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1. INTRODUCTION

In connection with the study of some properties of counters
with prolonging dead time there has appeared a class of
events’/ !, which has been named semirecurrent events. Semire-
current events have many possibilities of appllcat1on and their
main properties have been described in the })aper 2/ and some
limit properties have been investigated in

So, following’/? we suppose that during the k-th experi-
ment, k= 1,2,..., the condition A¥ either may be fulfilled
or not. The fulfillment of AK at the n-th trial, n = 1,2,...,
we denote by A% and its non—fulflllment by AX ,The events of
a probability space (¢}, G, P) ,{A n, k> 1}are said to be semi-
recurrent if, for any integers 13 with

1<y <i1<.“<in,nzl. (1.1)

we have

P(Ak Ak Ak p k+1ig k+ig 1.2
PRRRL | i) = (A“_10 e Ay ). (1.2)

k
Certainly we may put P(A,) =0, k> 1.

Denote by vy ,k>1 an 1nteger—va1ued random variable saying
that y =n if and only if the condition A¥ is fulfilled for the
first time in the k th experlment at the n-th trial, and put
PX. P(uy=n) = P(A1 .,,Ak | Ap ky Using (1.2) we may prove that

Pr=P@Y), PE- P(An)— z P(A Pkl s 2 (1.3)

'

An 1mportant case arises if there is an integer m such
that P(AT) = P(AT*Y = ... for any n > 1.In this case we say that .
the sem1recurrent eventsg are m-semirecurrent., If m = 1, then
we obtain recurrent events in the sense of Feller’%/, and if
m= 2  then they are names recurrent events with delay/4/

A sequence of non-negative numbers §ul,(, n>0,k> 1}, is said
to be semirecurrent if, for any k > 1,

l.lk = 1, ' (1-4)

and if there is a sequence of non-negative numbers “::}nzl with
- Lk
5 rnS 1 - (1.5)
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such that

K .
up = f, +‘§1uj n—j » B 2L (1.6)

re/

From the results of the paper there follows that (1.6)
is equivalent to

n—-1 5
ut:fﬁ+_2 fjkugr;.k.n = 1. (1.7)
j=1
It is clear that if iAl,(,:k > 1,n > O}are semirecurrent events,
then [P(Ai): k >1,n > 0 } is a semirecurrent sequence. Indeed,
if we put f%: P(yg = n) then using (1.3) we have to obtain (1.6).
The sequence {ur‘§ tk'> 1,n > Olis far from being an arbitrary
sequence of numbers between O and 1. Its behaviour is restricted
by inequalities which are consequence of (1.2). The necessary
and sufficient condition is given in Theorem 2.4 from /%2,
Finally, we say that a semirecurrent sequence,{u% :n2>0k>=1}

is m-semirecurrent if there is an integer m such that uf=

=ul+l= | for any n > 1.

2. MARKOV CHAINS

Following K.L.Chung/5/ by a Markov chain in discrete time
we shall mean a sequence X = {X,},.oo0f random variables, ta-
king values in a countable state space S, and having the pro-
perty that, for any n and any j¢ S

P(Xn=jlXpseeey Xp=t) = P(Xp=j|Xpn-1). (2.1)

In the sequel we shall assume that the one-step transition
probability

Py (k) = P(X, = j|X, | =1) (2.2)

depends, in general, on k , k= 0,1,2,... . So that, we have
a Markov process, non-homogeneous, in general.

Under these conditions the joint distributions of the X,
are completely determined by the transition probabilities Py (k)
i,j€8S, k = 0,1,..., and the initial distribution

-

p, =PX, = i) ics, (2.3)

via

P(Xg=1ig s X =ipee, X = 1) = PygPig,(eeepy iy (-1), (2.4)

for ig,iyseeesipn€ 8, n 2 L ) ..
The numbers p; -and p j; (k) satisfy the conditions

€2.5)
0, = -1,
pi > . i spi

Py (k) > O, jgs Py (k) = 1, (2.6)
for any k > 1,and conversely, the Kolmogorov theorem’ef.Shov’vs
us that there is a stochastic process X = {an:‘fo satisfying
(2.1)-(2.4) whenever (2.5) and (2.6) are satisfied.

it is convenient to denote bykPj ,ic S, k =0,1,... , the
probability measure conditional on {Xy= il,so that

k k 2.7)
- P, ,
lé sPi T

where pi{ = P(Xy =1). . )

For our aim it is convenient to consider, for a given Mar-—
kov process A = {X,17.o. a whole class of Markov proc;asses
Yk- {xEys o, k x 1,where XX = Xgen—y- So that X = X From
(2.7) we obtain that
k k_ . k . ) 3 2.8

e B S N CORPS RN S B O (2.8)
k ' d not on the distribution
so that P; depends only on piJ(n), and no
of Xk. . . )
1f (2.8) is summed over all values of 1,,...,1, ., we obtain
the n -step transition probabilies

k k

piY (k) = P(Xf= j|Xg= 1) = "Py(X}= D). (2.9)
They are easily generated using the Chapman - Kolmogorov equa-
tion .

(n4+mypy () gypt™ -
PITTE) = 3 pir (0py (ke n) =

(2.10)

=3 pMwp P+ m), k21, 1je s,
res

where B} (®) = py (K. , g
In the sequel we show that any Markov chain generates a semi
recurrent sequence. For that, for any k > 1,COn§1der the return
of the sequence X, to a fixed stkate ag§, that is, we 9b§erve
the set of integers for which Xj = a There may be a finite or

3



infinite number of them and they may be written in ascending
order as 0 = pk < '71 <...1?Kk,where w <o is the total number of
returns of the process to its initial state a. For n> 1.

k K .
Paley 2 Limy = n) = *P (X0, X% (48, x5 = a) -

= 3

i K)p; 5, R+ 1)...p,
[N apall()plllz( +b Pin-

la(k+n~1) = f

' K
say. Clearly , 2 1In= P(Kk 2 1) < 1.For convenience we define r]};=
if x= 0, so that '

k ok

fno:l—nélfn. ‘ (2.11)
If now we define

k

up = PXY = axk - a, (2.12)

with the convention uﬁ = 1, then, for n > 1,

k _ k k
ur = Pak(X_n= a) =

k K
Slnce the event {711 il depends only on X,,..., Xy and implies

§X = a}(2.1) glves

k+j

"Ry (&L= alnhe ) - w it

P(Xy = a|x5 - a) -
From (1.7) we have that uz defined by (2.12) forms a semire-
current sequence.

An important result of K.L. Chung'(recorded by Feller
says that any l-semirecurrent sequence arises from a homoge-—
neous Markov chain via (2.12). The following result shows that
this result is true for semirecurrent sequence, too, and this
gives an answer to the question posed in /% concerning the
characterization of semirecurrent sequences.

/4/ )

Theorem 2.1. If iut :k 2 1,n > 0} is any semirecurrent se-
quence, then there exists a Markov chain X taking values in
a countable state space S8 and a state a & 8 such that, for all
n, (2.12) holds. Moreover there exists a sequence of semi-
recurrent events, lA 'k 2 1,n > 0} such that li}§l= P(AK),

4

St

-

n
‘E f] For any k > 1,
X

Proof. Put 8 ={0,1,2,...} and g‘;=1_1
1x, P(k) = {py; (k): i,j € S},

we define the transition probability matr
as follows.

Ak) 0,
P = s
k) (ow e )
where A(k)(Ox)is a square (zero) matrix with k rows, and Oe(les)

is the infinite square zero (identical) matrix, the matrix A(k)
has the following form

(2.13)

’fll(/gg g:{/gl({) 0 0 ’
5 trgh! 0 g el L. 0

A(k) = (2.14)
Lfkl/g;_,.l o g}{/gtﬂj

here we define 0/0 as 1/2, We note the elements of A(k) in
(2.14) are well defined., Then, for & = 0, we have

k k k k. k k k k
PoXqseeen Xy # 0, X2 0) = "By (Xy=1,Xp=2,...,X,_=

K .
=n-1,X,=0)= p01(k)p12(k+ 1)---pn—2,n—1(k+n" 2)Dn_1,0(k+n-—1)__—.-

kK _k k k
_ B By En-1 I ck
—_k‘ —k coe k k == n?
& 8 En-e En-1

so that, pm k) = un .

For the second part of the assertion, define, for any k>1
and 1 _<. i1 < 32...<Jn, n>1, functlons ‘Dk(n,....jn) = P(Xj £ a,
...,Xj #a, X0 = a) where J = [X } 1s a Markov cha1n from

the first part of the Theorem. The funct1ons @, fulfill the
condltlons of Theorem 2.4 of/z/hence there exist semirecurrent
events,(AX:k > 1, n > 0}, say, with u = P(Ak). 0.E.D,

Theorem 2.2. If {u k> 1,n > 0land {vE: k > 1,n > Olare two
semirecurrent sequences, then{wl‘ k> 1,0 » Ojwhere wk=y nvlfl

k>1,n >0, is a semirecurrent sequence, too.

Proof. According to Theorem 2.1, there exists a Markov cham
on a state space 8, and a state a¢ 8 such that u =P, (X _a.)
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Analogously, there also exists a Markov chain Y, on a state

space S’ and independent of X, and a state b ¢ S’ such that
Vk kpb(Y = b), Then kZ = (Xn, Y,) defines a Markov chain on
SxS’ for which P, oXpn=a, Y = b) = ugvﬁ . Q.E.D,

Note. In the paper /% there is shown that for any 2-semi-

recurrent sequence {up:k > 1,n > 0} there exists a homogeneous
Markov - process A = {Xp =0 w1th a countable state space S such
that

1

= P(Xp- a|Xo=b), uk= P(X,= a|Xq = a),
for alln > 1, k > 2,and some pair a £b of states from S. Theo-
rem 2.1 shows us that these uﬁ may be also determined as dia-.
gonal elements of appropriate transition matrices of a non-
homogeneous Markov chain.

3. SEMIRECURRENT EVENTS WITH CONTINUOUS TIME PARAMETER

In this section we shall deal with a generalization of
a semirecurrent events to a continuous time parameter. A system
of events {Af:s, t > 0} en the probability space (Q; G, P) is
said to be semlrecurrent (with a continuous time parameter t )
if, for any s > 0 and

0 < thg< ty<.o.< t,, n 1, (3.1)
we have

s s s s+ to S+t0
P(Atl...AtnlAto) = P(Atl_to...Atn_ 1) (3.2)

It is evident, that, if {A 18, t > 0} is a system of semirecur-
rent events w1th a contlnuous time parameter, then,

k kh

Byt = ALtk 2 1,0 > of, (3.3)

is a sequence of semirecurrent events.
Define a class of functions ips(t): s > Olof a real t > Ovia

p () = P(A}). (3.4)

Lerma 3.1. Let {A;:s,t > Olbe a gystem of sem1recurrent events
and let s; > 0 be given. Then lB :s,t >Olwhere B{= AS* 0
a system of semirecurrent eventS, too,

6

’ is

for any h>qQ,

A

. lim ps (t) =
t+0

Proof. Let (3.1) hold, then, for any s > 0,

s s s S+So S+SO S+SO
P(Btl...BtnlBto) = P(A"l ...At,n |At0 ) =

8+ 89+ tg
t 1—'t0

S+So+t0 S+t0 S+t0

- P(A ti-tg ) = PBy_ypeBy ).

. Q.E.D.

8
If psl(t)= p z(t) for any sy, s5,t > 0, {Af:s,t > (Qlare
said to be a system of recurrent events with a continuous time.
An important case arises when there exists as Sp> 0 such that,
for any s > sg,

(3.5)

3

8¢
PP(t) =p (1), t> 0.
Tmmediately we have the following result.

Corollary 3.2. If for a system of semirecurrent events
{Ai:s,t> 0} there is an s > Osuch that (3.5) holds for any
s > s, and any t > 0, then {Bf: s,t > 0] in a system of semire-

0
. ] 8+ 8
current eventsg; where By = A 0, s,t > 0.

Now we give an example of a system of semirecurrent events,
Let {X,:t > 0}by a (non-homogeneous) Poisson process with
a rate function A(u) where A(u) is a non-negative, continuous
function bounded on any finite interval, So that, we may as-
sume that X; denotes, for example, the number of particles
arriving at the counter during the:time interval (0, t]. Then
P(X,=n)=e MY A(gty"/n1 , 0 =/,1,2,... , where A(s,t)=
B4t
= [ Muw)du. Let £, , s,
B8
responding to the Poisson process {X;:t > 0} and denoting the

number of particles arriving at the counter dur:mg the time
interval (s, s + tl. Then P(f s,t=n) = é‘A(S't) A(s, t) /nts n =
=0,1,2,... . If we putA = {€st = , then using familiar
propertles of a Poisson process {Xi: t > Olwe may easily check
that {At s,t > 0}is a system of semirecurrent events with

-A{0,s+t) ~A(,s)
p°(t) = e /e , t >0.

t > 0, denote a random variable cor-

(3.6)
The functions p° (t) defined by (3.6) have an iplportant property
(3.7)
uniformly in s on any finite interval. A system of functions

p°(t): s > o} arising by (3.4) is said to be standard if (3.7)

holds uniformly in s on any finite interval.
7



Analogously as in a disctete case we show that no system
of functions of t,fpS(t):s > 0}, with 0 <pS(t) < 1, s, t>0 cor-
responds to a system of semirecurrent events via (3.4). The
necessary and sufficient condition is the next result,

Theorem 3.3. Let p°(t):s >0 by a system of non-negative func-
tions of t > 0, and write, for any n > 1,

qis(tl....,tn)= 1~ =

P (tiy) + T op°(t )

1<) 1-< J 2<_n

s+ty, n ' s s+ty,
t; -t + et (=1) z p (tj )p (ty, -
P (= 2yy) 1< 1 <eu<jpgn 1 T2
S+t
In .
-tjl)...p (tjn—'t]n_l)l

whenever 0 < t; <.t.g< ..<tpThen there is a system'of semire—
current events {A?:s,t > 0}with (3.4) if and only if, whenever
n > 1,and 0 < t,<..<twe have

0 € ®°(tgpunarty) < B (Equmanst _q)e (3.8)

Proof. The necessity of (3.8) gollows from the Eismple_%bser_
vation that if 0 <t;<..<tp,then @ (t;,..., ty) = P(Ay...A¢)).
Conversely, suppose that (3.8) hold. For any s > 0we have
to construct a probability space (Q S,QAS,P,s)a_pgl a system of
events (Ar:t> 0} ¢ 8 such that p3(t) =Pg(A;), t > 0, To /%(/3
this we must verify the Kolmogorov consigte;nce conditions 7%/,
Hence, if we construct the direct probability space (Q,§, P) =

=1 (248 4,P,) then A7: = n,—sl(ﬁt ), where 7 :Q +Qgis the
>0 .
sith projection function forms a system of semirecurrent events

i i Q.E.D.
i1n question, . . ;
2 simple corollary of the last Theorem is the following in-

equality. For any s,t,u> 0

t
PP @) <p tHw) €1 - p () +p ®)D (u). (3.9)

Lemma 3.4. If !ps(t): s> 0] 1is a standard system of furslctions
arising from some semirecurrent events via (3.4). Thenp®(t) > 0
for any s,t > 0.

Proof. Using (3.9) we have, for any t > 0 and s > O,

/ - -t
pS(t) > ps(lt/n)pSth n(t/n)...p“(n n(t/n).

8

—r g
"t e e e e+ T g e s

‘:-

Using the property (3.7) we see that, for sufficiently large
U, any term in the right-hand side of the last inequality is
positive. ' Q.E.D,

Now we show that a system of non-negative functions ip °(t): =
s > Olof t > 0satisfying the conditions of Theorem 3.3 may
appear in a different way as that described via a (non
geneous) Poisson process.

So, let X = {X,:t > 0} be a Markov process with a countable
state space S. That is, if 0 <t < tp<.,,< tp, 1 2 l,then

—homo—

P(Xy,=ilX, X D =PX, = AR ST

for any j € S.
Then for the transition probabilities

Pij(spt):=P(Xs+t= _”sti), 1:,]6 s. s, t > 0,

(3.10)
we' have the following properties
. . = 3.1
Plj(s.g:)zo,jé\:spiJ (s, t) = 1, 3.11)
kgspik(s'“)ijCS+ Ut-u)y=P;(s,t), i,je s, (3.12)
for any 0 <u<t, and s > 0,
Pi; (s,8) = 8y, ivi €8, s> o0, (3.13)

where 8 i dehotes the Kronecker delta function,

Conversely, any system functions lPl.j(s,t): i,je S, s,t> 0}
with (3.11)-(3.13) determines a (non~homogeneous) Markov pro-
cess {X;:t > 0} with continuous time whose transition probabi-
lities are given functions {Pij (s,t),1,j € 8} of s,t > 0.

Now, fix a state a ¢ S, Then p°(t): s >0}, where p(ty: =
=PXgyy =a|Xg=3) ,t > 0,is a system of functions fulfilling
the conditions of Theorem 3.3. Indeed, put, for any s > o,
Dty ,einty) = PXsriy# de, Xgyq £ 3[X = a), .
where t <...<t,,nx1,Consequently, there is a system of semi-
recurrent events, {Aj:s,t > 0} say, such that P(X,,, - alX .=
=a) = PA)).

In this place we remark that the converse implication is
not true, in general. From the paper /8:P-42%/ there follows -
that not every functions, determined from recurrent events in
continuous time, arise from a Markov chain. This is true only
for discrete time case, see Theorem 2.2.



Theorem 3.4. If {pj(t):s > 0} and fpa(t):s > 0} are two sys-
tems of real functions of t corresponding to some systems of
semirecurrent events, then a system function fp (t):s > o},
where p°(t) = p S (t)ps (t), t > 0, corresponds to a system of semire-

current events.

. A 5.
Proof. Comnstruct indepegdent semirecurrent svezgs {Agis,t:>0]
and iBts:s,t > 0}, Then {C,:s,t > 0}, where C .= ¢ "B 18

a system of semirecurrent events in question. Q.E.D.
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0 HenpephBHOM MO BPEMEHH aHAJIOI'e CEeMHPEeKYPPEHTHhX COOBITHIM

B HEeKOTOPHX CTOXACTHYECKHX MOoOeNnsXx paboTh CYeTUYHMKOB yac—
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C OMCKPeTHRIM BpeMeHeM o60o6mawTcs Ha CiIyuyail CeMHpeKyppeHTHRIX
COGBITHI, HENpPEepHBHHX 10 BPEMEHH,H HCCIEeOYITCS HX OCHOBHblE

‘PaboTa BmnonHeHa B JlabopaTopuu BBMHCIHTENBHOI TeXHHUKH
¥ aBToMaTHsamuu OWAH.
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On a Continuous Time Analogue

of Semirecurrent Events

In some stochastic models of the work of particle coun-
ters with prolonging dead time there appear the semirecurrent
events with discrete time. In the present paper it is shown
that they are described as transition probabilities of any
non-homogeneous Markov chain with countable state space. The
semirecurrent events with discrete time are generalized to
the case of semirecurrent events with continuous time, and
some of their main properties are investigated.
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