

nicturyta maphlix ие еляднаии aybia

E5-86-524

H.Englisch* M.Schröder* ${ }^{*}$ P.Šeba

THE FREE LAPLACIAN

WITH ATTRACTIVE BOUNDARY CONDITIONS

[^0]
1. Introduction

It is well known $/ 1 /$ that the motion of a free,
Schrodinger particle on a half line $R_{+}=[0, \infty)$ is described by an one-parameter family of Hamiltonian $H_{o f}$

$$
H_{\sigma}=-\frac{d^{2}}{d x} 2
$$

$D\left(H_{\sigma}\right)=\left\{f \in L^{2}\left(R_{+}\right) ; f, f^{\prime} \in A C\left(R_{+}\right), f^{\prime \prime} \in L^{2}\left(R_{+}\right), f^{\prime}\left(0_{+}\right)=\sigma f\left(0_{+}\right)\right\} \quad$. (The family $H_{\sigma}, \sigma_{\sigma} \mathbb{R} \cup\{\infty\}$ represents all possible self adjoint extensions' of a. half line "Hamiltonian" H_{0} with the boundary point 0 removed

$$
H_{0}=-\frac{d^{2}}{d x^{2}} \int c_{0}^{\infty}\left(R_{+}\right)
$$

The interaction of the particle with the point 0 is modelled by the boundary condition /bic./

$$
\begin{equation*}
f^{\prime}\left(0_{+}\right)=\sigma \quad f\left(0_{+}\right) \tag{1}
\end{equation*}
$$

Since H_{σ} is the norm-resolvent limit of Schrodinger operators with local short-range potentials $/ 2,3 /$

$$
H_{\sigma}=\underset{\varepsilon \rightarrow 0}{\mathrm{~N} . \text { R. } \lim H_{\sigma}=0}+(1 / \varepsilon) v(x / \varepsilon)
$$

with $\sigma=\int_{0}^{\infty} V(y) d y, V \in L\left(R_{+}\right)$, describes (1) with $\checkmark<0$ an attractive interaction with the boundary. Analogously (1) with $\sigma>0$ describes a repulsive interreaction while the free endpoint is modelled by $\sigma=0$ (Newman bic.) .

In the multidimensional case the situation becomes more complicated. Considering the motion of a free quantum particle on a half space $R^{n-1} x$. R_{+}we have to construct all possible self-adjoint extensions of the half space Laplacian H_{0} with the boundary removed

$$
\mathrm{H}_{0}=-\Delta \Gamma \mathrm{C}_{0}^{\infty}\left(\mathrm{R}^{\mathrm{n}-1} \times \mathrm{R}_{+}\right) .
$$

(These extensions represert the admissible quantum Hamilto nians of the system.)
The deficiency indices of H_{o} are not finite for $n>1$ and this makes the situation very complicated.

The aim of our paper is to study Hamiltonians of a free particle on half space $\mathbb{R}^{n-1} \times R_{+}$which are defined by iccal b.c.

$$
\left.\frac{\partial}{\partial x_{m}} f\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{n}=0}=\sigma\left(x_{1}, \ldots, x_{n-1}\right) \cdot f\left(x_{1}, \ldots, x_{n-1}, 0\right)
$$

(ine corcesponding operator is denoted as H_{σ}.)
In the contrary to the one-dimensional case the local b.c. do not represent all possible ones. There are also nonlocal b.c., cf. ref./4/.

The homogeneous b.c. with $\sigma=$ const. were already considered in connection with the Bose condensation (ref./5/ -/7/). It was remarked in $/ 3 /$ that it is possible to describe such an operator as a norm-resolvent limit of

$$
H_{\sigma=0}+(1 / \varepsilon) V\left(x_{n} / \varepsilon\right) \quad, V \in L\left(R_{+}\right)
$$

The constant σ is then determined by

$$
\sigma=\int_{0}^{\infty} V(y) d y
$$

Therefore one should expect that also for the more general case (2) holds

$$
\begin{equation*}
H_{\sigma}=\lim _{\varepsilon \rightarrow 0} H_{\sigma=0}+(1 / \varepsilon) v\left(x_{1}, \ldots, x_{n-1}, x_{n} / \varepsilon\right) \tag{3}
\end{equation*}
$$

where

$$
\sigma\left(x_{1}, \ldots, x_{n-1}\right)=\int_{0}^{\infty} v\left(x_{1}, \ldots, x_{n-1}, y\right) d y
$$

But up to now we do not know any proof of (3) in the general case. Nevertheless a comparison of properties of H_{σ} with those of $H_{\sigma}=0^{+}(1 / \varepsilon) V\left(x_{1}, \ldots, x_{n-1}, x_{n} / \varepsilon\right)$ shows many
similarities. Thus it seems that the influence of the boundary can be modelled by the appropriate boundary conditions of the type (2) as well as by an additive short-range potential.

In the next section we study the spectral properties of H_{g} by an ansatz leading to a Klein - Gordon pseudodifferential operator. In the section $3 \boldsymbol{\sigma}$ is taken to be a L^{p} function or a periodic function respectively. In the first case we find that at most a finite number of negative eigenvalues of $\mathrm{H} \sigma$ appear. For σ periodic the spectrum of $\mathrm{H} \sigma$ is absolutely continuous only. In section 4 we discuss the properties of $\mathrm{H} \sigma$ with σ singular. We show that for σ negative and singular enough a collapse at the boundary occurs. In a forthcoming paper ${ }^{/ 8 /}$ random b.c. are considered.

2. Transforpation to a Klein-Gordon Hamiltonian

The interval $[0, \infty$) belongs to the spectrum of H_{σ} for any σ, since one can for any $\varepsilon>0$ and $E \geqslant 0$ construct a function $\psi \in c_{0}^{\infty}\left(R^{n-1} \times R_{+}\right)$such that

$\|-\Delta \psi-E \psi\|<\varepsilon\|\psi\|$

This is why we are interested only in the negative part of $\sigma\left(\mathrm{H}_{0}\right)$. Introducing for $\mathrm{E}<0$ an operator.

$$
K_{\sigma, E}=\sqrt{-\Delta-E}+\sigma(x)
$$

defined on the Hilbert space $L^{2}\left(R^{n-1}\right)$, we get the following proposition $/ 9 /$:

Proposition 1: Let σ is $K_{0,0} \cdots$ bounded with a relative bound less ther 1 , Then for $E<0$ holds:

$$
\begin{aligned}
& a / E \in \sigma\left(H_{\sigma}\right) \text { if and only if } 0 G \sigma\left(K_{\sigma, E}\right) \\
& b / E \in \sigma_{\text {disc }}\left(H_{\sigma}\right) \text { if and only if } 0 \in \sigma_{\text {disc }}\left(K_{\sigma, E}\right) \\
& c / E \in \sigma_{\text {ess }}\left(H_{\sigma}\right) \text { if and only if } 0 \in \sigma_{\text {ess }}\left(K_{\sigma, E}\right) .
\end{aligned}
$$

Thus using the Klein-Gordon Hamiltonian with the rest mass equal to the binding energy $-E$ we can simply investigate the negative part of $\sigma\left(\mathrm{H}_{\sigma}\right)$.

The min-max-principle (ref. $110\langle § X I I I, 1$) yields that the m-th eigenvalue of $\mathrm{H}_{\sigma}=0+\mathrm{V}_{1}$ is less then the m-th eigenvalue of $H_{\sigma=0}+V_{2}$ if $V_{1}(x)<V_{2}(x)$ for any x. The approximation argument (3) let us expect the same also for ${ }^{H} \sigma$

Proposition 2: If $\sigma_{1}(x) \leqslant \sigma_{2}(x)$ for all $x \in R^{n-1}$ then

$$
E_{m}\left(H_{\sigma_{1}}\right) \leqslant E_{m}\left(H_{\sigma_{2}}\right)
$$

where $E_{m}\left(H_{\sigma}\right)$ denotes the $m-t h$ eigenvalue of H_{σ}.
Conclusion: For the ground state of H_{σ} holds

$$
E_{1}\left(H_{\sigma}\right) \geqslant-(\min \{0, \inf \sigma(x)\})^{2}
$$

Remark: If $H \sigma$ has only $l<m$ eigenvalues bellow its essential spectrum $E_{m}\left(H_{\sigma}\right)$ denotes inf $\sigma_{\text {ess }}\left(H_{\sigma}\right)$ for all m > 1 。

Proof of the conclusion: Take $\sigma_{1}(x)=\min \{0, \inf \sigma(x)\}$. Then $\sigma_{1}(x) \leqslant \sigma(x)$ and

$$
E_{1}\left(H_{\sigma}\right) \geqslant E_{1}\left(H_{\sigma_{1}}\right)=\inf \sigma_{\text {ess }}\left(H_{\sigma_{1}}\right)=-\sigma_{1}^{2}
$$

Proof of the proposition 2 : The min-max-principle yields that $E_{m}\left(K_{\sigma_{, ~}}\right)$ is increasing in σ and decreasing in E. Thus the solution $E=E(\sigma)$ of

$$
E_{m}\left(K_{\sigma, E}\right)=0
$$

is decreasing in σ°.

$$
\text { For }{ }_{\lambda} \sigma^{-i} \lambda \rightarrow \infty \text { the estimate (4) becomes }
$$

exact in the sense that

$$
\lim _{\lambda \rightarrow \infty} E_{1}\left(H_{\lambda \alpha}\right) / \lambda^{2}=-(\min \{0, \inf \sigma(x)\})^{2}
$$

(For the proof take trial functions for $K_{\sigma, E}$ as in ref. $/ 11 \%$) Conversiy for bounded V holds

$$
\lim _{\lambda \rightarrow \infty} E_{1}\left(H_{\sigma=0}+\lambda V\right) / \lambda \quad=\inf V
$$

i.e. the asjmptotical behaviour of $\mathrm{E}_{1}\left(\mathrm{H}_{\sigma}=0+\lambda \mathrm{V}\right)$ is only linear. This difference bëtween $\mathrm{H}_{\sigma \cdot \lambda}$ and $\mathrm{H}_{\sigma=0}+\lambda \mathrm{V}$ is observable already in the exilicitely solvable one-
dimensional case. But it is not surprizing, since if we approximate the operator $H_{\sigma \cdot \lambda}$ by $H_{\sigma=0}+(\lambda / \varepsilon) V\left(x_{1}, \ldots, x_{n-1}, x_{n} / \varepsilon\right)$ then

$$
\inf _{\varepsilon \rightarrow 0} \frac{\lambda}{\varepsilon} v\left(x_{1}, \ldots, x_{n-1}, x_{n} / \varepsilon\right)=-\infty
$$

3. Short and long range boundary conditions

Let us first investigate the spectrum of $H^{H} \sigma$

 when σ is a short-range function. Since $H \sigma=0+V$ has only discrete spectrum bellow 0 for short-range potentials V one would expect the same also for $H \sigma$ with σ short range. Proposition 1 of the present paper and theorem 4.2 of ref. /12/ imply immediatelyProposition 3: Let $\sigma_{E} L^{p}\left(R^{n-1}\right)+L_{1}^{\infty}\left(R^{n-1}\right)$ with $2 \leqslant p<\infty$ and $p>n-1$. (i.e. for any $\varepsilon>0$ there is a decomposition $\sigma^{\alpha}=\sigma_{1, \varepsilon}+\sigma_{2, \varepsilon}$ with $\sigma_{1, \varepsilon} \in L^{p}\left(R^{n-1}\right)$ and $\left.\left\|\sigma_{2, \varepsilon}\right\|<\varepsilon\right)$ Then

$$
\sigma_{\text {ess }}\left(H_{\sigma}\right)=[0, \infty)
$$

and the negative part of $\boldsymbol{\sigma}\left(\mathrm{H}_{\boldsymbol{\sigma}}\right)$ consists of isolated eigenvalues of finite multiplicity.
Remarks: $1 /$ For $\sigma \in C_{0}^{\infty}\left(H^{n-1}\right)$ the proposition was already proved by Povzner and Krein /13,14/

2/ The proposition 3 is an analogue of the fact that

$$
\sigma_{\text {ess }}\left(\mathrm{H}_{\sigma=0}+\mathrm{V}\right)=[0, \infty)
$$

for V $6 L^{p}\left(R^{n-1} \times R_{+}\right)+L_{\varepsilon}^{\infty}\left(R^{n-1} \times R_{+}\right), 2 \leqslant p<\infty \quad, p>n / 2$ (cf. ref. $110 /, \S$ XIII.4)

In the case $n=2$ it is possible to get some more decailed information on the eigenvalues of H_{σ}
Proposition 4_: Let $\sigma_{-} \in L^{p}(R)$ and $\sigma_{+} \in I^{p}(R)$, where $1<p \leqslant 2$ and $p^{\prime}>1$. Then for the $m-t h^{+}$eigenvalue of $: \sigma$ holde

$$
E_{m}\left(H_{\sigma}\right) \geqslant-\left((1 / \tau)\left\|_{0}\right\|_{g}\left\|\sigma_{-}\right\|_{p}\right)^{\bar{c} g} m^{-E}
$$

whe $e \mathrm{e} \quad 1 / \mathrm{p}+1 / \mathrm{g}=1$ and K_{0} denotes the modified :arikel runction of order zero.
($\boldsymbol{\sigma}_{\mathbf{\prime}} ; \boldsymbol{\sigma}_{+}$are the negative and positive parts of $\boldsymbol{\sigma}$ respectively.)

Proof: Let $N_{0}\left(K_{\sigma_{, ~}}\right)$ denotes the number of nonpositive eigenvalues of $K_{\sigma, E}$. Using the Birman-Schwinger argument (ref. $110 /$, theorem XIII.10) and replacing the Green's function of $-\triangle$ by the Green's function of $K_{0, E}$ we get

$$
\begin{equation*}
N_{0}\left(K_{\sigma, E}\right) \leqslant\left(1 / \pi^{2}\right) \int_{R \times R} K_{0}^{2}(\sqrt{-E}|x-y|) \sigma_{-}(x) \sigma_{-}(y) d x d y \tag{6}
\end{equation*}
$$

The fact that $K_{0} \in L^{p}(R)$ for any $p \geqslant 1 / 15 /$ and the Young inequality imply (5) .

Remarks: $1 /$ In the case of higher dimensions this technique is not applicable since the kernel of $K_{O, E^{-1}}$ becomes too singular. Consequently the integrals corresponding to (6) are divergent.

$$
\text { 2/ The condition } \sigma \in L^{p}(R), p>1 \text { implies }
$$

that σ is infinitely small with respect to $K_{0,0} / 9 /$ whet enables us apply the proposition 1 .

> It is rather difficult to investigate the spectrum of K, E in the general case. This difficulty is connected with the nonlocality of this operator. It is therefore imposible to use standard arguments based on differential equations. Nevertheless one can prove that the spectrum of K, E is absolutely continuous for σ periodic (and hence for H_{γ}) using the technique based on the direct integral decomposition of $L^{2}\left(R^{n-1}\right)$ outlined in ref. $/ 10 /$, § XIII. 10 .

$$
\begin{aligned}
& \text { Let }\left(a_{1}, \ldots, a_{n-1}\right) \text { be a besis in } R^{n-1} \text {. We denote } \\
& Q=\left\{\sum_{i=1}^{m-1} t_{1} a_{i}, t_{i} \in[0,1], i=1,2, \ldots, n-1\right\}
\end{aligned}
$$

Moreover we define for $x \in R^{n-1}$ and $1 N$

$$
x^{21}:=|x|^{21} ; x^{21+1}:=x|x|^{21}
$$

Now we can state
Proposition 5: Let σ be a periodic function

$$
\cdots\left(x+\sum_{j=1}^{m-1} m_{j}{ }^{a} j\right)=\sigma(x), m \in z^{n-1}
$$

Suppose that σ is l times differentiable with
$1 \geqslant \frac{(n-1)(n-3)}{2(n-2)}$ for $n>2$ or $1 \geqslant 1$ for $n=2$ respectively and that
for

$$
\begin{equation*}
\left|\nabla^{1} \sigma\right| \in L^{P}(Q) \tag{7}
\end{equation*}
$$

$2 \geqslant p>\frac{2(n-1)(n-2)}{21(n-2)+n-1}$ for $n>2$ resp. $2 \geqslant p \geqslant 1$
for $n=2$. Then the spectrum of $H \sigma$ is absolutely continuous.

Proof: We note at the beginning that under these assumptions is σ infinitely small with respect to $K_{0,0}$. Thus the proposition 1 is applicable./9/

$$
\begin{aligned}
& \text { Let us now introduce } \\
& g=\left|\nabla^{1} \sigma\right|
\end{aligned}
$$

Since $g \in L^{P}(Q)$ the Hausdorff-Young inequality yields

$$
\tilde{\mathbf{g}} \in 1_{\mathrm{p} /(\mathrm{p}-1)}\left(\mathrm{z}^{\mathrm{n}-1}\right)
$$

where $\tilde{\boldsymbol{g}}_{\mathrm{m}} ; m \in \mathrm{Z}^{\mathrm{n}-1}$ are the Fourler coefficients of g.
Let us now define

$$
\mathfrak{f}_{\mathrm{m}}= \begin{cases}1 /|m|^{1} & m \neq 0 \\ 1 & m=0\end{cases}
$$

and

$$
h_{\text {m }}=\left\{\begin{array}{cl}
\left|\hat{\underline{B}}_{\mathrm{m}}\right| & m \neq 0 \\
0 & m=0
\end{array}\right.
$$

($\tilde{\sigma}_{\text {m }}$ denotes the Fourier coefficients of σ.)
Since $\left|\tilde{\sigma}_{\text {m }}\right|=h_{m} f_{m}$ and $f \in l_{r}\left(z^{n-1}\right)$ for all $r>(n-1) / 1$ the Hölder inequality yields

$$
\begin{equation*}
\widetilde{\sigma} \in 1_{8}\left(2^{n-1}\right) \text { for } s>\frac{n-1}{(1-1 / p)(n-1)+1} \tag{8}
\end{equation*}
$$

The assumption (7) implies that right hand side of (8) is less then $(2 n-4) /(2 n-5)$. Thus we can choose

$$
\mathbf{s}<(2 n-4) /(2 n-5)
$$

Analogously we get $\tilde{\sigma} \epsilon l_{s}(z)$ with $s \leqslant 2$ for $n=2$.

Now we will follow the standard direct integral decomposition teohnique /10/. We denote

$$
\varepsilon_{m}(z)=\left[\left((a+z b)+\sum_{i=1}^{m-1} m_{i} \tilde{a}_{i}\right)^{2}-E\right]^{1 / 2}
$$

where $a, b \in R^{n-1}$ and (\tilde{a}_{i}) derotes the basis reciprocal to (a_{i})

$$
\left(a_{i}, \tilde{a}_{j}\right)=2 \pi \delta_{i j}
$$

(For the analytic continuation into the complex plane the branch with $\operatorname{Re}\left(\varepsilon_{m}(z)\right) \geqslant 0$ is choosen.) Since
we get

$$
\begin{aligned}
& \left|\xi^{2}+1\right| \leqslant|\xi+1|^{2} \text { for all } \xi \in C, \operatorname{Re} \xi \geqslant 0 \\
& \left|\varepsilon_{m}(z)+1\right| \geqslant\left|\varepsilon_{m}(z)^{2}+1\right|^{1 / 2}
\end{aligned}
$$

This allows us to use step by step the method of the proof of the theorem XIII. 100 of ref. $/ 10 /$. We get

$$
K_{\sigma, E}=F^{-1} \cdot \int_{[Q, 2 \pi]^{n-1}}^{\oplus} \widetilde{K}_{\sigma, E}(k) d^{n-1} k \cdot F
$$

where F denotes the Fourier transform and $\widetilde{K}_{\sigma}, E$ is an operator acting on $l_{2}\left(2^{n-1}\right)$ as

It is simple to show that the eigenvalues $e_{j}(k, E)$ of the opprator $\widetilde{K}_{\sigma_{2} E}(k)$ are nonconstant analytic functions of k for $k \in[0,2 \pi]^{n-1}$. At the same time are $e_{j}(k, E)$ decreasing functions of E for k fixed.

$$
\text { Decomposing the operator } \mathrm{H}_{\sim} \text { we get }
$$

$$
H_{\sigma}=F^{-1} \cdot \int_{[0,2 \pi]^{m-1}}^{\oplus} \tilde{H}_{\sigma}(k) d^{n-1} k \cdot F
$$

where $\tilde{H}_{\sigma}(k)$ is an operator aciing on $l_{2}\left(z^{n-1}\right) \otimes L^{2}\left(R_{+}\right)$

$$
\tilde{H}_{\sigma}(\dot{a}): i_{\text {III }}(x) \rightarrow-(m+k)^{2} f^{\prime \prime}(x) ; m \in Z^{n-1}
$$

and defined by boundary conditions

$$
f_{m}^{\prime}(0)=\sum_{j \in \mathbb{Z}^{n-1}} \tilde{\sigma}_{j} i_{m-j}(0)
$$

Using the arguments of the proposition 1 we get

$$
E(k) \in \sigma\left(\tilde{H}_{\sigma}(k)\right) \cap(-\infty, 0) \Leftrightarrow 0 \in \sigma\left(\tilde{K}_{\sigma, E}(k)\right) .
$$

Hence the eigenvalues $E(k)$ of $\tilde{H}_{\sigma}(k)$ are nonconstant functions of k and theorem XIII. 86 of ref. /1.0/ implies the absolute continuity of $\sigma\left(\mathrm{H}_{\sigma}\right)$

Let us now investigate what happens when
σ is not $K_{0,0}$ bounded.

4. An example:

We show that for σ singular enough a collapse
at the boundary occurs.
We start with $n=2$. In ordar to make the life easy we choose

$$
\sigma\left(x_{1}\right)=\sigma_{c}\left(x_{1}\right)=c /\left|x_{1}\right|
$$

The function σ_{c} is singular at 0 and it is not $K_{0,0}$ bounded. In order to define the operator H_{c} we remove the singularity by introducing an operator

$$
\begin{aligned}
& H_{\sigma_{c}}^{(0)}=H_{\sigma_{c}} \uparrow D_{0} \\
& D_{0}=\left\{f \in D\left(H_{\sigma_{c}}\right), f=0 \text { in some neighbourhood of } 0\right\}
\end{aligned}
$$

The operator $\mathrm{H}_{\mathrm{O}}^{(0)}$ is symmetric but it is not self adjoint.
The original Hamiltonian H_{c} represents one of its self adjoint extensions. We show that all the self-adjoint exten sions of $\mathrm{H}_{\underset{c}{\mathrm{H}}}^{(0)}$ are not bellow bounded for $\mathrm{c}<0$.

Introducing polar coordinates

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{r} \sin \varphi \\
& \mathbf{x}_{2}=\mathbf{r} \cos \varphi \quad ; r \in R_{+}, \varphi \in[0, \pi]
\end{aligned}
$$

we get

$$
\begin{equation*}
L^{2}\left(R \times R_{+}\right)=L^{2}\left(R_{+} r d r\right)(x) L^{2}(0, \pi) \tag{9}
\end{equation*}
$$

The operator $H_{\sigma_{6}}^{(0)}$ decomposes with respect to (9) as

$$
H_{\tilde{\sigma}_{c}}^{(0)}=-\frac{d^{2}}{d r} 2-\frac{1}{r} \frac{d}{d r}+\left(\frac{1}{r^{2}}\right) \cdot B
$$

where B denotes the modified "angular momentum" operator

$$
B=-\frac{d^{2}}{d \varphi} 2
$$

which'is defined on $L^{2}(0, \pi)$ by boundary conditions
$f^{\prime}\left(0_{+}\right)=-c f\left(0_{+}\right)$

$$
f^{\prime}\left(\pi_{-}\right)=c f\left(\pi_{-}\right)
$$

Let now x_{n} and χ_{n} denote the eigenvalues and eigenvectors of B

$$
B \cdot x_{n}=x_{n} \cdot x_{n} \quad, \quad n=1,2, \ldots
$$

Because $\left\{x_{n}\right\}_{n=1}^{\infty}$ form an orthogonal basis in $L^{2}(0, \pi)$
we get from 9

$$
\begin{equation*}
L^{2}\left(R \times R_{+}\right)=\biguplus_{m=1}^{\infty} L^{2}\left(R_{+} ; \text {rdr }\right) \propto\left\{\chi_{m}\right\} \tag{10}
\end{equation*}
$$

Using the decomposition (10) we get finally for $H_{c}^{(0)}$

$$
\begin{equation*}
H_{\sigma_{c}}^{(0)}=\bigoplus_{m=1}^{\infty} h_{n}^{(0)} \otimes I \tag{11}
\end{equation*}
$$

where $h_{n}^{(0)}$ are operators acting on $L^{2}\left(R_{+} ; r d r\right)$

$$
\begin{equation*}
h \stackrel{(0)}{n}=-\frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}+\frac{x_{p x}}{x^{2}} \tag{12}
\end{equation*}
$$

$\left.\begin{array}{rl}D(h(0) \\ n\end{array}\right)=\left\{\begin{array}{l}f \in L^{2}\left(R_{+} ; r d r\right) ; f_{p}^{\prime} \in A C\left(R_{+} \lambda_{i} f=0 \text { in some neighbour- }\right. \\ \left.\text { hood of } 0 \text { and } h_{n}^{(0)} f \in L^{2}\left(R_{+}, \text {rdr }\right)\right\}\end{array}\right.$
Estimating the eigenvalues of B we get for $c>0$

$$
(n-1)^{2} \leqslant x_{n} \leqslant n^{2}, \quad n=1,2, \ldots
$$

But for $c<0$ there are also negative eigenvalues of B and we have

$$
\begin{aligned}
& x_{n} \leqslant-c^{2} \\
& x_{n} \geqslant 0 ; n=2,3, \ldots \quad \text { for }-2 / T<c<0
\end{aligned}
$$

*resp.

$$
\begin{aligned}
& a_{1} \leqslant-c^{2} \\
& -c^{2} \leqslant x_{2} \leqslant 0 \\
& x_{n}>0 ; n=3,4, \ldots \text { for } c<-2 / \pi
\end{aligned}
$$

Inserting these values into (12) we find (ref./1/, appendix Inserting these values into (12) we find (X) that for $c>0$ are the operators $\mathrm{h}_{\mathrm{n}}(0)$ positive and essentially self adjoint for all $n>1$. Moreover $h(0)$ has deficiency indices $(1,1)$ and all its self-adjoint extensions are semibounded. Consequently $H \%_{0}^{\circ}$ is an operator with deficiency indices (1,1) and all its self adjoint extensions are bounded from bellow.

For $c<0$ the situation changes. We have , now $x_{1}<0$ and this implies that the operator $h_{1}^{(0)}$ is
not semibounded. Using the formula (11) we find that $H(0)$
is not semibounded. Since $H(0)$ is an operator with is not semibounded. Since $H(O)$ is an operator with
finite deficiency indices we get finally that all its seli adjoint extensions are not bellow bounded.

This mathematical fact has a simple physical interpretation. It means that for $c<0$ a collapse of the system on the boundary occurs $/ 16 /$.

The proposition 1 cannot be applied in this case, since $\sigma_{c}(x)$ is not $K_{0,0}$ bounded. But nevertheless the corresponding Klein-Gordon operator K_{a}, E is also not bellow bounded for $c<0$ (cf. ref. 117 /, theorems 2.1 and 2.5).

References

1 Reed M., Simon B.: Methods of Modern Mathematical Physics II, Academic Press, New York-San Francisco London 1975
2 Seba P.: Lett. Math. Phys. 1985,v. 10, pp. 2.1-27
3 Englisch H., Šeba P.: Rep. Math. Phys. in print
4 Schröder M.: On the Laplace Operator With Nonlocal Boundary Conditions and the Bose Condensation, to appear Robinson D.W.: Comm. Math. Phys. $1976 . v .50$, p. 53
Landau L.J., Wilde I.F.: Comm.Math.Phys. 1979 v. 70, p. 43 van den Berg M.: J. Math. Phys. 1982 v.2.3, pp. 1159 - 1161 Englisch H. at al: Bose Condensation in Disordered systems II, in preparation
9 Schröder M.: On the Spectrum of Schroedinger Operators on the Half Space with a Certaon Class of Boundary Conditions, Preprint Karl-Marx-University Leipzig,to appaar
10 Reed M., Simon B.: Methods of Modern Mathematical Physics IV , Academic Press, New York-San FranciscoLondon 1978
11 Englisch H.: Z. Anal Anw. 1983 v. 2 ,pp. 411-426
12 Weder R.A.: J. Funct. Anal. 1975 v. 20, pp. 313-337
13 Povzner A.I.: Matem. Sbornik 1953 v. 32 , p. 109
14 Krein M.G.: DAN SSSR 1946 v. 52 ,pp. 657-660

Abramowitz M., Stegun I.A.: Mandbook of Mathemetical functions, Applied Mathematics Series, New York, 1964
16 Landau L.D., Lifisic E.M.: Kvantovaja mechanike, Nauke Moscow , 1974
17 Herbst 1.W.: Comm.Math. Phys. 1977, v. 53 , p. 285

Энглиш X., Шредер М., Шlеба П.

Свободный оператор Лапласа

с притигив аюцими граничными условиями

Обсуждается движение свободной квантовой частицы на полупространстве $R^{n-1} \boldsymbol{R}_{+}$. Изучается зависимость поверхностных состояний от граничных условий и полученные результаты сравниваются с результатами, которые получаются при использовании оператора Шредингера с притягивающнм потенциалом короткого действия. Показано также, что в случае достаточно притягивающей границы появляется падение системы на границу.

Работа выплнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объдиненного института ядерных мсследований. Дубна 1986

Englisch H., Schröder M., Šeba P.
The Free Laplacian
with Attractive Boundary Conditions
We consider the motion of a free quantum particle on the half space $R^{n-1} \times R_{+}$. The dependence of surface states on the boundary conditions is investigated and the results are compared with those obtained by a Schroedinger operator with attrac tive short-range potential in the neighbourhood of the boundary. It is also shown that for a sufficiently attractive boundary a colapse of the system occurs.

The investigation has been performed at the laboratory of Theoretical Physics, JINR.

[^0]: * Section Mathematik, Karl-Marx-University, Leipzig, GDR

