarily dense or closed 

1 in H ), named the doma'In o f the definition o f t , such that 
'1 is linear in both arguments, and t{ax.(3y)=af3t(x,y), x,y,t;;D(t) , 
I ---­: a~f1C:C.lf t(x,y)=t(y,x) for all x .,yC:D(t),then tis said to 
: be symrnetric; if for a symmetric b í l i nea.r forrn t we have 
.t,' t(x,x) ~ O for a l l xç D(t), then t is s a i d to be pos t ivc , Letí 

< p c: ~ (H) and le t P C D(t). Then by t o P we rneart a synrrnet r í c bi ­
'linear forro defined by to P(x,y)::>: t(Px.Py) ,x.YE H. IftoP 
1ia nduc éd by a trace operator T. that is, t oP(x.y) = (Txy ),í 

t for 011 x.y c. H. then we say t o P E Tr(H) and we pu t tr(t o P) = tr T, 
~ An element P c; f(H) is a separable if it is a separable sub­
: apnce of H. We say t ha t a func tion m : f (H) -+ [ -00 .oo} wi th m(O) "",O 

'; iA r.otnlly additive í.f 
1 m(CIl P ). I m (P ) (2.-0) 

'. I\~ I a até; I a 

for an orbitrary system lPa:a E II of mutually orthogonal sub­

~ BpOCOR of H. lf (2.0) ho Lds only for sequences m í.s said to
 
) bc r1 -addi tive.

\' p' 

I 1. t ia known /71 that i fI is a ion-real measurable cardinal, 
1than 80 ia 21 • Hence, H~2 _e are t.oo , Moreover, f J .~I.í'\ thon J is a nau-real '.hlieibili~l1_tdlUa1lJYl:l0. 

';}"-""; , ,UeJfBYI' IIttJelDllud 
':. 1 .. eu~ nLl~T~U j,. 
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The following result has been proved in / 9 / 
: 

Theorem 2. 1 ~', Let H be an infinite-dimensional s eparab le 
Hilbert space , Let m be a a·-finite measure on f(H) with 
m(H) =00. Then there is a unique symmetric bilinear· forrn 
defined on adense domain such that 

tr (t o P) ir t o P E Tr(H), 
(2-.1)m(P) =
 

{ 00 elsewhere.
 

This result has been extended in/lO! to non-separable case: 

Theorem 2.•2. Let H: be a non-separable Hilbert space whose 
dimension is a non-real measurable cardinal. Let m be a a­
finite measure on ~(H). Then there is a unique symmetric bili ­
near forrn t defined on adense domain such that 

tr(t o P) if m(P).< 00, 
(2.2)m(P) = .{ 

00 elsewhere. 

Moreover, if m(P)·.<oo,then, for any lPa:a~Alwith p = e P a-, 
we have (2.0). a~ A 

The basic result for measures with infinite values is the 
next result. 

Lemma 2.3. (Lugovaja - Sherstnev(9/). Let dimH=3 and let 1ll 

be	 a measure on ~(H) with m(H) =00. Lf there is a two-dimensio­
nal Q' , m(Q) ,<00, then for any one-dimensional P with m(P) .<00 
we	 have P.<Q. 

This result ~an be extended as follows. 

Lemma 2.4. Let dimH >._ 3 and le t m be a s igned measure on
 
~ (H). If there are P and Q such that dimp.l.= 1 = dimQ, m(P).< 00 ,
 

m(Q)< 00, then Q.< P.
 

Proof , It is clear that Q~ P. It may be proved that dim(cff\P)>-.2. 
Hence, there is x 1 ~ ç[-{\ P s o that P xl.l Q , PXl .1 p.1.. Since 

dim(QVP.1.) =1 , , dlm(Q'VPx~V P.1.)=3.The cond í t ons of Lemma entailí 

m(Q V f x1 V p.1. ) = 00,	 (2 • 3 ) 

in	 the opposite case m(P.L ).<00 and m(H).< 00 .
 
Now we show that dim«Q V P Xl VP.1.) f\,P)=2.It is evident that
 

xl	 ~ M: = (Q V PX1VP.1.)f\P. Let us suppose that -Q = Pq ,p.l = P Xo 

4 

for su i tiab Le q , Xo·~ H. Then 'it may be shown t hat; a q +- f3xo ç; M, 
where a ç C and f3 ~C satisfy a(q,x O) + f3 =0. 

We claim to ahow Q.<P. Lf not , then there is x2~ M such 
that X2.l.Xl and QV(PX1 e QV P Xl VpJ.. Using Lemma 2.3P X2) = 

we have m(Q V (P X1 e P is a contradiction with (2',3).x 2))<00 which 

Q.E.D. 
Lemma 2.5. Let H have a non-real me asurab le cardinal ~ 4 

and let m be a measure on f(H) with m(H)= 00. Let there be 
u. a three-dimensional Q with m(Q) <00. lf m(M) = m(N) = Ü and 

dimN .<00 ,then m(M V N) = O. 

Proof. Using Lemma 2.4 we havé that m(Q V MVN ).<oo.Hence, 
using Gleason'" s theorem / 5/ for m*: ='ml f(p), where P =QV MV N , 
we obtain the desired resulto 

Q.E.D. 

Example 1.. The assumption of the existence. of a three-di­
mensional Q wí t h m(Q).< 00 is not super f Iuous in Lemma 2.5~ 
lndeed, let Qo be some two-dimensional subspace ofH. Define 
m(P) = 00 iff P iQo, m(Qo)==2 , m(O) == O. 'Choose x 1 ,x 2 ,Yl' , Y2 ~ Qo 

such t hat X1.l.X:2'Yl.l Y2 ,X;ll. Yl ~xl and put m(P ) =m(PYt)=O, X1

m(p .• For alI other one-dimensional P ,P.<Qo ,­x2·);::::m(Py 2)=2

let m(P) =1. Then for this m Lemma 2.5 is not valido 

Lemma 2.6. Le t 'I' ç Tr(H) and let: T b.e a positive opera.t or , 
Then m, defined by (1.1), has a separable carrier. 

Proof. Due to/12~it follows for T there is an orthonormal 
bas I s. in H ,{f a : a GA}. and non-negative numbers {À a: a ç A J such 
that 

T == L À afaC!s'f a (2,.4 )a~ A 

where f «D f is an operator in H which as s i gns (x , f) f to dtl.y 
x G H. Since tr(T);: L À a' then the set {a <; A: À a> O J is coun­

a~ A 
t ab Le , An easy calculation shows that M: = E9 {pr : À a> -O J is 
a separable carrier of m. a 

Q.EoD. 

Exanple 2. Let H be an arbi trary Hilbert space, and let 

H =.:' Hi '. Let Ti G Tl'(H i ) , i ~ 1, be a positive operator; it 
1= 1 

may be extended to a whole H. Define m(M) = ~ tr (Ti M), Mç ~(H). 
1 

Then m is a a-finite measure on f (H). Using (2.4) we see 
that this measure has a separable -carr e r.s- . " ~ ..í 

5 
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The followirrg result gives the ~ffirmat~ve answer to the 

question posed in/~l~Does there exists a carrier for a a'-fi ­
nite measure? 

Theorem 2.7. Any (l:-finite measure on f(H) of, a Hilbert 
space H whose dimension is a nou-real me asur ab l.e cardinal 
~ 2 has a separable carrier. 

Proof. lf m is a finite measure, then, due to the genera­
lized 'Gleason theorem/ 5/ , m has a form (1.1), and Lemma 2.6 
implies that m has a separab Le jcarr e r , í 

Let now m(H)=oo ando let H= i~ri' where m(Hi).<oo,i~1. With­

out Los s of generali ty we may assume dim H i ~ 3 , i >-. 1. The res t ­
riction of monto f(l-li)' mi: =ml f(H i ) , entails t ha t there is, 
for any i ~ 1, a separable carrier Pi and an N i with H i=Pi ~ N i . 

lt is evident that mi (M)-=O- for any M.<N i' Let us put; P. = . ~ P" 
100 1=1 

and N = .ã: N, .. The map moo:=m!f(Poo:)is a a-finite measure on 
00 1=1 

f(p (0) of an infinite-dimensional Hilbert apace P 00 wí t h moo(Poo )=00. 
to/ 1 1íLemmaHence, due 3.6 moo has a separable carrier PO ' 

Therefore w/X,(P x» O for any x C; Po . 
We claím to show that Po Ls a carrier of m• J- .L 

Le t n= I x ~ H: m(Px ) == O I uIO I and I e t N =: N00 $ ( P00 1\ PO ):= P O • 

Then Ni cn. for any i ~ 1, and PoJ\. P~ Cn.Using Lemma- 2.5 we may 
show that if x,y E n. then x-sy C; n; and I f x c;. n and a ..; C. 
then a x c;)1. Now we show that n is á eIosed submani fo.Ld in H. 
Let txolcn and 1\ x o-xl \... O for some x E H. Define Mn = P~>l'V' ... : VP xo. 

Due vt o the con.t i nuí t y of measuremLemma 2.5 .. m(Mn)=O.Using 

from be Low we have m('V M ) == lírn m(M 0)=0. Therefore x ~ 'VM C n~ 
0= 1 n o n= 1 o 

Now we show 11 =N. lf not, then there is x ~ n1\ N.L . Henee, 
x C; P o and m(Px)=O. On the other hand , using that 1'0 is a car­
rier of m 00 we have m(Px» O which is a contradiction. 

Therefore, Po is a carríer of m. Q.E..D. 

We say that a meas'ure m has a Jauch-Piron property if 
m(M)= m(N) = oimplies m(M'VN) = O. 

Co'rollary 2.7.1. Under the .condi tions of Theorem 2.7, m hélS 
a Jauch~Piron prope-rty. Moreover, if m(M a) = O , a ~ A, then 
m (V M }== O. 

aÇA a 

Pro~f. This ís a transparent consequence of the fact that m 
has i carrier. Q.E.D. 

Note t. 'lhe assertion of Corollary 2.7.1 remains valid under 
the cOIlditions of Lemnia- 2.6.. ... 

6 

He note that Theorem 2.7 is in a sense an analogue of 
Ulam's result / 71 from which follows that if ~ is a finite 
measure on the power set of .r, where the set I has a non-real 
measurable cardinal, then there is at most countable subset 
N.c I such that ~ (I - N)=O. Lt is easy to verify that the same 
is true for a (l'-finite measure ~ on 2 1 • 

1
 Theorem 2.8. Under the hypotheses of Theorem 2.7 m is to­

tally additive on f (H). Moreover (2.1) holds.
 

) Proof , From Corollary 2.7.1 it f o Lkows that if M= ifl Ma and
 
-~- a~Am(M ) =0 for any a ~A, then m(M) == ~ m(M a).a
Let now {Pa: a~ A I be an .arbitrar~ '~ystem of mut.uaLly orthogo­

nal subspaces of H with the j o í n P. Lf m( e Pa ') ''::00 for some 
a C;J 

countable sub se t J of A, thén m(P)=oo == ~ m(P). Hence .. suo' ­
,/ a~.A a 

posethat m(6P a)'<00 f of any coun t ab l.e subse t J of A. Denote, 
. a~J 

for any n a í Ao=la(;A:m(Pa)~lInl.Our aSJ>umption y:ields that, 

any Ao is a finite subset of A. Put Ao = U A n. Then, for any
0=1 

aç;A-A o ' rn-{P a) =0. Since P= ifl Paifl $ Pa , we see.that 
aÇAo aC;A-~ 

m(P) = I. m(P ) + ~ m(P), when wi thin the fi r s t series we 
aGAo a aEA-Ao a 

use the a--additivity of m. 
To show (2. 1) i t is- necessary to verify that m(Pj x » iff 

.!f t o P E Tr(H). 'one direction of this equivalence is obvious from 
(2.2). For the second one, we use the total additivity of m: 
tr t o P :::: ~ t (Xi' Xi}:::: ~ m(P Xi ) =m(P>.; w1).er.e I x i I is an orthonormal 

I I' • 

bas i s in P.. Q.E.D. 

He recall that ir! 101 the problem of a total additivity nas 
been raised. The positive answer for measures is given in 
Theorem 2.8, but for signed measures this question is still 
open , Moreover, iIll01 there has been argued that m(P) '> 00 if f 
top ~ Tr(H) although only the implication "if m(P).<oo,' then 
to P ~ Tr(H) " has been proved. The complete proof of the men­
tioned equivalence for measureS' is given in Theorem 2.,8. 

Note 2.Under· the conditions of Lemma 2.6 m is totally ad­
ditive. The same is true for Example 2, too. 

iJ~'.. 
I· , 

3. n -FINITE MEASURESI 

In this section we generalize the notions of u-finiteness 
and a-aãditivity of measures on f(H) to a more general case, 
and the results analogous to those in ~ection 2 will be proved. 

'7 
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Le t n and /n be two card í.na.l.s , We say that a func t on m: í 

f (H)-+[O 00] with m(O) =0 is (i) m-additive ifm( E!) Pa ) = ~ m(P)
• .	 a~A a(;;A- a 

whenever the cardinal of A is m; (ii) n-finite if there is 
IH. : i ~ B I such that H = $ , m :~H 1·)·<00 for any i ç; B. and the 

1 i~ B
H1· . • 

cardinal of B is n oThe extension of these notions to signed 
measures is straightforward: for definiteness we shall suppose 
m:	 f (H) -+ (-00.00 1• ' 

It is evident t ha t if m1 S m 2' .then any m2-additive measure 
is	 If n1~n2,··then any n1 f í.n i t e measure s "2í ­m1-additive. 
finíte. We recall that unbounded finitelly additive à -fiRite 
mea.sure s ou f (1-0 are' studied in 113/ 

Lenwa 3.1. Let f(H) be the quantum logic of a Hiibert space 
H who se d i.mens i on is an infiuite .card i naI lo Then any I -ad­

d í t í.ve I -finite measure has a carrier of d i.mens í.en ..sI. 

Proof. Define j{={x:m(Px ) =olu{o L Similarly as in the proof 
of Theorem 2.7 we may show n Ls a closed subspace of H. Hence, 
if x ~n. then m(P x)= O. Choo se anorthogonal basis [x ai in no 
Using the I -additivity we have m(n) = ~ m(P x ) =0. Therefo r e 

a a 
P : =j{.l. is the carr i e r of m , 

Q·.E~D. 

Theorem 3.2. Let.f(H) be a quantum logic of a Hilbert space 
H whose d í.mens í.on , I, is a nonrea l measurable cardinal j' '2. 
Le t n and tn be two c ard i.na l.s such that m 'S,J and m ~ No .Then 
any m-additive n-finite measure m on í(H) has a carrier 
whose d'imens i.on is s max t 'N , n l.

D 

Proof. Let H = $ Ha• where A has the cardinal n,> and 
. a~.A 

m(Ha)·<oo for any a Ç;A. If Í1 is a finite cardinal, then m has 
/ 5a separable car-r í.e r ,see / arrd Lemma 2.6. 

Let now n ~ 'N .Then any m a:=m 1~(Ha'>, a ç; A, is a finite mea­
sure , Herice çH a ='~P~ '$ Na. where Pais a s eparab l e carrier of ma' 

Put PA = $ Lt; is evident that dimP a= n .."and mA>=ml~(PA) 
a~A 

Pa. 

is an n -additive n -finieB measure on f~PA)' Applying I..emma 
3.1 we see that PA ~ Po '9 No. where Po is a carrier of mA~ To 
show that P : =Po is a carrier of m' see the proof úf Theorem 2.7 o 

Q.E.D. 

The"rem 3.3. Under the h,ypotheses of Theorem 3.2 any m-ad­
ditive n -finite measure m on f (H) is totally additive. More­
over, there is a· unique, symmetrie bilinea't forro t sueh that 
(2.1) holds. 

. ~ 

·1
 
\
 

I 

i
(. 

\
 

Proof. The first part of 
in TheOrem 2.8. The second 
developed in/ lO/ . 

d í 1101Accor t ng to • we say t 

the assertion is the saroe as that 
one may be proved using themethods 

Q.E.D. 

h '..:1 • f' f' .at a s i.gnec me..asure ,m 1S - í.ní.te 
if	 sup Im(Q) 1.< 00 whenever Im(P) 1.<00. The following result may be 

pro't~a anal:ogically to Theorem 4.4 in l 10/. 

Theorem 3.4. Letf(H) be the Logí,c of a Hilbert space H 
whose dimension is a non-real me.asu r abLe cardinal I f 2. Let n 
and m be two card i.na'Ls sueh that n sI, m 2:. ~ .Then for any f - ­
bounded m-additive n -additive signed measure m, there is 
a unique symmetric bilinear forro t such that (2~2) holds. More­
over , if Im(P)I.<oo and P = $ Pa• where A is an arbitrary index 
s et , then (2.0) ho Lds . a~ A 

4.	 APPLICATION 

In this section we apply the result ~n the existence of 
supports of u'-finite measures to the problem of the existence 
of a joint distribution of observable~ in a u-finite measure. 

Let (U·,S) be a measurable space , t ha t s , U is a non-emptyí 

set, and t he non-empty system lS of subse t s of U is closed 
with respect to the formationof the union of countably many. 
elements from 1St and í.f E ~ 'St then n -E c;:;·S.· A map X.: ~S-+ f (H) is 
an IS -observable of f (H) if (i) X(!l)=H ;' (ii) X(E)_l X(F) when­

ever sn F=: Ç); (iii) X(Ü =.V X(E i) • 1 ,E i1 eIS. Observables 
1=1.

Ei) 1=1 
correspond to measurable quantities in quantum mechanics / 1f . 
An observable X is (1'-finite with r espec t to a rneasure m í.f 
there is a sequenee{Eilc'S suchthat .O-Ei=Q ,EinEjpQj , 

. J' d (X(E \) . 1 1 = 1 •1 'F J. an m i I .< 00. 1 ~ • 

tole	 say that a finíte system of IS i -observables, X i , of ~(tI). 
i = I, ••• , l;vhere (U i "Si) is a measurab Le space , has a joint 
distribution in a measure m if there is a measure p. on IS lx ...x 
xlSn such that 

n 

Il(E 1 x...xE ) ;= m (.1\, X l' (E . )),	 (4. I)n 1 = 1 1 

for alI E i ~ IS i • i=: 1•...-,n. 

Theorem 4.1. Let f(H) be the quantum logie of a Hilbert 
space fi whose dimension is a non-real measurable cardinal ~ 2. 
Let Xi be -an !Si -observable of f(H) , i = 1, ••• ;.11, and let at 
least one observable is u'-finite with.respect to m. Then X p 
••• ,'X n have a joint distribution in a measure m iff 

8 
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X'il(Eil)·uXin (Ein)-P= Xl (K1 )···Xn(E n)P	 (4.2) 

for	 any permutation (i h •• ., in ) of (1, ••• , n ) and alI E'i t; ISi. ii =	 1, ••• , n : he re Pis t he c arri er of m • i­

~ Proof , It is ev i derrt , .that; m s u-:-fini te measure. Due toí 

Theõrêiil2.7, m h a s a separable carr i.e r , and, consequerrt Ly , ~ 
m(P~)~o. The final result follows' from(ti, Lemma 3.91, where 
(4.2) is proved only under the assumption m(P.l )<00. 

Q.E.D. r 
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nBypeqeHCKHH A.	 E5-8ó-54 
o TeopeMe rnH30Ha AnH Mep c GeCKOHeqH~MH 3Ha~eHHHMH 

B KaqeCTBe MOAenH KBaHToBoH MexaHHKH H3yqaeTcH KBaHTO­
BaR nOI'HKa acex 3aMKHYTblX nOArtpOCTpaHCTB npoc-rpanc-ma I'HJIb-
GepTa. nOKa3~BaeTCfl, qTO Kamnan a-KOHeqHaH Mepa Ha 9TOH 
KBaHToBoft norHKe rHnb~epTOBa npOCTpaHCTBa, pa3MepHOCT& KOTO­
poro - HepeaJIT~HOe ti3MepHMoe xapnauansuoe qHCnO f. 2, HMeeT 
cenapaeensnsrã HocHTe.rrb, a TaI<me. qTO ona BnOJ1He aMHTHBHa. 
Pe avrrs-ra'rsr npHMemtlOTCR IC npoõrrexe COBMeCTHoro p acnpenenenaa 
aaõrnonaesrsrx B Mepe. 

PaOOTO BbInOnHeHB B Jlaõop aropaa BblqHC.TIHTenbHoH TeXHHKH 
H aBTOMaTH3aUHH OHflH. 

Ilpenpmrr 05bCJJ.HUCHHoro HHcTHTyra nnepHblX HccJIenoBaHHH.lly6Ha 1986 

Dvure~enskij A~ E5-86-54 
On Gleason's Theorem for Measures with Infinite Values 

The quantum logic of alI closed subspaces of a Hilbert 
space as a model of quantum mechanics is studied. It is pro­
ved that any a~finite measure on this quantum logic of a 
Hilbert space whose dimension is a non-real measurable car­
dinal ~ 2 has a separable carrier, and it is totally additi-" 
ve. The results are applied to the problem of a joint dis­
tribution of observables in a measure. 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 
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