

со0б位и илститута 1R0phax исслддosanй גубиа

E5-86-352

A.Dvuręenskij

ON A CONTINUOUS TIME ANALOGUE OF SEMIRECURRENT EVENTS

1. INTRODUCTION

In connection with the study of some properties of counters with prolonging dead time there has appeared a class of events ${ }^{1 /}$, which has been named semirecurrent events. Semirecurrent events have many possibilities of application and their main properties have been described in the paper ${ }^{/ 2 /}$ and some limit properties have been investigated in ${ }^{3 /}$.

So, following ${ }^{/ 2 /}$ we suppose that during the k-th experiment, $k=1,2, \ldots$, the condition A^{k} either may be fulfilled or not. The fulfillment of A^{k} at the $n-t h$ trial, $n=1,2, \ldots$, we denote by A_{n}^{k} and its non-fulfillment by A_{n}^{k}. The events of a probability space (Ω, ϱ, P) , $\left\{A_{n}^{k}: n, k>1\right\}$ are said to be semirecurrent if, for any integers i_{j} with
$1 \leq \mathrm{i}_{0}<\mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{n}}, \mathrm{n} \geq 1$,
we have

$$
\begin{equation*}
P\left(A_{i_{1}}^{k} \ldots A_{i_{n}}^{k} \mid A_{i_{0}}^{k}\right)=P\left(A_{i_{1}-i_{0}}^{k+1_{0}} \ldots A_{1_{n}-i_{0}}^{k+i_{0}}\right) \tag{1.2}
\end{equation*}
$$

Certainly we may put $P\left(A_{0}^{k}\right)=0, k \cdot \geq 1$.
Denote by $\nu_{k}, k \geq 1$ an integer-valued random variable saying that $\nu_{k}=n$ if and only if the condition A^{k} is fulfilled for the first time in the k-th experiment at the $n-t h$ trial, and put $P{ }_{n}^{k}=P\left(\nu_{k}=n\right)=P\left(\bar{A}_{1}^{k} \ldots \vec{A}_{n-1}^{k} A_{n}^{k}\right)$.Using (1.2) we may prove that

$$
\begin{equation*}
P_{1}^{k}=P\left(A_{1}^{k}\right), P_{n}^{k}=P\left(A_{n}^{k}\right)-\sum_{j=1}^{n-1} P\left(A_{j}^{k}\right) P{ }_{n-j}^{k+j}, n \geq 2 \tag{1.3}
\end{equation*}
$$

An important case arises if there is an integer m such that $P\left(A_{n}^{m}\right)=P\left(A_{n}^{m+1}\right)=\ldots$ for any $n 2$ 1. In this case we say that the semirecurrent events are m-semirecurrent. If $m=1$, then we obtain recurrent events in the sense of Feller $/ 4 /$, and if $m=2$, then they are names recurrent events with delay ${ }^{\prime \prime} /$.

A sequence of non-negative numbers, $\left\{u_{n}^{k}: n \geq 0, k \geq 1\right\}$, is said to be semirecurrent if, for any $k \geq 1$.
$u_{0}^{k}=1$,
and if there is a sequence of non-negative numbers $\left\{f_{n}^{k}\right\}_{n=1}^{\infty}$ with

$$
\begin{equation*}
\sum_{n=1}^{\infty} f_{n}^{k} \leqslant 1 \tag{1.5}
\end{equation*}
$$

such that
$u_{n}^{k}=f_{n}^{k}+\sum_{j=1}^{n-1} u_{j}^{k} f_{n-j}^{k+j}$, $n \geq 1$.
From the results of the paper ${ }^{/ 2 /}$ there follows that (1.6) is equivalent to
$u_{n}^{k}=f_{n}^{k}+\sum_{j=1}^{n-1} f_{j}^{k} u_{n-j}^{k+j}, k, n \geq 1$.
It is clear that if $\left\{A_{n}^{k}: k \geq 1, n \geq 0\right\}$ are semirecurrent events, then $\left\{P\left(A_{n}^{k}\right) ; k \geq 1, n \geq 0\right\}$ is a semirecurrent sequence. Indeed, if we put $\mathrm{f}_{\mathrm{n}}^{\mathrm{k}}=\mathrm{P}\left(\nu_{\mathrm{k}}=\mathrm{n}\right)$ then using (1.3) we have to obtain (1.6).

The sequence $\left\{\mathrm{u}_{\mathrm{n}}^{\mathrm{k}}: \mathrm{k} \geq 1, \mathrm{n} \geq 0\right\}$ is far from being an arbitrary sequence of numbers between 0 and 1. Its behaviour is restricted by inequalities which are consequence of (1.2). The necessary and sufficient condition is given in Theorem 2.4 from $/ 2 /$.

Finally, we say that a semirecurrent sequence, $\left\{u_{n}^{k}: n \geq 0, k \geq 1\right\}$. is m-semirecurrent if there is an integer m such that $u_{n}^{m}=$ $=u_{n}^{m+1}=\ldots$ for any $n \geq 1$.

2. MARKOV CHAINS

Following K.L.Chung ${ }^{/ 5 /}$ by a Markov chain in discrete time we shall mean a sequence $X=\left\{X_{n}\right\}_{n=0}^{\infty}$ of random variables, taking values in a countable state space S, and having the property that, for any n and any $j \in S$
$P\left(X_{n}=j \mid X_{0}, \ldots, X_{n-1}\right)=P\left(X_{n}=j \mid X_{n-1}\right)$.
In the sequel we shall assume that the one-step transition probability
$p_{i j}(k)=P\left(X_{k}=j \mid X_{k-1}=i\right)$
depends, in general, on $k, k=0,1,2, \ldots$. So that, we have a Markov process, non-homogeneous, in general.

Under these conditions the joint distributions of the X_{n} are completely determined by the transition probabilities $p_{i j}(k)$ $i, j \in S, k=0,1, \ldots$, and the initial distribution
$p_{i}=P\left(\dot{X}_{0}=i\right), i \in S$,
via
$P\left(X_{0}=i_{0}, X_{1}=i_{1} \ldots, X_{n}=i_{n}\right)=p_{i_{0}} p_{i_{0} 1_{1}}(1) \ldots p_{i_{n+1}} i_{n}(n-1)$
for $i_{0}, i_{1}, \ldots, i_{n} \in S, n \geq 1$.
The numbers p_{i} and $p_{i j}(k)$ satisfy the conditions
$p_{i} \geqslant 0, \sum_{i \in S} p_{i}=1$,
$p_{i j}(k) \geqslant 0_{k} \sum_{j \in S} p_{i j}(k)=1$,
for any $k \geq 1$, and conversely, the Kolmogorov theorem ${ }^{\prime 6 /}$ shows us that there is a stochastic process $X=\left\{X_{n}\right\}_{n=0}^{\infty}$ satisfying (2.1)-(2.4) whenever (2.5) and (2.6) are satisfied.

It is convenient to denote by ${ }^{k} P_{i}, i \in S, k=0,1, \ldots$, the probability measure conditional on $\left\{X_{k}=i\right\}$, so that
$P=\sum_{i \in S} p_{i}^{k k} P_{i}$,
where $p_{i}^{k}=P\left(X_{k}=i\right)$.
For our aim it is convenient to consider, for a given Markov process $X=\left\{X_{n}\right\}_{n=0}^{\infty}$, a whole class of Markov processes $X^{k}=\left\{X_{n}^{k}\right\}_{n=0, k}^{\infty} \geq 1$, where $X_{n}^{k}=X_{k+n-1}$. So that $X=X^{1}$ From (2.7) we obtain that
${ }^{k} P_{j}\left(X_{1}^{k}=i_{1} \ldots . . X_{n}^{k}=i_{n}\right)=p_{i_{1}}(k) \ldots p_{i_{n-1} i_{n}}(k+n-1)$,
so that ${ }^{k} P_{i}$ depends only on $p_{i f}(n)$, and not on the distribution of X_{k}.

If (2.8) is summed over all values of i_{1}, \ldots, i_{n-1}, we obtain the n-step transition probabilies
$p_{i j}^{(n)}(k)=P\left(X_{n}^{k}=j \mid X_{0}^{k}=i\right)={ }^{k} P_{i}\left(X_{n}^{k}=j\right)$.
They are easily generated using the Chapman - Kolmogorov equation

$$
\begin{align*}
p_{i j}^{(n+m}(k) & =\sum_{r \in S} p_{i r}^{(n)}(k) p_{r j}^{(m)}(k+n)= \tag{2.10}\\
& =\sum_{r \in S} p_{i r}^{(m)}(k) p_{r j}^{(n)}(k+m), k \geq 1, i, j \in S,
\end{align*}
$$

where $p_{i j}^{(1)}(k)=p_{i j}(k)$.
In the sequel we show that any Markov chain generates a semirecurrent sequence. For that, for any $k \geq 1$, consider the return of the sequence X_{n}^{k} to a fixed state $a \in S$, that is, we observe the set of integers for which $X_{n}^{k}=a$. There may be a finite or
infinite number of them, and they may be written in ascending order as $0=\eta_{0}^{k}<\eta_{1}^{k}<\ldots \eta_{\kappa_{k}}^{k}$, where $\kappa_{k}<\infty$ is the total number of returns of the process \mathscr{X}^{k} to its initial state a. For $n 21$.
${ }^{k} P_{a}\left(\kappa_{k} \geq 1, \eta_{1}^{k}=n\right)={ }^{k} P_{a}\left(X_{1}^{k}, \ldots, X_{n-1}^{k} \neq a, X_{n}^{k}=a\right)=$
$=\sum_{i_{1} \ldots i_{n-1} \neq a} p_{a i_{1}}(k) p_{i_{1} i_{2}}(k+1) \ldots p_{i_{n-1}}{ }^{a(k+n-1)}=f_{n}^{k}$,
say. Clearly $\sum_{n}^{\infty} \sum_{1}^{\infty} f_{n}^{k}=P\left(\kappa_{k} \geq 1\right) \leq 1$. For convenience we define $\eta_{1}^{k}=\infty$ if $\kappa_{k}=0$, so that
$\mathrm{f}_{\infty}^{\mathrm{k}}=1-\sum_{\mathrm{n}=1}^{\infty} \mathrm{f}_{\mathrm{n}}^{\mathrm{k}}$.
If now we define
$u_{n}^{k}=P\left(X_{n}^{k}=a \mid X_{0}^{k}=a\right)$,
with the convention $u_{n}^{k}=1$, then, for $n \geq 1$,
$u_{n}^{k}={ }^{k} P_{a}\left(X_{n}^{k}=a\right)=\sum_{j=1}^{n}{ }^{k} P_{a}\left(X_{n}^{k}=a, \eta_{1}^{k}=j\right)=$
$=\sum_{j=1}^{n} f_{j}^{k}{ }^{k} P_{a}\left(X_{n}^{k}=a \mid \eta_{1}^{k}=j\right)$.
Since the event $\left\{\eta_{1}^{k}=j\right\}$ depends only on $X_{1}^{k}, \ldots, X_{j}^{k}$ and implies $\left\{X_{j}^{k}=a\right\},(2.1)$ gives
${ }^{k} P_{a}\left(X_{n}^{k}=a \mid \eta_{1}^{k}=j\right)=P\left(X_{n}^{k}=a \mid X_{j}^{k}=a\right)=u_{n-j}^{k+j}$.
From (1.7) we have that u_{n}^{k} defined by (2.12) forms a semirecurrent sequence.

An important result of K.L.Chung (recorded by Fell'er ${ }^{/ 4 /}$) says that any l-semirecurrent sequence arises from a homogeneous Markov chain via (2.12). The following result shows that this result is true for semirecurrent sequence, too, and this gives an answer to the question posed in $/ 2 /$ concerning the characterization of semirecurrent sequences.

Theorem 2.1. If $\left\{u_{n}^{k}: k \geq 1, n \geq 0\right\}$ is any semirecurrent sequence, then there exists a Markov chain X taking values in a countable state space S and a state $a \in S$ such that, for all n , (2.12) holds. Moreover, there exists a sequence of semirecurrent events, $\left\{A_{n}^{k}: k \geq 1, n \geq 0\right\}$ such that $\mathrm{u}_{\mathrm{n}}^{\mathrm{k}}=\mathrm{P}\left(\mathrm{A}_{\mathrm{n}}^{\mathrm{k}}\right)$.

Proof. Put $\mathrm{S}=\{0,1,2, \ldots\}$ and $g_{n}^{k}=1-\sum_{j}^{n}{ }_{1}^{n} f_{j}^{k}$. For any $k \geq 1$, we define the transition probability matrix, $P(k)=\left\{p_{i j}(k): i, j \in S\right\}$, as follows.
$P(\mathrm{k})=\left(\begin{array}{ll}\mathbf{A}(\mathrm{k}) & \mathrm{O}_{\mathrm{k}} \\ \mathrm{O}_{\infty} & \mathrm{I}_{\infty}\end{array}\right)$,
where $\mathbf{A}(\mathrm{k})\left(\boldsymbol{O}_{\mathrm{k}}\right)$ is a square (zero) matrix with k rows, and $\mathbf{O}_{\infty}\left(\mathrm{I}_{\infty}\right)$. is the infinite square zero (identical) matrix, the matrix $\mathbf{A}(\mathrm{k})$ has the following form
$A(\mathrm{k})=\left[\begin{array}{lllll}\mathrm{f}_{1}^{\mathrm{k}} / \mathrm{g}_{0}^{\mathrm{k}} & \mathrm{g}_{1}^{\mathrm{k}} / \mathrm{g}_{0}^{\mathrm{k}} & 0 & \cdots & 0 \\ \mathrm{f}_{2}^{\mathrm{k}-1} / \mathrm{g}_{1}^{\mathrm{k}-1} & 0 & \mathrm{~g}_{2}^{\mathrm{k}-1 / \mathrm{g}_{1}^{\mathrm{k}-1}} & \cdots & 0 \\ \vdots & & & & \\ \mathrm{f}_{\mathrm{k}}^{1} / \mathrm{g}_{\mathrm{k}+1}^{1} & 0 & 0 & \cdots & \mathrm{~g}_{\mathrm{k}}^{1} / \mathrm{g}_{\mathrm{k}+1}^{1}\end{array}\right]$
here we define $0 / 0$ as $1 / 2$. We note the elements of $A(k)$ in (2.14) are well defined. Then, for $a=0$, we have
${ }^{k} P_{0}\left(X_{1}^{k}, \ldots, X_{n-1}^{k} \neq 0, X_{n}^{k} \doteq 0\right)={ }^{k} P_{0}\left(X_{1}^{k}=1, X_{2}^{k}=2, \ldots, X_{n-1}^{k}=\right.$
$\left.=n-1, X_{n}^{k}=0\right)=p_{01}(k) p_{12}(k+1) \ldots p_{n-2, n-1}(k+n-2) p_{n-1,0}(k+n-1)=$ $=\frac{g_{1}^{k}}{g_{0}^{k}} \frac{g_{2}^{k}}{g_{1}^{k}} \cdots \frac{g_{n-1}^{k}}{g_{n-2}^{k}} \frac{f_{n}^{k}}{g_{n-1}^{k}}=f_{n}^{k}$,
so that, $p_{\infty}^{(n)}(k)=u_{n}^{k}$.
For the second part of the assertion, define, for any $k \geq 1$ and $1 \leq j_{1}<j_{2} \ldots<j_{n}, n \geq 1$, functions $\Phi_{k}\left(j_{1}, \ldots, j_{n}\right)=P\left(X_{j_{1}}^{k} \neq a\right.$, $\left.\ldots, X_{j_{n}}^{k} \not a, X_{0}^{k}=a\right)$ where $X=\left\{X_{n}\right\}_{n=0}^{\infty}$ is a Markov chain from
the first part of the Theorem. The functions Φ_{k} fulfill the conditions of Theorem $2.4 \mathrm{of}^{\prime 2}$, hence, there exist semirecurrent events, $\left\{A_{n}^{k}: k \geq 1, n \geq 0\right\}$, say, with $u_{n}^{k}=P\left(A_{n}^{k}\right)$. O.E.D.

Theorem 2.2. If $\left\{u_{n}^{k}: k \geq 1, n \geq 0\right\}$ and $\left\{v_{n}^{k}: k \geq 1, n \geq 0\right\} a r e$ two semirecurrent sequences, then $\left\{w_{n}^{k}: k \geq 1, n \geq 0\right\}$ where $w_{n}^{k}=u_{n}^{k} v_{n}^{k}$ $\mathrm{k} \geq 1, \mathrm{n} \geq 0$, is a semirecurrent sequence, too.

Proof. According to Theorem 2.1 , there exists a Markov chain
on a state space S, and a state a $\in S$ such that $u_{n}^{k}={ }^{k} P_{a}\left(X_{n}^{k}=a\right)$.

Analogously, there also exists a Markov chain Y. on a state space S^{\prime} and independent of X_{0}, and a state $b \in S^{\prime}$ such that $v_{n}^{k}={ }^{k} P_{b}\left(Y_{n}^{k}=b\right) \cdot{ }^{k}$ Then $Z_{n}=\left(X_{n}, Y_{n}\right)$ defines a Markov chain on $S \times S^{\prime}$, for which ${ }^{k} P_{a, b}\left(X_{n}^{k}=a, Y_{n}^{k}=b\right)=u_{n}^{k} v_{n}^{k}$. Q.E.D.

Note. In the paper ${ }^{17 /}$ there is shown that for any 2-semirecurrent sequence $\left\{\mathrm{u}_{\mathrm{n}}^{\mathrm{k}}: \underset{\infty}{\mathrm{k}} \geq 1, \mathrm{n} \geq 0\right\}$ there exists a homogeneous Markov process $X=\left\{X_{n}\right\}_{n=0}^{\infty}$ with a countable state space S such that
$u_{n}^{1}=P\left(X_{n}=a \mid X_{0}=b\right), \quad u_{n}^{k}=P\left(X_{n}=a \mid X_{0}=a\right)$,
for $a l l n \geq 1, k \geq 2$, and some pair $a \neq b$ of states from S. Theorem 2.1 shows us that these u_{n}^{k} may be also determined as diagonal elements of appropriate transition matrices of a nonhomogeneous Markov chain.

3. SEMIRECURRENT EVENTS WITH CONTINUOUS TIME PARAMETER

In this section we shall deal with a generalization of a semirecurrent events to a continuous time parameter. A system of events $\left\{\mathrm{A}_{\mathrm{t}}^{\mathrm{s}}: \mathrm{s}, \mathrm{t}>0\right.$ \} on the probability space (Ω; 乌. P) is said to be semirecurrent (with a continuous time parameter t) if, for any $s>0$ and
$0<\mathrm{t}_{0}<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{n}}, \mathrm{n} \geq 1$,
we have
$P\left(A_{t_{1}}^{s} \ldots A_{t_{n}}^{s} \mid A_{t_{0}}^{s}\right)=P\left(A_{t_{1}-t_{0}}^{s+t_{0}} \ldots A_{t_{n}-t_{0}}^{s+t_{0}}\right)$.
It is evident, that, if $\left\{A_{t}^{s}: s, t>0\right\}$ is a system of semirecurrent events with a continuous time parameter, then, for any $h>0$,
$\left\{B_{n}^{k}:=A_{n h}^{k h}: k \geq 1, n \geq 0\right\}$,
is a sequence of semirecurrent events.
Define a class of functions $\left\{\mathrm{p}^{\mathrm{s}}(\mathrm{t}): \mathrm{s}>0\right\} \mathrm{of}$ a real $\mathrm{t}>0 \mathrm{via}$
$p^{s}(t)=P\left(A_{t}^{s}\right)$.

Lemma 3.1. Let $\left\{A_{t}^{s}: s, t>0\right\}$ be a system of semirecurrent events and let $s_{0}>0$ be given. Then $\left\{B_{t}^{s}: s, t>0\right\}$ where $B_{t}^{s}=A_{t}^{s+s_{0}}$, is
a system of semirecurrent events, too. a system of semirecurrent events, too.

Proof. Let (3.1) hold, then, for any $s>0$,
$P\left(B_{t_{1}}^{s} \ldots B_{t_{n}}^{s} \mid B_{t_{0}}^{s}\right)=P\left(A_{t_{1}}^{s+s_{0}} \ldots A_{t_{n}}^{s+s_{0}} \mid A_{t_{0}}^{s+s_{0}}\right)=$
$=P\left(A_{t_{1}-t_{0}}^{s+t_{0}}{ }^{s} \ldots A_{t_{n}-t_{0}}^{s+s_{0}+t_{0}}\right)=P\left(B_{t_{1}-t_{0}}^{s+t_{0}} \quad B_{t_{n}-t_{0}}^{s+t_{0}}\right)$.
Q.E.D.

If $p^{s_{1}}(t)=p^{s_{2}}(t) \quad$ for any $s_{1}, s_{2}, t>0,\left\{A_{t}^{s}: s, t>0\right\}$ are said to be a system of recurrent events with a continuous time. An important case arises when there exists as $s_{0}>0$ such that, for any $s>s_{0}$,
$p^{s}(t)=p^{s_{0}}(t), t>0$.
Immediately we have the following result.
Corollary 3.2. If for a system of semirecurrent events $\{A$ st $s, t>0\}$ there is an $s_{0}>0$ such that (3.5) holds for any $\mathrm{s}>\mathrm{s}_{0}$ and any $\mathrm{t}>0$, then $\left\{\mathrm{B}_{\mathrm{t}}^{\mathrm{s}}: \mathrm{s}, \mathrm{t}>0\right\}$ in a system of semirecurrent events; where $B_{t}^{s}=A^{s+s_{0}}, \mathrm{~s}, \mathrm{t}>0$.

Now we give an example of a system of semirecurrent events. Let $\left\{X_{t}: t>0\right\} b y$ a (non-homogeneous) Poisson process with a rate function $\lambda(u)$ where $\lambda(u)$ is a non-negative, continuous function bounded on any finite interval. So that, we may assume that X_{t} denotes, for example, the number of particles arriving at the counter during the time interval ($0, t$). Then $P\left(X_{t}=n\right)=e^{-\Lambda(0, t)} \Lambda(0, t)^{n / n!}, n=/, 1,2, \ldots$, where $\Lambda(s, t)=$ $=\int_{s}^{s+t} \lambda(u) d u$. Let $\xi_{s, t}, s, t>0$ denote a random variable corresponding to the Poisson process $\left\{\mathrm{X}_{\mathrm{t}}: \mathrm{t}>0\right\}$ and denoting the number of particles arriving at the counter during the time interval ($\mathrm{s}, \mathrm{s}+\mathrm{t} \mathrm{l}$. Then $\mathrm{P}(\xi \mathrm{s}, \mathrm{t}=\mathrm{n})=\dot{e}^{-\Lambda(\mathrm{s}, \mathrm{t})} \Lambda(\mathrm{s}, \mathrm{t})^{\mathrm{n}} / \mathrm{n} / \mathrm{n}, \mathrm{n}=$ $=0,1,2, \ldots$. If we put $A_{t}^{s}=\{\xi \mathrm{s}, \mathrm{t}=0\}$, then using familiar properties of a Poisson process $\left\{\mathrm{X}_{\mathrm{t}}: \mathrm{t}>0\right\}$ we may easily check that $\left\{A_{t}^{s}: s, t>0\right\}$ is a system of semirecurrent events with

$$
\begin{equation*}
p^{s}(t)=e^{-\Lambda(0, s+t)} / e^{-\Lambda(0, s)}, t>0 \tag{3.6}
\end{equation*}
$$

The functions $p^{s}(t)$ defined by (3.6) have an important property

$$
\begin{equation*}
\lim _{t \rightarrow 0} p^{s}(t)=1 \tag{3.7}
\end{equation*}
$$

uniformly in s on any finite interval. A system of functions $\left\{\mathbf{p}^{8}(\mathrm{t}): \mathrm{s}>0\right\}$ arising by (3.4) is said to be standard if (3.7) holds uniformly in s on any finite interval.

Analogously as in a discrete case we show that no system of functions of $t,\left\{p^{s}(t): s>0\right\}$, with $0 \leq p^{s}(t) \leq 1, s, t>0$ corresponds to a system of semirecurrent events via (3.4). The necessary and sufficient condition is the next result.

Theorem 3.3. Let $p^{8}(t): s>0$ by a system of non-negative functions of $\mathrm{t}>0$, and write, for any $\mathrm{n} \geq 1$,

$$
\begin{aligned}
& \Phi^{s}\left(t_{1}, \ldots, t_{n}\right)=1-\sum_{1 \leq j_{1} \leq n} p^{s}\left(t_{j_{1}}\right)+\underset{1 \leq j_{1}<j_{2} \leq n^{s}}{\sum} p^{s}\left(t_{j_{1}}\right) \\
& p^{s+t_{j_{1}}\left(t_{j_{2}}-t_{j_{1}}\right)+\ldots+(-1)^{n} \underset{1 \leq j_{1}<\ldots<j_{n} \leq n}{p^{s}}\left(t_{j_{1}}\right) p^{s+t_{j_{1}}} \quad\left(t_{j_{2}}-\right.} \\
& \left.-t_{j_{1}}\right) \ldots p^{s+t_{j_{n}}}\left(t_{j_{n}}-t_{j_{n-1}}\right)
\end{aligned}
$$

whenever $0 \leq t_{1}<t_{2}<\ldots<t_{n}$. Then there is a system of semirecurrent events $\left\{\mathrm{A}_{\mathrm{t}}^{\mathrm{s}}: \mathrm{s}, \mathrm{t}>0\right\}$ with (3.4) if and only if, whenever $\mathrm{n} \geq 1$, and $0<\mathrm{t}_{1}<\ldots<\mathrm{t}_{\mathrm{n}}$ we have

$$
\begin{equation*}
0 \leq \Phi^{s}\left(t_{1}, \ldots, t_{n}\right) \leq \Phi^{s}\left(t_{1}, \ldots, t_{n-1}\right) . \tag{3.8}
\end{equation*}
$$

Proof. The necessity of (3.8) follows from the simple observation that if $0<t_{1}<\ldots<t_{n}$, then $\Phi^{s}\left(t_{1}, \ldots, t_{n}\right)=P\left(\bar{A}_{t_{1}}^{s} \ldots \bar{A}_{t_{n}}^{s}\right)$.

Conversely, suppose that (3.8) hold. For any $s>0$ we have to construct a probability space $\left(\Omega_{s}, \mathcal{G}_{s}, P_{s}\right)$ and a system of events $\left\{\vec{A}_{t}^{s}: t>0\right\} \subset 乌_{s}$ such that $p^{s}(t)=P \cdot s\left(\vec{A}_{t}^{s}\right), t>0$. To do this we must verify the Kolmogorov consistence conditions ${ }^{/ 6 /}$. Hence, if we construct the direct probability space ($\Omega, \mathcal{S}, \mathrm{P}$) $=$ $=\Pi_{s>0}\left(\Omega_{s}, \mathscr{G}_{s}, P_{s}\right)$, then $A_{t}^{s}:=\pi_{s}^{-1}\left(\vec{A}_{t}^{s}\right)$, where $\pi_{s}: \Omega \rightarrow \Omega_{s}$ is the s-th projection function forms a system of semirecurrent events in question.
Q.E.D.

A simple corollary of the last Theorem is the following inequality. For any $s, t, u>0$
$p^{s}(\mathrm{t}) \mathrm{p}^{\mathrm{s}+\mathrm{t}}(\mathrm{u}) \leq \mathrm{p}^{\mathrm{s}}(\mathrm{t}+\mathrm{u}) \leq 1-\mathrm{p}^{\mathrm{s}}(\mathrm{t})+\mathrm{p}^{\mathrm{s}}(\mathrm{t}) \mathrm{p}^{\mathrm{s}+\mathrm{t}}(\mathrm{u})$.

Lemma 3.4. $\operatorname{If}\left\{p^{s}(t): s>0\right\}$ is a standard system of functions arising from some semirecurrent events via (3.4). Then $p^{s}(t)>0$ for any $s, t>0$.

Proof. Using (3.9) we have, for any $t>0$ and $s>0$, $p^{s}(t) \geq p^{s}(t / n) p^{s+t / n}(t / n) \ldots p^{s+(n-1) t / n}(t / n)$.

Using the property (3.7) we see that, for sufficiently large n , any term in the right-hand side of the last inequality is positive.

Now we show that a system of non-negative functions $\left\{p^{s}(\mathrm{t})\right.$: $s>0\}$ of $t>0$ satisfying the conditions of Theorem 3.3 may appear in a different way as that described via a (non-homogeneous) Poisson process.

So, let $X=\left\{X_{t}: t \geqslant 0\right\}$ be a Markov process with a countable state space S. That is, if $0<t_{1}<t_{2}<\ldots<t_{n}, n \geq 1$, then

$$
P\left(X_{t_{n}}=j \mid X_{t_{1}} \ldots X_{t_{n-1}}\right)=P\left(X_{t_{n}}=j \mid X_{t_{n-1}}\right)
$$

for any $j \in S$.
Then for the transition probabilities
$P_{i j}(s, t):=P\left(X_{s+t}=j \mid X_{s}=i\right), i, j \in S, s, t>0$,
we have the following properties
$P_{i j}(s, t) \geq 0, \sum_{j \in S} P_{i j}(s, t)=1$,
$\sum_{k} \in P_{i k}(s, u) P_{k j}(S+u, t-u)^{\prime}=P_{i j}(s, t), \quad i, j \in S$,
for any $0<u<t$, and $s>0$,
$P_{i j}(s, s)=\delta_{i j}, \quad i, j \in S, \quad s>0$,
where $\delta_{i j}$ denotes the Kronecker delta function.
Conversely, any system functions $\left\{P_{i j}(s, t): i, j \in S, s, t>0\right\}$
with (3.11)-(3.13) determines a (non-homogeneous) Markov process $\left\{X_{t}: t>0\right\}$ with continuous time whose transition probabilities are given functions $\left\{P_{i j}(s, t), i, j \in S\right\}$ of $s, t>0$.

Now, fix a state $a \in S$. Then $\left\{p^{s}(t): s>0\right\}$, where $p^{s}(t)$:
$=P\left(X^{\prime}+t=a \mid X_{s}=a\right), t>0$,is a system of functions fulfilling the conditions of Theorem 3.3. Indeed, put, for any $s>0$,
$\Phi^{s}\left(t_{1}, \ldots, t_{n}\right)=P\left(X_{s+t_{1}} \neq a, \ldots, X_{s+t_{n}} \neq a \mid X_{s}=a\right)$,
where $t_{1}<\ldots<t_{n}, n \geq 1_{\text {, Consequently, }}$ there is a system of semirecurrent events, $\left\{A_{t}^{s}: s, t>0\right\}$ say, such that $P\left(X_{s+t}=a \mid X_{s}=\right.$ $=a)=P\left(A_{t}^{s}\right)$.

In this place we remark that the converse implication is not true, in general. From the paper $18, p .429 /$ there follows that not every functions, determined from recurrent events in continuous time, arise from a Markov chain. This is true only for discrete time case, see Theorem 2.2 .

Theorem 3.4. If $\left\{\mathrm{p}_{1}^{\mathrm{s}}(\mathrm{t}): \mathrm{s}>0\right\}$ and $\left\{\mathrm{p}_{2}^{\mathrm{s}}(\mathrm{t}): \mathrm{s}>0\right\}$ are two systems of real functions of t corresponding to some systems of semirecurrent events, then a system function $\left\{p^{s}(t): s>0\right\}$, where $p^{s}(t)=p_{1}^{s}(t) p_{2}^{s}(t), t>0$, corresponds to a system of semirecurrent events.

Proof. Construct independent semirecurrent events $\left\{A_{d}^{s}: s, t>0\right\}$ and $\left\{\mathrm{B}_{\mathrm{t}}^{\mathrm{s}}: \mathrm{s}, \mathrm{t}>0\right\}$. Then $\left\{\mathrm{C}_{\mathrm{t}}^{\mathrm{s}}: \mathrm{s}, \mathrm{t}>0\right\}$, where $\mathrm{C}_{\mathrm{t}}^{\mathrm{s}}=\mathrm{A}_{\mathrm{t}}^{\mathrm{s}} \cap \mathrm{B}_{\mathrm{t}}^{\mathrm{s}}$ is a system of semirecurrent events in question.

REFERENCES

1. Dvuredenskij A., Ososkov G.A. J.Appl.Prob., 1985, 22, p. 678-687.
2. Dvuređ̌enskij A. JINR, E5-84-686, Dubna, 1984.
3. Dvuredenskij A., Ososkov G.A. JINR, E5-84-701, Dubna, 1984.
4. Feller W. Trans.Amer.Math.Soc., 1949, 67, p.98-119.
5. Chung K.L. Markov Chains with Stationary Transition Probabilities. Springer, Berlin, 1967.
6. Yeh J. Stochastic Processes and Wiener Integral. Marcel Dekker Inc., New York, 1973.
7. Kingman J.F.C. In: London Math.Soc.Lect. Note Ser., 1983, No. 79; Prob.Stat. and Anal., 1983, p. 180-191.
8. Kingman J.F.C. J.Roy.Statist.Soc.B, 1966, 28, p.417-447.

Received by Publishing Department on June 3, 1986.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?
You can receive by post the books listed below. Prices - in US 8, including the packing and registered postage

D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982

Orders for the above-mentioned books can be sont at the address: Publishing Department, JINR.
Head Post Office; P.O.Box 79101000 Noscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
0. Nuciear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Двуреченский А. E5-86-352
0 непрерывном по времени аналоге семирекуррентных событий
В некоторых стохастических моделях работы счетчиков частиц с мертвым временем продлевающегося типа появляются семирекуррентные событня, дмскретные по времени. Показано, что они описываются черея переходные вероятности неоднородной цепи Маркова со счетным числом состояний. Семирекуррентные события с дискретным временем обобщаются на случай семирекуррентных событий, непрерывных по времени,и исследуются их основные свойства.

Работа выполнена в Лаборатории вычислительной техники и автоматияации ОИЯИ.

Сообмение Объединенного института пдерных исследований. Дубна 1986

Dvurečenskij A.

E5-86-352
On a Continuous Time Analogue
of Semirecurrent Events
In some stochastic models of the work of particle counters with prolonging dead time there appear the semirecurrent events with discrete time. In the present paper it is shown that they are described as transition probabilities of any non-homogeneous Markov chain with countable state space. The semirecurrent events with discrete time are generalized to the case of semirecurrent events with continuous time, and some of their main properties are investigated.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

