
. CDDI.IIII 
• 	 DllIllllllllrl . 

IICTIT'Ta 
IllPIWI 

ICClllllall. 

l'lla 

E5-86-352 

A.Dvure~en8kij 

ON A CONTINUOUS TIME ANALOGUE 

OF SEMIRECURRENT EVENTS 

1986 




',\'(r 

" 1" 

" 
"u ' 

'\J ~~ 1 

-, 

'. , 
" 

" 
~~ \~; , 

.,1 

J ~. 

~-~l 

t 

r 

-~.'T'"""~""""""'-~-~"~~'-'--_._.	 ..~ ~""~._~__~__J 
'@ ÜÕ'be,lJ;HHeHHbIH HHCTHTYT R:~epHbIX HCClle,t10BaHHH ny6H8, 1986. 

" ' 
~ ', 

l. ).~ ,"'....: I,·',: 

I. INTRODUCTION 

In connection with the study of some properties of counters 
with prolonging dead time there has appeared a class of 
events/ 1/ , which has been named semirecurrent events. 5emire­
current events have many possibilities of application and their 
maí.n properties have been described in the Aaper /2/ and some 
limi t properties have been inves tigated in ,3/. 

50, following /2/ we suppose that during the k-th experi­
ment, k » 1,2, ••• , the cond i t on Ak e í t he r may be fulfilledí 

or noto The fulfillment of Ak at t he n -th t rj a l , n = 1,2, ••• , 
we denote by A~ and its non-fulfillment by A~ . The events of 
a probability space<O,§, P) ,IAk:n,k> l~are s aí d to be semi­, n 
recurrent if, for any integers ij wi th 

1 ~ io .< i 1 <....< in' n ~ 1,	 (I • I ) 

we have 

k+l0k k	 k+ iO )
P(~i1···Ain IA k ) = P (A 11- iO AI -i •	 (I .2)

iO n O 

k
Certainly we may put P(A o) = O, .k· 2 1. 

Den9te by vk , k L 1 an integer-valued random variable saying 
that vk = n if and only if the condition Ak is fulfilled for the 
first time in the k-th experiment at the n-th trial, and put 
P~= P(Vk""' n) = P(Ãk 

••• Ã~_l A~).Using (1.2) we may prove that1 

n- 1 
P k = P (Ak) P k= P (Ak) _ ~ P (Ak ) P k+ ~ (I.3)

l' n	 k , n 2 2.1	 n j n- J
j == 1 

An important case arises if there is an integer m s~ch 
that P(A ffi) = P(A~+ 1) = •.• for any n ~ 1.In this case we say that

• n	 •
the sem1recurrent events are m-sem1recurrent. If m = 1, then 
we obtain recurrent events in the sense of Feller/4/,~nd if 
m = 2, then they are names recurrent events with delaY/4/. 

A sequence of non-negative numbers, lu~: n 2 O, k L ~ I, í s said 
to be semirecurrent if, for any k ~ 1. 

(I .4)u~ = 1, 

and if there is	 a sequence of non-negative numbers If~I:=l with 
00 

k
k f n':;; 1 (I .5) 

n= 1 
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such that 

k k n- 1 k k+ j 
f n 1 n .2 (] .6)U n = +, I U j f n- j 1. 

J= 

/ 21 From the results of the paper there follows that (].6) 
is equivalent to 

k k n-1 k k+j 
(J .7)U n = f n + . I f j U n- J' , k, n 2. 1­

J = 1 

It is clear t ha t if IA~:k~ 1,n~ alare semirecurrent events, 
then Ip(A~): k ~ 1,n ~ O I is a semirecurrent sequence. Indeed, 
if we put f~ = P(Vk = n ) then us i ng (l.3) we have to ob t aí.n (J .6). 

The sequence (u~: k ~ 1, n ::<: a[í s far from being an arbitrary 
sequence of numbers between ° and ]. Its behaviour is restricted 
by inequalities which are consequence of (].2). The necessary 

íand sufficient cond í t on is given in Theorem 2.4 from 12/. 

FinaIly, we say that a semirecurrent sequence,(u~ = n ~ O,k 2..11. 
is fi -semirecurrent if there is an integer m such that U ~= 

ui+ 1 = ••• for any n ~ 1. 

2. MARKOV CHAlNS 

Following K.L.Chung / 51 by a Markov chain in discrete time 
we shall mean a sequence ~ = IXn 1;=0 of random variables, ta­
king values in a countable state space S, and having the pro­
perty Eha t , for any n and any j € S 

P(Xn = jlX o , •.• ,X n-l) =:: P(X n = jIX n-1). (2.1) 

In the sequeI we shaI1 assume that the one-step transition 
probability 

Pl j (k ) = P(X k = jl X k_ 1 = i) (2.2) 

depends, in general, on k , k = 0,],2,... . So that, we have 
a Markov process, non-homogeneous, in general. 

Under these conditions the joint distributions of the Xn 
are completely determined by the transition probabilities Plj(k) 
i, j € S, k = 0,] , ••• , and the initial distribution 

Pi = P(X o = i), i € S, (2.3) 

via 

2 

(2.4)P(X o = i o ,X I = i 1. · · , X n= in) = PiOPi011(1) ••• Pin .... lin (n-1), 

for i O ' i 1 ' o •• , i n € S, n .2 1. 
The numbers Pi ·and P ij (k) satisfy t he cond í t onsí 

(2.5)
Pi ., O.. I P i =:: 1, 

i € S 

(2.6)P ij (k) ~ O. j ~ S P ij (k) = 1, 

for any k ~ 1,and conversely, the Kolmogorov theorem/
6

/ shows 
u s that there is a stochastic p roces s ~ = IX nI ~=::o satisfying 
(2.])-(204) whenever (2.5) and (2.6) are satisfied. 

lt is convenient to denote by kPj ,i ~ S, k = O,],... , the 
probability measure conditional on Ix k= il,so t ha t 

k k (2.7)
P = I Pi P i ' 

1 € S 

where P~ = P (X k = i).
For our aim it is convenient to consider, for a given Mar­

kov process ~ = IXnJ~=o' a whole class of Markov processes
 
:x k= IX~ J ~=o, k ~ 1,where. X~ = Xk+n-l· SO that ~ == ~ lEram
 
(2.7) we abtain that 

k pj (X k = il"'.'X~= in) = Pu (k ) ••• p. i (k+n-l). (2.8)
t 1 ln_ 1 n 

so that kPl depends only on 'p ij (n), and not on the distribution
 

of Xk.
 
Lf (2.8) is summed over a I I vaIues of i 1, •• ·,i n - 1 , we obtain
 

the n -step transition probab í Lí es
 

(2.9)P)j)(k) == P(X~c jIX~= i) == kPi(X~= j). 

They are easily generated using the Chapman - Kolmogorov equa­


tion
 

(n + m}.k) 't' ( n) (k) (m) ( )
P lj , =... P i r P rj k + n = 

r€ S 
(2. 10) 

== I pi;)(k)P~~)(k + m), k L 1, i,j € S, 
r € S 

(1)
where PiJ (k) == P ij (k).

In the sequeI we show that any Markov chain generates a semi-
recurrent sequence. For that, for any k .2 l,consider the return 
of the sequence X~ to a fixed state a € S, that is, we observe 
the set af integers for which X~ == a.There mar be a finite or 
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infinite number of them, and they máy be written in ascending 
order as O:::: TI~.< TI~ < ••• !7~k,whe.n'~'Kk '<oois the total numb e r of 
r eturns of the process :x k to i t s ini tial s tate a. For n.:2 1. 

k k k k k' k
Pa (Kk ~ 1~ "711 = n) == P a (X 1 •••• , Xn_ 1 I a, X n = a) 

L Pai (k) Pi 1 i2 (k + 1) ••• Pi a (k + n - 1) == f ~ , 
. I 1 n- 1i l' .. ln-l r a 

say , Clearly n~ 1 f ~:::: P (Kk 2 1) ~ 1. For convenience we define 77 ~ = oe 

if K k == O, so that . 

k k00 

f 00 = 1 - ~' f n • 
n== 1 (2.11) 

lf now we define 

k k k 
u n == P(~n = ai Xo == a), (2. 12) 

wi th the convention U~ = 1, then , for n~ 1, 

uk n r- kkp (X k = a)
n a, .n L k P (X k == a,' 77 1 :1: j) = 

J> 1 a n 

n k k k kL f j P a (X n a I TI 1 == j).
j == 

k k 
Since the event 1TI ~ = j I depends on Iy oh Xl' ••• ' X j and implies 
IXf = .a 1,(2.1) gives 

k k k. k k k+ j
Pa(X n = alTll= J) == P(X n:::: alX j = a) = Un-j • 

From (1.7) we have that u~ defined by (2.12) forms a semire­
current sequence. 

An important result of KvLc Chung (recorded by Fell'er /4/ ) 

says that any I-semirecurrent sequence arises from a homoge­
neous Markov chain via (2.12). The following result shows that 
this result is true for semirecurrent sequence, too, and this 
gives an answer to the question posed in í 2/ concerning the 
characterization of semirecurrent sequences. . 

k 
Theorem 2.1. If lUn :k 2 1, n 2 01 is any semireéurrent se­

quence, then there exi s ts a Markov chaí n ?X taking values in 
a count.ab l,e state space S and a state a ~ S such that, for a Ll, 
n , (2.12) holds: Moreover, there exists a sequence of semi-
r e cu r r en t events, IA~ : k 2: 1, n .:2 OI such' that ti ~:::: P (A ~ ). 

4 

n 
k :t kProoi. Put S =10,1,2, •.• } and gn ::::l-j_ lfj. For anyk 2 1, 

we define the transition probability mat r í.x , P(k) = IPij (k): i.i € S ~ 
as follows. 

'A(k) 
Ok) ,

P(k) - (o~ 
'00 

(2.13) 

where A(k)(Ok) is a square (zero) matrix with k rows, and 000(100 >, 

is the infinite square zero (identical) matrix, the matrix A(k) 
has the following form 

k k k k 
f 1/ g O g 1 /go O ... O 

k- 1 k- 1 k- 1 k- 1
f 2 / g 1 O g 2 19 1 ... o 

A(k) J: 1(2.14) 

1 1 1 1fk/gk+.l O O ... gk/ gk+l 

here we define O/O as 1/2. We note the elements of A(k) in 
(2.14) are well defined. Then, for a = O, we have 

k k k k k k k k
PO (X l' •.. , X n_ 1 ~ O, X n ;, O) == PO (X 1 :::: 1, X 2 2, ••• ,X n _ 1 = 

k 
n -l,Xn == O) = P0 1(k)P 12(k+l) ••• Pn-2,n-l(k+n- 2)P n-l.0(k+n-l)_= 

k k k fkg 1 g 2 g n- 1 n fk 
~ -g-k-- n~~ O 1 n- 2 n - 1 

(n) k 
s o t hat, P 00 (k ) = U n • 

For the second part of the assertion, define, for any k'~ 1 
and 1 ~ i 1,< i2.u<in, n ~ 1,functions <I>k(j 1,···,i n) = p(xf1 I a, 
••• , X tn "a, X~ == a) where ?X = IX n I :==0 is a Markov cha í n f r om 

the first part of the Theorem. The functions <I>k fulfill the 
cond í t i.ons of Theorem 2.4 of/2(hence there exist semirecurrent

kevant;s , IA~: k ~ 1, n ~ OI, say, with U n:::: P(A~). q.E.D. 

Theorem 2.2. lf Iu~: k ~ 1, n ~ Ol and Iv~: k ~ 1, n ~ alare two 
semirecurrent sequences, then I w~: k 2 1, n ~ a lwhere w~ == U~v ~ 
k ~ I, n ~O, is a semirecurrent s equence , t oo , 

Proof. According to Theorem 2.1, there exists a Markov chain 
-- k k k:x on a state space S, and a state a E S such t ha t Un" Pa (X n= a). 

5 



Ana l.ogous Iy, there a Ls o exists a Markov chain '!j. on a state 
space S' arid independent of ~. and a state b ~ S' such that 
v~= kP.b(Y~= b}, Then Zn= (X n, Yn) defines a Markov chain on 
Sx S;, for whichkpa,b(X~= a, Y~ = b) = u~ v ~ • Q.E.D. 

Note. In the pape\/71 there is shown that for any 2-semi­
r.ecm;rent sequence lu n: k ~ 1, n ~ OI there ex í s t s a homogeneous 
Markov.process ~::: IXn In': O with a countable s ta t e space S such 
that 

u n1 = P (X n::: a IX o > b), u~= \(X n= a),alX o::: 

for a I I n ~ 1, k ~ 2, and some pair a I: b of states from S. Theo­
rem 2.1 shows us that these u~ may be also determined as dia-o 
gonal elements of appropriate transition matrices of a non­
homogeneous Markov chain. 

3.	 SEMlRECURRENT EVENTS WITH CONTINUOUS TIME PARAMETER 

In this section we shall deal with a generalization of 
a semirecurrent events to a continuous time parameter. A system 
of events IA~: S, t > 01 on t he prob ab í Li t y space (n~ §. P) is 
said to be semirecurrent (with a continuous time parameter t 
if, for any S > O and 

O < t O < t 1 < ••• < t n '. n ~ 1.	 (3. 1) 

we	 have 

8 8 8 8+ to 8 + to 
P (A t ••• A t I A t~) (3.2)n P(A tl- -«:": t n to)·1 "ti	 ­

lt is evident, that, if IA:: s, t > OI is a system of semirecur­
rent events wi th a cont nuous time parameter, then, for any h > O,í 

k kh
IBn: = A nh :-k ~ 1, n 2 OI,	 (3.3) 

is	 a sequence of semirecurrent events. 
Define a class of functions Ip8(t): S > Olof a real t > Ovia 

8 S 
P (t) P (A ).	 (3.4)t 

Le~a 3 •.1. Let IA~: s, t > Olbe a system of semirecurrent even t s 
andlet So >. O be g íven . Then la:: s, t > Ol.where B~::: A 8t+ So , is 
a system of semirecurrent events, too. 

6 

Proof. Le t' O. 1) hold, t hen., for any S .> O, 

S 8 8 S+ So s+ So 8+ 80
 
P(Btl···B t n I B to ) P(At.l ••• A t n I A to
 

S+so+to S+80+tO S+t o 8+tO
 
P(A t l-tO ••• A tit- to ) P (B tl- to· •• 13 t n- to) •
 

Q.E.D. 

Jl s 82	 8 

lf P 1 (t) = P (t) for any S 17 5'2' t > O, IA t : s, t > O[are 
said to be a system of recurrent events with a continuous time. 
An important case arises when ·there exists as so> O such t ha t , 
for any S > so, 

S ·so 
P (t) = P (t), t > o. 0.5) 

Immed~ately we have the rollówing resulto 

Corollary 3.2. lf for a system of semirecurrent events 
IAB : s, t > OI there is an S O > Osuch that 0.5) holds for any 
S ~ So and any t > O, then lB ~ : s, t :> OI in a system of semire­

. B B+ So 
current events; where B t ::: A , s, t > o. 

Now we give an example of a, system of semirecurrent events. 
Let IX t: t > Olby a (non-homogeneQus) Poisson process with 
a rate function A(u) where A(u) is a nou-nega t ve , con t í nuousí 

function bounded on any finite intervalo So that, we may as­
sume that X,t denotes, for example, the number of particles 
arriving at the counter during the·time interval (O, tl. Then 

= e-1\(O,t) 1\(O,t)n/n! , n = /,1,2, ... , where 1\(S,t) =P(X t::: n) 

= 
s+
J 

t 
A(u) du , Let ç s, t , s, t > o, denote a random variab le cor-

s 
responding to the Poisson process IX t : t > 01 and denoting the 
number of particles arriving at the counter during the time 
interval (s, S + tl. Then P(ç B,t::: n):::· e-1\(8,t) 1\(s,t)n/nl, n ::: 
::: 0,1,2, .•.. lf we put A~::: lçs,t ::: oi, then using familiar 
properties of a Poisson process IX t: t > Olwe may easily check 
that IA ~.: s, t > OI is a system of semirecurrent events with 

s -1\ (O, 8 + t) -1\ (O, s ) 
P (t) ::: e / e ,t > o. 0.6)

II 
The functions pB(t) defined by (3.6) have an important property 

.J . lim p B (t) = 1 0.7)
 
1;, t-+ O
 

uniformly in S on any finite intervalo A system of functions1 
IpB(t): s > 01 ar s í ng by 0.4) is said to be s t anda rd if 0.7)í 

.~o.lds un i f o rm l.y in S on any finite intervalo 

7 
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Using the property (3.7) we see that, for sUfficiently large
Analogously as in a disctete case we show that no system 

n, any	 term in the right-hand s ide of the las t inequali ty i.s
of functions of t ,1p S(t ) : s > OJ,with O.~ps'(t) .~l.s.t>ocor- ; ~ po~itive.	 ' , Q.E.D~ 
responds to a system of semirecurrent events via (3.4). The 

Now we show t ha t a system of non-negative .tunc r í.cns {p's(t): " 
necessary and sufficient condition is the next resulto 

s > Ol of j > Osatisfying t he condi tions ~f Theorem 3.3 may 
appear in a different way as that described via a (non-homo­

Theorem	 3.3. Let p B (t): s > O by a system o f non-negative func­ geneous) Poisson processo'Itions of t > O, and write, for any n ~ 1. 
So, let ~ = {Xt: t > 01 be a Markov process with a countable 

state space S. That is, f 0< t1< t2< ••• < tn, n ~ 1,thení}'l
q>S(tl' ••• ,t ) = 1 - ~ pS(tj1) + . ~. pS(t j 1)n 

1 .~ J 1 .~ n l.~ J 1'< J 2~n	 P (X t == j IX t 1 •••• X t ) == P (X t =: j IX t ) • 
n	 n- 1 n n- 1 

s+ t j1 n S s+tj1
 
p (t j -.t j ) + ••• + (-1) L P (t j 1) P (t j - 'I. for any j ~ S.
 

2 1 1.~ j 1,< ....<í n~n 2
 " Then for the transition probabilities
 
s+ tj n I

I
 
t j1)···P
- (tjn-tjn_1),	 I P i j (8,t): = P(X s + t == jlX s = i), j,j E S, s,t > O, (3.10)I 

! we have the following properties
whenever O .~ t 1 .< . t -2< •••.<.t n.Then there ia a system of semire­
current events {A~:s,t > Olwith (3.4) if and only if, whenever 
n ~ 1, and O .< ti < ....<tnwe have 

s	 s 
O .s <I> (tl, ••• ,t n) .$. <I> (tl, ••• ,t	 (3.8)

n- l). 

Proof. The necessity of (3.8) follows from the simple obser­
s(tl'

vation that.if O.<t 1.<•••.<t n,then'<1l ••• , tn) = P(Ã~1••• ÃtSn). 
Conversely, suppos e that (3.8) ho Ld , For anys > Owe have 

to const_r~ct a probability space (ns,'~s.ps)~n~ a system of 
events IA t : t > () J c § s such that p'S(t) = P's(A t), t > O. To do 
this we must verify the Kolmogorov consistence conditions/6/ . 

íHence ,	 f we construct the direct p robab í Li.ty space (O,'§. P) = 
'(r) ) h s -1 - s" • h = n ( O,s' <:1 S • P s ' t en A t: = 17'8 (A t ), where 1Ts : O -+ ns 1S t e 

s>O 
s-th projection function forros a system of semirecurrent events 
in questiono Q.E.D. 

A simple corollary of the last Theorem is the following in­
equality.. For any s, t, u > O 

s s+t s	 s s s+t (3.9)P (t)p (u)-s, P (t + u) c:: 1 - P (t ) + p (t)p (u) , 

s 
Lemma 3.4. Iflp (t): s > 01 is a standard system of functions 

arising from some semirecurrent events via (3.4). Then p s(.t) > O 

P .. (s.j )	 ~ O, ~ P , (s, t ) 
i J 1,	 (3. 1 1 ) 1J j E S 

L P'k(s,u)Pk,(s+u,t-u)"=P.. (s,t), i,jES.	 (3. 12)k E S 1 J	 1J 

for any	 O < u < r, and s > O, 

P ij (8,S)	 = , i,.j E S, s > O,ô i j	 (3.13) 

where Ôij denotes the Kronecker delta function.
 
Gonversely, any system func t ons IPi j (s, t): i. j E S. S. t > OI
í 

with (3.11)-(3.13) determines a (non-homogeneous) Markov pro­
l ces s IX t : t > OI wi th continuous time who se transi tion probabi­
li t í es are given functions IPi j (8, t ), i. j E S J of s, t > O.
 

Now, fix a state a E S. Then {p\t): s > O I, where pS (t ) : 
= P(Xs'+t = ai X s > a) , t > O,is a sys-t em of functions fulfilling 
the conditions of Theorem 3.3. Indeed, put, for any 8'> O, 

1> s(t 1 .··· ,tn ) == P(X S + t 1 " a, ...• X S + " ajX "" a),t n s 
,.:
 

whete t 1<'·.< t n , n2 1,Consequently, there is a system of semi­

recurrent events, {A~ : s, t > OI say, such that P (X 8+ t = a /x's =
 

= a) = P(A~). 

for any s, t > O. 

Proof. Using (3.9) we have, for any t > O and s > O, 
;I In this place we remark that the converse implication is 

not true, in general. From the paper 18. p.4291 there fol1.ows' 
that not every functions, determined from recurrent events in 

s s s+ ti n s ... ( n ­
p (t) Z p (t/n)p (t/n) ••• p 

1) ti n
(t/n ) , 

continuous time, arise from 
for discrete time case, see 

a Markov chain. 
Theorem 2.2. 

This is true only 

8 9 I 
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Theorem 3.4.	 Lf {p·S

1 (t): s > 01 and {p 2
S 

(t) :'S > OI are two sys-
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ABype~eHcKHA A. E5-86-352 
0 Henpep~BHOM no BpeMeHH aHanore CeMHpeKyppeHTHhlX COO~THH 

B HeKOTOphlX CTOXaCTH~eCKHX MOgenHX paOOThl C~eT~HKOB ~ac­
TH~ C MepTB~ BpeMeHeM npogneBaro~erOCH THna nOHBRHIDTCH CeMH­
peKyppeHTHMe C06wTHH, p~CKpeTHMe no BpeMeHH. lloKa3aHO, ~TO OH~ 

ODHC~aiDTCH ~epe3 nepeXOAHMe BepOHTHOCTH HeOAHOPOAHOH ~eDH 
MapKoBa co c~eT~ ~cnoM cocTOHHHH. CeMHpexyppeHTHhle co6~THH 
C AHCKpeT~ BpeMeHeM o6o6~aiDTCH Ha cny~aH CeMHpeKyppeHTHhlX 
COOhlTHH, HenpepYSHHX DO BpeMeHH 1 H HCCRegyiDTCH HX OCHOBHbJe 
CBOHCTBa. 

Pa6oTa Bhlnonaeaa B Ra6opaTopHH B~HcnHTenbHOH TexHHKH 
H aBTOMaTH3a~H OHHH. 

Coo&ueHHe Ofit.elualeHHoro HHCnrryra JlllepHbiX Hccne,noBaHHii . .D.y6Ha 1986 

Dvurecenskij A. 
On a Continuous Time Analogue 
of Semirecurrent Events 

E5-86-352 

In some stochastic models of the work of particle coun­
ters with prolonging dead time there appear the semirecurrent 
events with discrete time. In the present paper it is shown 
that they are described as transition probabilitias of any 
non-homogeneous Markov chain with countable state space. The 
semirecurrent events with discrete time are generalized to 
the case of semirecurrent events with continuous time, and 
some of their main properties .are investigated. 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 
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