coosmenns
eGheANNSNNETE
NNCTNTYTA
AASPANK
NCCASABBANNA

\
Ayona

E5-86-524

H.Englisch®, M.Schrider®, P.Seba

THE FREE LAPLACIAN
WITH ATTRACTIVE BOUNDARY CONDITIONS

* section Mathematik, Karl-Marx-University,
Leipzig, GDR

1986

SRR S


http:CI,I.I.II

1, Introduction

It is well known/‘/ thet the motion of a free,

Schroedinger particle on a half line R, = [0,°°) is
described by an one-parameter family of Hamiltanians H”
2
-
Hav dx2

[ by n \
D(Ho,) = {fe LZ(R+); f,f&AC(R,) , feLz(R+), £ = o f(O’J}
(Th’e family H, , We'”lv[m_?represents all possible self -

adjoint extensions' of a. half line "Hamiltonian"® Ho with
the boundary point 0 removed

2
By = '%xzr C:TRQ

The interaction of the particle with the point 0 is
modelled by the boundary condition /b.c./

£, = ¢ £(0,) (1)

Since Hg. 18 the norm-resolvent limit of Schroedinger
operators with local short-range potentials’“?

oo = MRlin Hoeoo + (1/2) V(x/g)

-]

with  0° =£V(y)dy , VEL(R) , describes (1) with
¢ € 0 an attractive interaction with the boundary.
Analogously (1) with O > 0 describes 8 repulsive inte-
rac ‘tion while the free endpoint is modelled by & = 0
(Neumann b.c.) .

In the multidimensional case the situation
becomes more complicated, Considering the motion of a
free quantum particle on & half spece Rn—1x, R, we have
10 construct all possible self-adjoint extensions of the
half space lLaplacian Ho with the boundary removed
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o ~1
Hy = =AM c®(rR"'xRr,).
(These extensions regresent the sdmissible quantum Hamilto -
nians of the system.)

The deficiency indices of Ho are not finite for n >1 and
this makes the situation very complicated.

The aim of cur peper is to study Hamiltenians
ot a free particle on half space Rn_]x R, which are defined
by lccal b.c,.

° -
'S)'(mf(x‘ yeesX,) /xn=0 = o (x ,..,:rzn_I)o:t’(x1 veesXy_1,0) (2)

(ihe corresponding operator is denoted as Hm .)

In the contrary to the one-dimensional case the local b.c.
do not represent all possible ones. There are also non-
local b.c. , cf, ref./d4/.

The homogeneous b.c, with @ = const., were
already considered in cornection with the Bose condensation
(ref./5/ - /1/). It was remarked in /3/ that it is possible
to describe such an operator as a norm-resolvent limit of

oo * (/e) VCx /) , VELR,) .

The constant 0 is then determined by

[~
o~ =£v(ym .

Therefore ‘one should expect that also for the more general
case (2) holds :

fov = £ He o +(7e) VOxypeegXp g 9%,/ ) 3)

o

where
O (Xyyonyx, () = _( V(xr,..,xn_ﬁ,y)dy .
o

But up to now we do not know any proof of (3)in the general

case, Nevertheless a comparison of properties of Hb,with
those of H, ., + Gre) V(x| yeeyX_,X /) shows many

similarities, Thus it seems that the influence of the boundery
can be modelled by the appropriate boundary conditions of
the type (2) as well as by an additive short-range potential .

In the next section we study the spectral
properties of Ho.by an ensatz leading to a Klein ~ Gordon
pseudodifferential operator. In the section 3 @ is taken
to be & LP function or a periodic function respectively.

In the first case we find that at most a finite number of
negative eigenvalues of Hp. appear, For 6 periodic the
spectrum of H,  is absolutely continuous only. In section 4
we discuss the properties of Hp. with ¢~ singular. We

show that for 0¥ negative and singular énough a collapse

-at the boundary occurs. In a forthcoming paper/a/ random
b.c. 8re considered.
2 ormation to & Klein~Gordon Hamiltonian

The interval [O,eo) belongs to the spectrum
of Hy. for any 0° , since one can f?r eny £€> Qand E > O
construct a function ¥e c, (R"'x R, ) such that

l-a% -E%lIl < &lYh

This is why we are interested only in the negative part
of 6P(Ho,) . Introducing for E £ 0 an operstor

Kpp= 4 & + 0t

defined on the Hilbert space Lz(Rn-]) , we get the following
proposition /94

Proposition 1: Let @ is K, o — bounded with a relative
’
bound less them 1, Then for E < 0 holds:
a/ E€ ¢-(H_ )} if and only if 0 &0k )

0‘ ,E
b/ Ee 04; (Hp) if end only if 0 &%, (K. B )

disc

¢/ Eé€ o-ess(no,) if snd only if 0 & o'ess(xo,’E).
Thus using the Klein-Gordon Hemiltonian with the rest mass
equal to the binding energy -E we cen simply investigate
the negative part of 0‘(.}{0,) .




The min-mex-principle (ref./10{§ XIII.1 )
yields that the m-th eigenvalue of Ho_=0 + V1 is less then
the m-th eigenvelue of H, o + V, if V(x)< V,(x) for
any x. The approximation argument (3) let us expect the same
also for HO’

Proposition 2: If @4(x) € 03(x)for all x & K" then
E (H. ) £ & H, )
o Ea n By
where Em(Ho'> denotes the m-th eigenvalue of Hy .

Conclusion: For the ground state of H, holds
E, (H,)> - (ain{o, into(08)2 (@l

Remark: If Hyp. has only 1< m eigenvalues bellow itsa
essential spectrum E  (H,) denotes inf o’essfﬂr)for
allm >1 ,

Proof of the conclusion: Take ¢ ,(x) = min{O, infO’(x)}.
Then ¢ (x) £ ) and

B, (H) > El(%)= inf "\'ess[Ho;) = - 042,

Proof of the proposition 2 : The min-max~-principle yields
that Em (Ko- E) is increasing in @ and decreasing in B .
Thus the solufion E = E(o) of

Em(KO‘,E) = 0

is decreasing in 0@ .

For H,’w'i d—>oo the estimate (4D becomes

exact in the sense that

. 2 . s 2
igx;oE‘( H,IO') /A5 = —(mln{o,lnfo'h)})
(For the proof take trisl functions for K as in ref, /ll/.)

e ¢,k
Conversly for bounded V holds

,}g;‘oE1(Ho'=o +AV) /2 = inf V
i.e. the asymptotical behaviour of E, (HO' g *tA V) is only
linear, This difference between Ho,y and Hy o + AV

is observable already in the exslicitely solvable one=~

dimensional case, But it is not surprizing , since if we
approximate the operator Hy ) by Hy g +(J—/£)V(x1 vosXp_ 19X, /6 )
then

inf

% V(%) ye0y%
Eo

n-1 ’xn/e) b e

J» Short and long range boundary conditions

Let us first investigate the spectrum of ‘Ho_
when O~ is a short-range function, Since Ho-g * V has
only discrete spectrum bellow 0 for short-range potentials V
one would expect the ‘same also for HO’ with @ short
range, Proposition 1 of the present paper and theorem 4.2
of ref, /12/ imply immediately

Proposition 3: Let & LP(R™'D) + L (') witn
2€ peoce  and p > n-l .(1.9. for any £ > 0 there is a

 as : -1
decomposition ¢ = 0"l € + 0‘2" with ¢-, ’feLp(Rn >
and I 0v, £ll < 6) Then

’

= oo)
o'ess(HW) Co,

and the negative part of O'(Hr) consists of isolated
eigenvalues of finite multiplicity.

Remarka: 1/ For e C°°° (Rn-l) the proposition was
already proved by Povzner and Krein /13,14/
2/ The proposition 3 is an analogue of the fact that

O (oo + VD) = Lo, =)

for ve IP(R*'x R) + L(R™'x R ), 2Sp<ee , p>ne
(cf. ref, /10/, § XIIL.4)

In the case n = 2 it is possible to get some more decailed
information on the eigenvalues of Hy

\
Proposition 4 : Let ¢-_&« LP(R) end @ _&LP(R), where
1< pg&2 and P' > 1. Then for the m-th eigenvalue of H, holds

E (8,02 -((I/T)NKOH gl el p)23 né (%)

whe~e 1/p+1/g =1 and X, dehotes the modified :larkel
function of ord:r zero.



C ¢&_; @, =are the negetive and positive partsof 0% res-
pectively, )

Proof: Let NO(KO',E ) denotes the number of nonpositive
eigenvalues of Ko E* Using the Birmen-Schwinger argument
(ref. /10/, theorem XIII.iO) and replacing the Green’s
function of - /A by the Green’s function of Ko,p v get

No(%, ) €0 /TI)IKOQ((:E.'\!'YD 0.(x)07.(y) dxdy 6)
X

The fact that Koc-Lp(R) for any p | 715/ ana the Young
inequality imply (5) .

Remarks: 1/ In the case of higher dimensions this technique
is mot applicable since the kernel of KO,E-I becomes too
singular. Consequently the integrals corresponding to (6)
are divergent.

2/ The condition O~ € LP(R) s, D> implies

that 0 is infinitely small with respect to K, o 7%/ Whet
]

enables us apply the proposition 1 .,

It is rather difficult to investigate the
spectrum of K, E in the general case, This difficulty is
connected with the nonlocality of this operator, It is
therefore imposeible to use standard arguments based on
differential equations. Nevertheless one can prove that

the spectrum of Ko. B is absolutely continuous for 6~ periodic

(end hence for H',J &sing the technique based on the direct
integral decomposition of L2(Rn-1) outlined in ref, /10/,
§ XII1.10,

Let (&) 00058 ;) be a basis in R, We denote
maq
Q={ 3 tya, , t,6[0,17, 1=1,2,.0n-1 §
Axd
Moreover we define for x &RP™ and 1 N

L x2l ;21

Now we can state

Proposition 5: Let ¢ be a periodic function
~n-9

. o(x +3m = ¢(x), mez®!

z s25)

Suppose that ¢ is 1 times differentieble with

1)%} for mD>2 or 121 for n = 2 respecti-

vely and that
Il € LP(Q)

22 p> 22&;1)2)(“;2; — forn> 2 resp, 22p 21 o

. for

for n = 2 , Then the spectrum'of Hy s absolutely
continuous,

Proof: We note at the beginning that under these assumptions
is 0° infinitely small with respect to K; , . Thus the
proposition 1 is applicable ./9/ !

Let us now introduce

g = ol
Since g € LP(Q) the Hausdorff-Young inequality yields
e n-1
gel p/(p-ﬁ(z ) ’
where ’Emi meZ™' are the Fourier coefficients of &
Let us now define

l/|m|l m¥F o0
o

1 m=20
and

Byt m *0
h =
o {-oim= ¢

~ .
( G\Jm denotes the Fourier coefficients of O .)

)= . n-| '
Since 1oy 1= n £ and '£€ 1 (2"") for all r >(n-1J/1
the Holder inequality yields

~ n-1 -1
o~ € ls(z ) for s > (]I: 1/py(n=1) *1~ (8)

The assumption (7) implies that right hand side of (8) is
less then (2n-4/(2n-5). Thus we can choose
8 < (2n-4)/(2n-5) .
~
Analogously we get e 1,(z) withs€2 forn=2,




Nowx we will follow the standard direct integral decomposition
technique /10/. We denote

m-1
Em(z) = ‘[((a + zb) +;§’mi’§'i)2 - E]lfz

RO 1

where a,b € and ('E'i ) derotes the basis reciprocal to Cay )

Cai’,;j ) = ZIITJij .

(For' the analytic continuation into the complex plane the
branch with Re(& m(z))ZO is choosen.) Since

1?2 +11 € [€+ 112 for all gecC, Re?; 0
we get

Iem(z) + 112 (?m(z)2 + 1\]-/2

This allows us to use step by step the method of the proof
of the theorem XIII,100 of ref, /10/., We get

K = F .

n-1
¢,E (xa" 'k-F ,

Ao
K
o 0B
lger]* 77

(.4
where F denotes the Fourier transform and Kd’ E is an operator
- ?
ectinz on 12(2n V) as

3 N
(€0,c@8), =(@0?-e) Pry v ) 0z,
TAF
It is simp,l\f to show that the eigenvalues e.(k,E) of the
opgrator K E(k) are nonconstant analytie functions
of k for ketO,2‘ﬁ':ln'l . At the same time are ej(k,E)
decreasing functions of E for k fixed.
Decomposing the operator Hp we get

+,
I} j ~ n-l, ,
= F H o,(k) "'k F

. [ o
where Ho,Ck) is an operator ac.ing on 12(2 ) @L(R+)

Hoe

H () s o yx)—> -@i)? £'(x) , mez®
o () ¢ A XI—> A
and defined by boundary coniiti:ms
\ o -
2,00 = 37 0¥, (D
jez™
Using the arguments of the proposition 1 we get

-

2() € 0, l))nCoo0) & v€ ¢’ ).

e omay Herant

- o e

o
Hence the eigenvalues E(k) of HO' (k) are nonconstant
functions of k and theorem XIII,86 of ref. /10/ implies
the absolute continuity of €~ (HO‘ )

Let us now investigate what happens when

¢~ 1is not K, o bounded.
?

4, Ap example:
We show that for @“ singular enough a collapse
at the boundary occurs.
We start with n = 2 , In order to make the life easy we
choose
exyy = (X)) = c/ixyl

The function o\-c i1s singular at 0 and it is not Ko 0

bounded. In order to define the operator Ho  we remove
(4

the singularity by introducing an operator

(o)
H = H_.}MD
% % o

D, = {£eD(H,), £ = 0 in some neighbourhood of 0}
Z

The operator Héf’) is symmetric but it is not self adjoint.
The original Hamiltonian HW represents one of its self -

(3
adjoint extensions. We show that all the self-adjoint exten =~

sions of Hﬁ‘” are not bellow bounded for c < 0 .
c T

Introducing polar coordinates
x; =rsin?®
x, =T cos¢ ; TR, , Ps [0,7]

we get
I*(r x R,) = 12(R, ran) @ 1°(0, M) (9)
The operator H;?) decomposés with respect to (9) as
<
2
© . _d5 o 14 /L),
H&: - a? T dr +<r2) B
where B denotes the modified "angular momentum" operator
’ 2
d
B = ~=352
a¥
which-is defined on L°(0,%) by boundary conditions
£0,) = - £(0,)
ey = e £ch) .

9



Let now ¢  and Zn dencte the eigenvalues and eigenvectors

of B
B, = s X, BT 1,2,

e 12
Because {Eth n=1 form an orthogonal basis in L (O,ﬁ')

we get from 9

Sa
L°(R x R,) =,,,.C,+) L2(R+3rdr)®{zm} (10)
=4
R o
Using the decomposition (10) we get finally for H%)
[~ a]
©) = © @1 (1)
H@ 24 h' ®
where lxi? are operators ascting on L2CR+;rdr)
2
o) - .4 - L % (12)
Ilgx = - ar? rar °

p(n (o)) = { £ €12 (R,;rar); £ fsAc(R+),f = 0 in some neighbour-

hood of 0 andh°’f € L°(®, , rdr)
Estimating the eigenvalues of B we get for ¢ >0
(-1)2 & 2_&n° , n=1.2,..
But for ¢ < 0 there are also negulive eigenvelues of B and
F¢ -
a'n; 0 g n=2,3,.. for -2/tj<c<o

we have

‘resp.

® L -c?

- r ﬁ% £ 0
*€ > 0 §n-=34... for c & =2/
Inserting these values into (12) we find (ref. /1/, appendix
to X.1 ) that for ¢ » 0 eare the operators ) positive
and essentially self adjoint for 8ll n >t . Moreover
h(o) has deficiency indices 0 1) and all its self-adjoint
exten51ons are semibounded. Consequently HE is an
operator with deficiency indices @G, 1) and all its self -
adjoint extensions are bounded from bellow.
For ¢ < 0 the situation changes. We have

now %, < 0 end this implies that the operator h‘°) is

10

T ———

————— . —

[N

not semihounded. Using the-formula (11) we find that H(O)
is not semibounded. Since 58) is an operator with (

finite deficiency indices we get finally that all its selr -
adjoint extensions are not bellow bounded.

This mathematical fact has & simple physical
interpretation., It means that for c ( 0 8 collepse of the
system on the boundary occurs T6/.

The proposition 1 cannot be applied in this
case, since ¢(x) is not KO o Pounded. But nevertheless
the corresponding Klein—Gordon operator de ,E is also
not bellow bounded for ¢ £ 0 (cf. ref. /177, theorems 2.1
and 2.5),
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Suravm X., lHpegep M., leGa I E5-86-524
Ceo6onmpit oneparop Jlannaca
C MPUTATHB ADMHMH T'PAHHUYHEMHE YCIIOBHAMH

OfcyxpaeTcst SBHKAEHHe CBOGOHHON KBAHTOBOH YacTHUM HA IO-
YyNnpoCcTPAaHCTRE R L R,. HaywaeTCs 3aBHCHMOCTH HOBEPXHOCTHRIX
JCOCTORHMHA OT TPAHHYHBIX YCNOBHH W NOJYYEHHuE pesynbTaTel CPaBHU~
BAawTCs © pesyIbTaraMu, KOTOpHE NOIy4YawTCA MPH HONOoIb30BaHHH
oneparopa llipeguHrepa ¢ NPUTATHBAKNHM NOTEHIHMAIOM KOPOTKOIO
peiicrsuna, [lokaszaHo Takxke, 4To B Cjay4yae HAOCTATOYHO NPHUTAIWBaAK~—
mel TIpaHulB NOABIAETCA NajeHHeé CHCTeMbh HAa I'paHdny.

PaGoTa sepmonHeHa B [laGopaTopHM TeopeTHYeCkol dusuxum OHAH,

Coobimenne OObeuHeHHOro MHCTHTYTa ANepHMIX MccnenopaHuir. llyGua 1986

Englisch H., Schréder M., Seba P. E5-86-524
The Free Laplacian ]
with Attractive Boundary Conditions

We consider the motion of a free quantum particle on the
half space R™ !x R,. The dependence of surface states on the
boundary conditions is investigated and the results are compa-
red with those obtained by a Schroedinger operator with attrac
tive short-range potential in the neighbourhood of the bounda-
ry. It is also shown that for a sufficiently attractive boun-
dary a colapse of the system occurs.

The investigation has been performed at the Laboratory
»>f Theoretical Physics, JINR.
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