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1. INTRODUCTION °

Let H be a Hilbert space over the field, C of real or
complex numbers. Denote by £(H) the orthocomplemented ortho-
modular complete lattice of all closed subspaces of H ; £H)
is named a quantum logic of a Hilbert space H. By @TML we

dencte the'join of mutually orthogonal subspaces i»M‘L: te T
A measure on £(H) is.a functionm : £(H)»[0,~]1 such that

(YmO=0 5 (ii) m(3M;) - '°§°:\1 m(M,), Measure m is (a) finite
i= i=

for each MGQK(’H) ; (b) o-finite if there is a se-
quence (M}

=1 such that ® M; =H and m(Mi).<oo , 1> 1.,
= =1 ’

Measures characterize the states of quantum physical sys-
tems (see Varadarajan’Y, for instances),

The crucial result of the theory of quantum logics is the
famous Gleason theorem’? which asserts that any finite mea-
"sure m on £(H) of a separable Hilbert space H, dimH #2, is in-
duced by a positive Hermitian trace operator T on H via

00

m(P) = tr(TP), P ¢ £H),
(we identify P with the orthoprojector TP onto P ). Sherst
nev’/% and the author’% extended (1.1) to all bounded signe
measures on £(H). We recall that a function m : £(H)-»[~co, 00 ]
for which (i) and (ii) of above hold, and from the values
it attains only one is called a signed measure, In papersg of ¥
Eilers and Horst’?® (for measures) and of Drisch’® (for sig-
ned measures) it is proved that the assumption of separabilitg
of H is superfluous. The separability of H is changod to thd
dimension of H with non-real measurability of a cardinal, We
recall that the cardinal of a set! is said to be non-roal
measurable/?/ if there is no measure v A0 on tha powor set o
I with v({a})=0, for each a ¢ I,

Sherstnev/8/ studied measures on ideals of a soparable Hl
bert space. The generalization of Gleason”s thoorem for o-=f
nite measures on £(H) of a separable infinito-dimensional Hi
bert space is given in/%/ This result has been extended to o
finite signed measures’ !/ for a Hilbert space whose dimensiof
is a non-real measurable cardinal # 2, '

Let m be a measure. An element P & £(H) is said to be a car
rier of m if m(M)=0 holds iff MLP. It is clear that if a ca

2

rier exists, then it is unique. In’ 1V there has been proved
that any o-finite measure on £(H) of a separable Hilbert space
has a carrier. Moreover, any measure m with m(H)=w on- £(H)
with 4<dimH <, for which there.is a three-dimensional sub-
space Q@ such that m(Q)<~, has a carrier.

In the present note we prove that any -¢-finite measure" bn
a quantum logic of a Hilbert space whose dimension is a non-
real measurable cardinal # 2 has a separableé carrier. This
gives the positive answer onto the question posed in/1V rela-
ted to the existence of a carrier. Moreover, we prove that
this measure is totally additive,

*

2. o -FINITE MEASURES

Let H be a Hilbert space over the field C of real or comp-
lex numbers witlh’f elements x , y,... and the inner product (.,.).
By {Ix]]: -(x,x)%  ye denote the nori of x € H. If 0 # x€H, then
by P, we denote the subspace of H generated by x. An orthogonal
complement to P & £(H) is the subspace P :={x€H:(x,y)=0 for
any y ¢ P L. By Tr(H) we denote the class of all bounded linear
operators T in H such that, for every orthonormal basis
{x,;act] of H, the series aE‘E;I(Txa.x 4 absolutely converges

and it is independent of the basis used; the expression
trT: = EGI(Txa,xa) is called the trace of T. ‘
a

‘ A bilinear form is a function t D(t)xD(t)» C, where D(t)
is a'linear submanifold of H (not necessarily dense or closed
; in H ), named the domain of the definition of t, such that
7 is linear in both arguments, and tlax, By)=aBt(xy), X,y € D(t)
a, <C.If t(x,y) =t(y,x) for all x ,y € D(t), then t is said to
be symmetric; if for a symmetric bilinear form t we have
t(x,x)2 0 for all x&D(t), then t is said to be positive. Let
‘ P_Cf(H) and let P CD(t), Then by t o P we mean a symmetric bi-
i lincar form defined by t° P(xy) = t(Px,Py) ,x,ye H. IftoP
. is induced by a trace operator T, that is, t oP(x,y) = (Tx,y),
for all X,y «¢H, then we say to P ¢ Tr(H) and we put tr(t°P)=trT.
i An clement P ¢ £(H) is a separable if it is a separable sub-
i space of H. We say that a function m : £(H)»[=cc,» | with m(0)=0

"
{
i
i
1]
f
3
H

‘t is totally additive if

{ m(““’ml"“)-aé]m(f’n) (2.0)
" for an arbitrary system {P,:a € Il of mutually orthogonal sub-

i spaces of H, If (2.0) holds only for sequences m is said to
'be ~ -additive,

! It is known’?/ that if1 is afon—real measurable cardinal,
{ then so is 21, Hence,}l. =27.® _are too., Moreover, if J <I,
; thon J is a non-real mbBUdeakiéuidal dRECTHFYY 0.
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The following result has been proved in’%:

Theorem 2,! U Let H be an infinite-dimensional separable
Hilbert space., Let m be a o~finite measure on LMH) with
m(H) =w. Then there is a unique symmetric bilinear- form
defined on a dense domain such that ’

tr(t o P) if t o P € Tr(H),
m(P) = " (2.1)
0 elsewhere.

/107
This result has been extended in

to non-separable case:

Theorem 2.2. Let H be a non-separable Hilbert space whose
dimeusion is a non-real measurable cardinal. Let m be a 7=
finite measure on £(H). Then there is a unique symmetric bili-
near form 't defined on a dense domain such that

tr(t o P) if mP)< o,
m(P) = (2.2)

00 elsewhere.

Moreover, if m(P)<w,then, for any {P,a€Alwith P = Z;’a
we have (2,0)- a

The basic result for measures with infinite values is the
next result.

Lemma 2,3. (Lugovaja - Sherstnev/w) Let dimH=3 and let m
be a measure on £(H) with m(H) =~.If there is a two-dimensio~
nal Q' ,m(Q) <=, then for any one-dimensional P with m(P) <=
we have P<Q.

This result can be extended as follows.

Lemma 2.4. Let dimH>» 3 and let m be a s1gned measure on
£(H). If there are P and Q such that dimPt=1 = dimQ, m(P) <=,
m(Q)< «, then Q <P,

Proof. It is clear that Qv P. It may be proved that dlm(QL/\P)z_.?..

Hence, there is x; € QAP so that Py 1 @, Py, L P*. Since
dim(QVPJ') =1, , dm(QVPgV P1)=3.The conditions of Lemma entail

m@VPp, V P )=, | \ (2.3)

in the opposite case m(P ) <~ and m(H) < oo
Now we show that dim((Q V7P, VP YAP)=R.It is evnient that

x, & M: = (Q\/pxl'vp")/\P, Let us suppose that Q=P , =Pxq

4

.

for suitable q , xy*¢ H. Then ‘it may be shown that aq+8x5€ M,
where a € C and B €C satisfy a(q,xg)+ 83 =0.

We claim to sltiow Q<P. If not, then there is x,€ M such
that x, 1 x, and QV(le [ ng)— QV Py VP Usulg Lemma 2.3

we have m(Q V(Pxl @PX2))<oc which is a contradlctlon with (2_.3).

Q.E.D.
Lemma 2.5, Let H have a non-real measurable cardinal 24

and let m be a measure on £(H) with m(H)=w.Let there be
a three-dimensional Q@ with m(Q) <~, If m(M)— m(N)=0 and
dimN <o ,then m(M V N) = 0.

Proof. Using Lemma 2,4 we have that m(QVMVN)<w.Hence,
using Gleason”s theorem”sl for m*: ~m‘£(P), where P=QVMVN,
we obtain the desired result,

Q.E.D.

Example 1. The assumption of the existence of a three-di-
mensional @ with m(Q< o~ is not superfluous in Lemma 2.5,
Indeed, let Qg be some two-dimensional subspace of H, Define
mP)=» 1ffP £Qgy, m(Qq)=2 , m(0) =0. Choose X,Xy ,¥y ,¥g € Qg
such that x 1 X,,¥, 1 Yo » XL ¥, aéXl and put m(le‘)=m(Py1)=0,

P<Q,

m(szi);m(Py2)=2_, For all other one~dimensional P N

let m(P)=1. Then for this m Lemma 2.5 is not valid.

Lemma 2.6, Let T € Tr(H) and let T be a positive operator.
Then m, defined by (1.1), has a separable carrier,
Proof. Due to’ 12/, it follows for T there is an orthonormal
basis in H , {f, :a€A}, and non-negative numbers {A,:a€A}guch
that

T=23\,f ®f , ’ -
a€ A (2.4)

where f® f is an operator in H which assigns (x,f)f to a‘lr'ly'

x € H. Since tr(T)= E /\ then the set {a&€ A: X,>0} is coun-

table, An easy calculatlon shows that M:= ®{P; :A,>01} is-"
a separable carrier of m. ,

. . Q.E.D.
Example 2. Let H be an arbitrary Hilbert space, and let

H=o H © . Let Ty € Tr(H;) ,i>1, be a positive operatory it
1—

may be extended to a whole H. Define m(M)= 3 tr(T; M), Me £(H).
1

Then m is a ¢ -finite measure on £ (H). l151ng (2 4) we see
that this measure has a separable carrier.



The following result gives the affirmative answer to the
question posed in/!!.Does there exists a carrier for a o —fi-
nite measure?

Theorem 2.7, Any o'-finite measure on £(H) of a Hilbert
space H whose dimension is a non-real measurable cardinal
# 2 has a separable carrier.

Proof. If m is a finite measure, then, due to the genera-
lized Gleason theorem’5/, m has a form (1,1), and Lemma 2.6
implies that m has a separable carrier,

Let now m(H)=» and let H= ®1H where m(H; )<w, i > 1. With-
i=

out loss of gemerality we may assume dimH; >3, i > 1. The rest-
riction of m onto £(H;), m;:=m|£(H;), entails that there is,
for any i» 1, a separable carrier P; and an Nj with H;=P; ® N; .

It is evident that m;(My=0 for any M<N;. Let us put P = ,?BolPi
i=

and N - ® N; o—-finite measure on

i=1
£(P,) of an 1nf1n1te-d1men31onal Hilbert space P with m (P )=co,
Hence, due to’!Y Lemma 3.6 m, has a separable carrier P,
Therefore m (P)>0 for any x € Py .
We claim to show that Py is a carrier of m,
Let T={x¢c H:m(Pg)=0}U{0} and let N=N_e (P, AP0)= Po

Then N; cN, for any ix1, and PAP; CNUsing Lemma 2.5 we may
show that if x,ye N, then x+yGT( and if x€ 1 and a4 «C,
thenax €X. Now we show that 1 is a ¢lesed submanifold in H.
Let tx JCJ and || x ~x||+ 0 for some x € H, Define M= Py V.t VP

The map m_:=m|&(P )is a

Due +to Lemma 2.5, m(M,)=0. Using the continuity of measure m
from below we have m( VM )= limm(M )=0. Therefore x¢€ VMC #
= n=

Now we show JI=N. If not, then there is x € 1A N” . Hence,
X € Py and m(P,)=0. On the ot:her hand, using that Py is a car-
rier of m, we have m(P,)>0 which is a contradiction.
Therefore, P, is a carrier of m. . Q.E.D.

We say that a measure m has a Jauch-Piron property if
m(M=m(N) =0 implies m{MVN)-= 0.

Corollary 2,7.,1., Under the conditions of Theorem 2.7, m has

a Jauch-Piron property. Moreover, if m(M,)=0, ac &, then
m ( V M =0

Propf. This is a transparent consequence of the fact that m
has a carrier., Q.E.D,

Note I'. The assertion of Corcllary 2.7.1 remains valid under
the eonditions of Lemma 2.6,

6 \

We note that Theorem 2.7 is in a sense an analogue of
Ulan”s result’/?/ from which follows that if ¢ is a finite
measure on the power set of I, where the set I has a non-real
measurable cardinal, then there is at most countable subset
NCI sueh that p(I-N)=0. It is easy to_verify that the same
ts true for a o-finite measure g on 2

Theorem 2,8, Under the hypotheses of Theorem 2.7 m’ is to-
tally additive on £(H). Moreover (2.1) holds.

Proof. From Corallary 2.7,1 it follows that if M= 2 Ma and
m(M,)=0 for any a €A, then m(M) m(M, ).

Let now {P :ac A} be an arbltrarfi system of mutually orthogo-
nal subspaces of H with the join P. If m(e Pa) =0 for some

countable subset J of A, thén m(P)=w = 2 m(P ). Hence, sup~

pose that m(eP,)<~ fof any countable subset J of A. Denote,

akJ
for any nx1, A ={acA:m(P,)>1/nlOur assumption yields that
any A, is a finite subset of A. Put A0=U1An Then, for any
n=
acA-A m({P 0. Since P=9 Pe & P, ,
) 0> ¢ ) aCAY aEA-
m(P)_ S m(P,) + 62 m(P ), when within the first series we
A- A

we see.that

use the zro—add1t1v1ty of m.

To show (2.1) it is necessary to verify that m(P) <« jiff
to P € Tr(H). One direction of this equivalence is obvious from
(2.2). For the second one, we use the total additivity of m:
trtoP=3t(x,x i’)=Ei. m(Py, ) =m(P), where {x;} is an orthonormal

1 *,
basis in P, Q.E.D.

We recall that in’® the problem of a total additivity has
been raised, The positive answer for measures is given in
Theorem 2,8, but for signed measures this question is still
open, Moreover, in there has been argued that m(P)<e iff
toP € Tr(H) although only the implication "if m(P)<«, then
toP < Tr(H) " has been proved. The complete proof of the men-
tioned equivalence for measures is given in Theorem 2,8,

Note 2.Under- the conditions of Lemma 2.6 m is totally ad-
ditive, The same is true for Example 2, too.

3. n -FINITE MEASURES

In this section we generalize the notions of o¢-finiteness
and o-additivity of measures on £(H) to a more general case,
and the results analogous to those in Section 2 will be proved,
7

.



Let n and m be two cardinals. We say that a function m:
 H)-+[0,~] with m(0)=0 is (i) m-additive if m( ® P)= X m(P )
B aCA aCa - 2

n-finite if there is
, m/(Hi),<m for any i € B, and the,

whenever the cardinal of A is m; (ii)
{H,:ieB} such thatH =‘€$BH1
1

cardinal of B is n .The extension of these notions to signed
measures 1is stralghtforward for definiteness we shall suppose
m: E(H) » (0,1,
It is evident that if m, < m,, then any m,-additive measure
is m -additive. If n;<n,, -then any n, finite measure is n, -
. finite, We recall that unbounded finitelly additive o -fimite

measures on £(H) are studied in”1

Lemma 3.1. Let £(H) be the quantum logic of a Hilbert space
H whose dimension is an infinite .cardinal I. Then any I -ad-
ditive I-finite measure has a carrier of dimensien <L

Proof. Define N={x:m(Py) =0}U{0 }. Similarly as in the proof
of Theorem 2.7 we may show 1 is a closed subspace of H. Hence,
if x €N, then m(P,)=0. Choose an orthogonal basis {x,} in .
Using the 1I- add1t1v1ty we have m(J) = Em(P ) =0. Therefore

P:=J'('L is the carrier of m.
Q.EiD.

Theorem 3.2. Let -£(H) be a quantum logic of a Hilbert space
H whose dimension, I, is a nonreal measurable cardinal # 2.
Let n and m be two cardinals such thatm<I and m>x N .Then
any m-additive n-finite measure m on £(H) has a carrier
whose dimension is <¢max{N_, nl

Proof, Let H= 2§a » where A has the cardinal a,  and
——— A,

mH,)<e for any a€A, If n is a finite cardinal, then m has
a separable carrier, see 5 and Lemma 2.6.
Let now n> N_.Then any m,=m|€(H), a € A, is a finite mea-
- ° . .

sure, Hence, H,="P,®N,, where P, 1is a separable carrier of m,.

Put Py = @ P, . n. .and my=m|(P,)

is an n-additive n-finite measure on £(P,). Applying Lemma

3.1 we see that Py,=F;®N;, whereF; is a carrier ofm,. To

show that P:=P;y 1is a carrier of m-'see the proof of Theorem 2.7.
Q.E.D.

It is evident that dimP, =

Thedrem 3,3, Under the hypotheses of Theorem 3.2 any m-ad-
ditive n-finite measure m on £(H) is teotally additive. More-—
over, there is a unlque symmetric b111near form t such that
(2.1) holds.

8
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Proof. The first part of the assertion is the same as that
in Theorem 2, 8 The second oune may be proved using the methods
developed in /107 Q.E.D,
According to 10{ we say that a signed measure mis f -finite
if sup|m(Q)| <~ whenever [m(P)|<«. The following result may be

Q<P . .
proved analogically to Theorem 4.4 in/ 10/,

Theorem 3.4. Let £(H) be the logic of a Hilbert space H
whose dimension is a nom-real measurable cardinal I #2. Let n
and m be two cardinals such thatngl ,m > .Then for any f--
bounded m-additive n-additive signed measure m, there is
a unique symmetric bilinear form t such that (2.2) holds. More-
over, if |m(P)|<wand P= & P,, where A 1is an arbitrary index
set, then (2.0) holds. ac A

4, APPLICATION

In this section we apply the result on the existence of
supports of o-finite measures to the problem of the existence
of a joint distribution of observables in a o-finite measure.

Let (2-,8) be a measurable space, that is, € is a non-empty
set, and the non-empty system '® of subsets of @ is closed
with respect to the formation of the union of countably many.
elements from ', and if E€'§, then @-E€d. A map X: 8~ &(H) is
an '§ -observable of £(H) if (i) X@)=H §y (ii) X(BE).. X(F) when~

(111)X(U E) v X(E;), { EJCS. Observables

correspond to measurable quantltles in quantum mechanics’/ 1.
An observable X is o-finite with respect to a measure m if
there is a sequence {E;}CS such that U E;=Q , E;NE;#¢
i 4, and m(X(E,; N< oo, i1, i=1

We say that a finite system of '§; ~observables, X;, of £H),
= 1,00e, where (Q 5 ) is a measurable space, has a joint
distribution in a measure m if there is a measure poon S x..x

X8, such that

ever ENF=¢Q ;

n

p(E . .xE )= m( i{-—\i X EM . “.1)
for all E; ¢ 'Si, i=1,..,0.

Theorem 4.1. Let £(H) be the quantum logic of a Hilbert
space H whose dimension is a non-real measurable cardinal # 2,
Let X; be an §; -observable of &H) , i = 1,..., 0, and let at
least one observable is o¢'—-finite with.-respect to m. Then X,
«ees Xp have a joint distribution in a measure m iff



Xi By ) e Xy (B OP = Xy (By)enX (B )P (4.2

for any permutation (if ..., ip ) of (1,...,n ) and all E} 1§y,
i1 =1,...,0; here P 1s the carrier of m .

Proof. It is evident.that m is o-finite measure. Due to
Theorem 2,7, m has a separable carrier, and, comsequently, 3
m¢(P*)=0. The final result follows from!11, Lemma 3,91, where
(4.2) is proved only under the assumption m(P' )<« .

Q.E.D.
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IBYpeueHCKH A. E5-86-~54
0 Teopeme TnM30HA AnA Mep C 6€CKOHEYHbIMH 3HaueHHAMH

B kauecTBe MOoJeNH KBAHTOBOH MeXaHWKH H3Yy4aeTcCs KBAHTO-
Bas JIOTHKA BCeX 3aMKHYTBIX MOJNPOCTPAHCTB MPOCTPAHCTBA TI'HIb™
6epra. [HokasmBaeTrcsd, 4YTO Kaxpas O -KoHeuHas Mepa Ha 3To#M |
KBaHTOBOHI Joruke runpBepToBa NpocTpaHCTBA, Pas3MEpHOCTH KOTO—
poro — HepeanpHOe H3MeppMoe KapOHHAJIbHOE YHCIIO 4 2, umeer
cenapabelpHLIl HOCUTENb, & TaKXe, UTO OHa BHOJHe anJUTHBHA.
PesynsTaTs NPUMEHATCH K npofleMe COBMECTHOIrO pachnpelelleHHus
HabmogaeMblX B Mepe.

PaBora BbONHeHa B JlaBopaTOpPHH BLUMCIHTEIBHOM TEeXHUKH
u aBToMaTusauwu OWSIHU.

ITpenpmit OBveaHICHHOTO MHCTMTYTa SMEPHBIX MccienopaHuit. Hdybua 1986

Dvurefenskij A. E5-86-54
On Gleason's Theorem for Measures with Infinite Values

The quantum logic of all closed subspaces of a Hilbert
space as a model of quantum mechanics is studied. It is pro-
ved that any o—finite measure on this quantum logic of a
Hilbert space whose dimension is a non-real measurable car-
dinal # 2 has a separable carrier, and it is totally additi—
ve. The results are applied to the problem of a joint dis-
tribution of observables in a measure.
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