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1. INTRODUCTION

Let us suppose that °'the set, L, of all experimentally ve-
rifiable propositions of physical system forms a quantum loqic.
According to Varadarajan’/l/, assume that the quantum logic L
is an orthomodular orthocomplemented g-lattice with the mini-
mal and maximal elements O and 1, respectively, and with an
orthocomplementation 4+ : a»a', a,a*€L, which satisfies (i)
(84)L= a, for anyad.; (ii) if a<b, thenbi<al; (iii)ava‘=1,
for any a€L; (iv) if a<b, then b=aV(a*l\b). Here < denotes a
partial ordering on L, and A and V denote the meet and the
join.

Two elements a and b of L are said to be (i) orthogonal and
write atbif a<b' : (ii) compatible and write a b, if there are
three mutually orthogonal elements a, b1 , ¢ such that a=a, Ve,
b=>b L Ve,

Physical quantities are identified with the observables of
the quantum logic. An observable on L is a map x from the set,
B(R,), of all Borel measurable subsets of the real line R,
into I cuch that (i) wR.V-1: (ii) «(M), WFif RAF @ (iii)
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x( U Ei)=i\°/°1x(Ei) if E,NE =,i4j. An observable is bounded if
i=1 =
there is a compact subset CCR,such that x(C) =1, Two observables
x and y are compatible if x(E) ey(F)or any K, F € BR,).
Physical states are identified with the states of the quan-—
tum logic, that is, a state is a map m: L=+[0,1] with (i) m(1) =1;

(ii) m(j\a; a)= X m(a,) whenever a 1a.,i#].
i=1 17 Tj= b=

The more general notion as a state is a measure or a sig-
ned measure. So, we say that a mapm: L-»RIU{-«}UI-m,liS sald to

(- <] oc

be a signed measure on L if (i) m(i'zlai)=i§_)__1m(al)whenever a , a,,
i£j 3(ii) m(0)=0;(iii)from the values *w it attains only one;for
the sake of definiteness we consider +~ as the possible value.
The positive signed measure is called a measure.

An element & is a carrier of a measure m if m(b) =0 iff b1 a,
It is clear that if a carrier of a measure exists, then it is
unique. The signed measure mis (i) finite if |m(a)| <=, for any
acL; (ii) o~finite if there is a sequence of mutually ortho-

gonal elements iai}{zlwith i§1 a,=1 and |m(a;)| < for any i.An obser-
vable x is g-finite with respect to a signed measure m if there
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is sequence {Ei };;1 CB(Rl)such that Eif\Ej=ﬂ, ifj, 1U1 Ei=R1

and m(x(E;)) | <e, i>1.

We say that a signed measure m is continuous from below
o0
(above) on an element a ¢, if, for any a;<ag<..with i‘Vlai= a
o0 =
(a1>a2>... with {\=.1ai=a and at least for one n°|m(ano)}<,.,) we

have m(3) =limm(a ).Similarly as in’/2/we may prove that a finitely
additive function on L withm(0)=0 is a signed measure iff m is
continuous from below on any element of L, or, equivalently,
mis continuous from above on the minimal element O.

2. JOINT DISTRIBUTIONS

For an observable x, an event x(E) denotes that the measu-
red value, ¢, of the corresponding physical quantity lies in
a Borel subset E€B(R,). If a quantum mechanical system is des-—
cribed by a measure m, the expression

m n
“ !1---xn (Elx-uXEn)' =n(j/; lxj(Ej)) . Ej GB(Rl)v j= I,...,ﬂ, (2. ‘)
denotes the measure of the simultaneous measurement of the ob-
servables x ;,..., x, which give measured quantities lying in the
Borel subsets E. € B(R,). i =1...n.

According to Gudder /3/, we say the observables x4,..., X,
have a joint distribution in a measure m if there is a measure

m
#11.__,{" on the set B(Rn} of all the Borel subsets of RnS“Ch that

(2.1) holds.
Gudder "3/ introduced the notion of the joint distribution
only for a state (it is named type 1 joint distributiom, toco).
This type has been studied in“%12/, yrbanik’/4/defined another
type of a joint distribution in a state (type II joint distri-

bution) for the summable self-adjoint operators in a Hilbert
space, and Gudder /3/generalized this notion for bounded obser-
vables on a sum logic.

For given observables x

. m
¥ the function g x de-

1’° ex 0
fined on all measurable rectangles of B(R ) via (2.1), m;y be
extended to a measure on B(R,) for (i) any measure m; (ii) only
some measures; (iii) no measure. According to this, we may say
that the observables Xy5+++,%_are (i) compatible; (ii) partial-
ly compatible; (iii) incompati%le. This characterization was
investigated in”/5.8/,

If m is a state, then the joint distribution, if it exists,
is determined unambiguously on B(R,) . For a measure m with
m(1) =, the uniqueness must be studied in more detail.



The notion of joint distribution in a measure may be gene-
ralized to any set {g,:t<c T} of observables in a natural way:
we say that observables {x,:t € T} have a joint distribution in
a measure m if any finite subset of {x,:t€T}has one. The genera-
lization of this notion to o ~homomorphisms defined on a measur-
able space (X,9d) is straightforward (here ® is a o-algebra of
subsets of X and a mapx : §-L 1is a o —homomorphism if (i) x(X)=1L

(ii) x@Wx(Fif EOF=g; (iii) x(\Y, E;) =V, x(EB,), {E }CS.

S.P. Gudder in’?/posed the following problem:

VII. Joint distribution. Can a joint distribution be defined
for noncompatible observables? The answer to that problem for
states has been obtained in the papers /5,6,13,147,

In the present note we solve this problem for measures with
m(1) =e. The solution will contain the answer for measures on
a Hilbert space logic, too.

In the sequel we suppose that the observables X 5...,% are

given and for the joint distribution ‘12 . Oof xhoooxy in
Lo Ep

a measure m we shall write simply u.

LEMMA 2.1. Let observables x,,...,X, be compatible. Then,
for any measure m on L, there is a joint distribution. If at
least one observable is o-finite with respect to m, then the
joint distribution is unique. )

Proof. For compatible observables Xysee.5 X, , there is a
unique o -homomorphism X : B(R,) »L such that X(R;X...xE; x...xR)=x;8),
i=1,...,n; see /1,Th.6.17/Tet us put w(B) = m(x(B)), B € B(R,).Then g
is a well defined joint distribution.

The uniqueness of the joint distribution follows from the
uniqueness of the extension of/027finite measures defined on the
set of all rectangles of B(R,), " Q.E.D. ‘

Define 1

n
a(El""'En) = . \/l -0 J/:l XJ( EJ), Eln-.-pEn [ B(Rl)v (2.2)
1 = =

where °E =E® =R, -E, g _E.
We put (if it exists)

a,= A ta(E(,....,E)): E{,..,E €BRy)}. (2.3)
In the paper/ls"’it is shown that the element a, exists, and,
. k k oo
moreover, there is a sequence fa(E,,...,E)) }k-——l such that
iad k k )
aozklll a(El,...,En). (2.4)

The element a, is called a commutator of Xy,..., X, and the
main properties of the commutator are investigated in”12.13/,

4

LEMMA 2.2, Let X,
Then

(i) m(a(Ell"' En)) = m(l)'

«++>Xy have a joint distribution in m,

E\,..,.E, ¢BR 0
. n K 2.5
(ii) m( l/__\.l x(E)a l‘/__\_la,(Ekl, ...,Eﬁ)) =m( 15'1xi(Ei)) , ( )

for anyE,,...,E_,EE EXen
3e oy 1oe0ss €B(Ry) k=1 ...
an integer or . " oo y ’ » K where K may be
Proof. Part (i)

n .
m(1) = rlm(j/;-l %(R)) =u(Ryx...3R)) =u((E, UE]) x..x(E, UED)) =

- 1y iy .
11...% -o U Exux TE) =m@&(E .., E)).
Part (ii)

n n K
m( A k k n
(A L 5B >m( N X (B A ¢y 8(Ey . EN)) =m(i/-\_-1x1(Ei)A

K 1 n
AN V A
k=1 11...in=o j=1

i k 1 n
2 (YE)>m( v
i Mz (11...1n=o 1Ay % (Ej)A

’Fi An (ijEk) 1 n K 4
n R . )=m( V A x (E.n TE%Y)) =
k=1 j=1 1 3 bgonrig=0 j=1x,( i kgl Ej))_
1 n K i
= b3 (I (B.n J pk - _ n .
o # j=l( j krll E/)) =p(Ex..xE ) ~m(l/=\.1 x,(E))).

Q.E.D, -

COROLLARY 2.3, If Xpp-++,X, have a joint distribution in m

then, for the commutator a5, we have ’

n n -
m( A -
(A *1Binay = m( A 2 @D, (2.6)
for any El""'En €BR,).

ma ) = m(L), (2.7)

] ?roof%f(2.6) follows from Lemma 2.2 and (2.4). For (2.7)
it ici ‘ :
1s sufficient to put E1=E2=...=En=R1. Q.E.D.

LEMMA 2.4. Let x 12+ ++» %, have a joint distribution in a

m;zasure m. If there are EG’%(RI) and x; such that m(x;(E)) < «
then

m(x, (E) A at )y =0.

(2.8)
Proof. From the results of the paper “13%01iows that at ﬁxj(F)
——— - (o]

for any FGB(Rl) and any j =1,...,n. Hence a;c—» x(E) and from
5




(2.6) we have
m(x, (E)) = m(x,(E) A8 ) +m(x (E)A atl) = m(x,(E)) +mx; (E)A at),
consequently, (2.8) holds. Q.E.D.

LEMMA 2.5. Let Xy,...,X, have a joint distribution.in a
measure m. If at least one observable is o -finite with res-
pect to m, then

(2.9)
1 - .
m(a O) =0,

Proof. let {Enl:=1 CB(Ry) be a sequ’encg with E;n E;-= B,i45,

UIEn =R, , and, for some X, |m(xi(En))l < e, N>1 Since
n=

o0
/1,Lemma8.10/ 4L . v x (B ) =
ay « xy(E,), for any n, then, due to ) n=1 1( n

= ‘V1 (ag A x,(E)) . Check
n=

n o0 i 00 n A E =0,
m@t) =m@;A 1) =mE, A nlei(E:n)) _n_-2.1 m@, A x(E))
JE.D.
when we use (2.8). Q

ervables and let m be a

THEOREM 2,.6. Let x,,. ca X be ol?s ab1l and rerm bea
measure. If (2.9) holc}s, then there is a _']OlntA istributi
X. 5...,X_ 1n a4 measure m. LI at leasc one observable is
al—finite x:‘i]..th respect to m, then the joint distribution is
unique. ) . ) .

%f X x  have a joint distribution in m and at least

2t n . « .

one obsei‘vable is o -finite with respect to m, then (2.9)
holds.

Proof. The first part of Theorem follows from thc.a follc}wizsi/ng.
Let &, be a commutator of x;,...,x . Then, agchjmngaflo()bser_
i=l,...,8 , defines
X, (E) = x(E) A &, Ee BRy, s ; nes beer
veilt;le X0 1=1,..., 0, in a quantum logic L(o'ao)_{b.bGL, "'?'l

(here the greatest element is a,, an orthocomplementation L
is defined viab’=btA a_(b<a))) Moreover, Xj;p,...,% 1]“ are
tually compatible observables. Hencc.a, dt.1e to Lemma 2u.l ’-mlL

X419 »+++5Xpg have a joint distribution in a measure m,= (0.2
From (2.9) we have

n n o 1 - A )) s
m( 1/:1 x(E)) = m(ill.1 x(E)nra) +m(l’:1xi(Ei) A ag) m°(1l=\1x‘°(Ei

i joi i ibution in m,
which entails that x EERREE have a‘ Jom1': distribu gon tn o
Repeating the same arguments as tnose'lr.l the‘procg £
ma 2.1 we establish the uniqueness of a joint dlstrlbut;on.
The second part of the assertion of Theorem follows rng 5
Lemma 2.5. ).
6

LEMMA 2.7. Let 8, be a carrier of a measure m. If KpseeesXy

——T » . . . .
have a joint distribution in m and at least one observable is
o —finite with respect to m sthen

a <a°,

m (2.]0)
and
am<a(E1,...,En) , for any El""'En GKRI)' (2.]1)

If (2.10) holds, or, equivalently, (2.11) is true, then
Xy15.-.5 %X, have a joint distribution in m. If at least one

observable is ¢-finite with respect to m, then the joint dis-
tribution is unique.

Proof. (2.10) and (2.11) follow from the definition of a
carrier, Theorem 2.6 and (2.4).

Q.E.D.
Note 1. The condition
ma(Ey,...,Ey) ) =0, for any Efse- o, Ey € BR ), (2.12)

is necessary and sufficient condition for X1,...,% to have
a joint distribution in a state (or finite measure) /5'6'13/.
For a measure with m(1) =w thisg condition 'is known only
in special cases, see Lemma 2.7.

LEMMA 2.8, Let a logic L be o —continuous, that is, for any

o0 o0
81 <ag<... and, any a, we have (_‘Vlal),qa =V 1(ai/\a). Let there
1= 1=

hold for a measure m and observables LETERRPS

n 2 n
b} Iy J
m(j/=\.lxj(E1 UEz)) ol 3 -1m(j/=\'1x.i(E5j))

1 Kp

Inpgi_ I i -
) N Ejy=p, B|,E} €BR), j-1,..,0.

’

(2.13)

If at least one observable is o-finite with respect to m, then

there is a unique joint distribution of Xis.¢e,X, in m,

Proof. It is easy to verify that (2.13) implies that , :
‘ n
Ex o XE n—-»m(j/\‘1 xj(Ej)) » is a finitely additive function on

the set ?n of all rectangles. The v —continuity of a logic and
the continuity of m from below entail that p is a o-additive
and o-finite function on ?n - Therefore it may be extended
to a measure on BR)). Q.E.D.
The results of all the above assertions may be extended to
the set of observables {xt: t < T} such that there is at most
countable subset @CU{R(x,):tGT} » Wwhere @ generates the minimal
sublogic of L, containing the set UiR(xt): te T} (here R(x): =

= {x(E): E ¢ BR)! . In particular, this is true for a sequence



of observables. For given observables {x,iteT}] we define the
commutator, a (T), of {x :te€T} (if it exists)via

a,(T) = Alag(Fy: F is a finite subset of T}, (2.14)
where a (F) is the commutator of observables x ty ,...,xt and
= itl,...

From fs"lt follows that a,(T) exists, and, moreover, there
is a sequence of finite subsets FncT such that

a (T =A a,(F). (2.15)
n=1

THEQREM 2.9. Let ixt:tGT} be a system of observables for
which there is at most countable subset @ CU{R(xy:t €T},where

generates the minimal logic containing all R(x,),t €T. If
{x;:t €T} have a joint distribution in m and at least one obser-
vable is o —-finite with respect ta m, then

ma (D' ) = 0. | (2.16)

If (2.16) holds, then there is a joint distribution of ix,
t €T). If at least one observable is o-finite with respect to
m, then there is a unique o-finite measure g on I'l B(R )
such that t&

n n
-1 N
“(j’ll " O —m(jﬁ;txtj(E,)). E{ ., E, € XRy), (2.17)
wilere wy 1S tne projection Irom R!; onto i 4.
Proof. It is clear that if F,;CF,CT, then a(F,) <a,(F{).

Let x{_ X;, be o -finite with respect to m., Then (2.15) 1mp11es

oa oo p

a (T) = nA-l a,(F,) > r:\='1 a(F, uit }) > ng'l a ( 19_-1 (Fyuit i) >a (T).
n

Theorem 2.6 entails m(ao(Bn)'L)=0,n>1, where B =iU1F, ol .

The continuity of m from below gives (2.146).
Conversely, let (2.16) hold. Then, for any finite subset
FCT, we have m(a, (F*) = 0. Now we claim to show that there

is a unique g on tIQ'I;PB(Rl) for which (2.17) holds. Let x'o be
o -finite with respeet to m, and let for some E € B(R,)have
0<n(x,o(E)) < o« . Define a system of functions, luF;,:F is a finite
subset of T}, on ﬂ B(Rl) via

n
E( UEMECREL SO A x, D), (2.18)
=1 j=1
where Eg,..., E; € BR)), _“1 cersty b . The system {u f’. F is
a finite subset of T! fulfills the conditions of Kolmogorov's

8

N

/

consistence theorem/23, hence there a unique measure yuE

on
oo Ei /

n B(Rl) with (2.18). Define u(B) = % p (B), where B€ H BR,;)"

teT i=1 te T

and {El’l=1 is a measurable partition of R, with 0<m(xt0(E ‘))‘<u; s

i >1. The function pu is well defined and it is g—additive and
o -finite. It is easy to check that (2.17) is fulfilled. The
uniqueness of yu follows from the extension theorem for ¢ -fini-
te measure on the set of all cylindrical sets. Q.E.D.

Analogically we may prove Lemma 2.7 for the case described
in Theorem 2.9; it suffices to change a8 ,to aT).

The proofs of the following two lemmas are simple and they
are omitted.

LEMMA 2.10. Let at least one observable x;, i=1,..., n, be

o -finite with respect to m, Then xl,...,x have a joint dis-
tribution in m iff f P { oxnhave it for all the Borel
measurable real- values functlons, where fox(E): =x(f “1(E)),

E ¢ B(R o In this case there holds

m m -1
uflo xl...fnoxn(Elx'-"x En) = uxl...xn(fl

-1
(El) x...xfn (En)) .

LEMMA 2.1]. Let M be a collection of measures on |, and let

a measure m be a superposition of M,i.e., m(a)—O, for any
mEcM, 1mp11es m (a) =0. Let, for any meM and m,, there be at
loaet onas r\'hcnv-“a'h'lo vv'h1 ~rh 1: n—F1n1 ta 1‘71 +th rncnnr-r tn thom
1reer Xg have a joint distribution in any mGM, then they
have a _]01nt distribution in m,

3. HILBERT SPACE LOGIC

One of the most important examples of quantum logics is the
set, L(H) , of all closed subspaces of a Hilbert space of H over
the real or complex field C. This is a case of the great im-
portance in quantum mechanics. In this case observables may be
jidentified with self-adjoint operators (not necessarily boun~
ded), according to the spectral theorem.

The famous Gleason theorem’%4sserts that a statem on a
separable Hilbert space H, dim H>3 , is induced by a positive
von Neumann operator T via the formula

m(P) = te(TP), P ¢ L(H). (3.1)
Here we identify the subspace P with its orthoprojector TF onto

P. We recall that a bounded operator T on H is said to be an
operator with finite trace if «(T):= ZGI(Tx“'x‘) is absolutely

convergent series,independent of the used orthonormal basis
x:acrIl



The Gleason theorem has been generalized in/16:17/for all
bounded signed measures on L(H) for a separable Hilbert space
whose dimension is at least 3., Eilers and Horst’!8/ proved Glea-
son's theorem for finite measures on L(H) for non-separable
Hilbert space, and Drisch’/1%/ extended (3.1) for bounded signed
measures on a logic L(H) of a non-separable Hilbert space whose
dimension is a non-real measurable cardinal.

For the measures on L(H) with m(H)=» we need the following
notions. A bilinear form is a function t: D(t) x Dft) - C, where
D(t) is a linear submanifold of H (named the domain of t) such
that t is linear in the first argument and antilinear in the
second one. If t(x,y) = t(y,x), for all x,y €D(t) ,then t is said
to be symmetric; if for a symmetric bilinear form t we have
t(x,x)>0 ,then t is said to be positive. Let t be a symmetric
bilinear form and B>0 be a self-adjoint operator. ThentoB de-
notes a symmetric bilinear form defined via toB(x,y) =t(Bl/’x,B:’éy),
when the corresponding assumptions on the domains of t and B%
are satisfied. Symmetric bilinear form is said to be a bilinear
form with finite trace if (i) D(t)= H; (ii) ¥x,y) = (Tx, y), for
all x,y € H ,where T is an operator with finite trace. We put
tr t = tr(T), and we writet<tr(H), where tr(H) 1is the set of
all bounded operators with finite trace.

Lugovaja and Sherstnev’2% proved that, for any o -finite
measure m on L(H) of an infinite-dimensional separable Hilbert
space there is a unique symmetric positive bilinear form t
with a dense domain such that

wteP it toP € t(H),
mP) = | (3.2)

o0 otherwise.

.

In the paper’?! this result has been extended to o —finite

f -bounded measures on L(H)of a Hilbert space whose dimension
is a non-real measurable cardinal.
The joint distribution of observables on L(H) in a state has

been studied in/3:%/ ., It was proved that X4y...,%Xp have a joint
distribution in a statem induced by T et(H) via (3.1) iff
Xy By ) eexy By )T = x(E ) 3BT, (3.3)

for any permutation (i;,...,i,) of (1,...,n) and allE,...,
E, € BR,).

In the following we shall study the existence of a joint
distribution for a measure m on L(H) with m(H)=«~, and the con-
dition analogous to (3.3) will be proved. First of all we begin
with a finite-dimensional Hilbert space.

LEMMA 3.1. (Lugovaja—Sherstnev/20/). Let dim H= 3 and let m
be a measure on L(H) with m(H) =~. If there are a one-dimensional
Q@ and a two-dimensional P with m(Q) < =, m(P) <e, then Q<P,

10

Denote

P, = ViP:mP) <= 1. (3.4)

The following lemma has been proved in 21/,

LEMMA 3.2. Let 3<dimH <o and let M be a measure with m(H)=co.
If there is a two-dimensional Q, with m(Qp) < =, then m{Q) <o iff
Q<P .

LEMMA 3.3. Let 4 <dimH<eo and let m be a measure with m(H) = .
Let there be a three-dimensional Q, with m(Q ) <w. If m(M)=mN)=0,
then m(MV N) = 0.

Proof. Due to Lemma 3.2, m(Q) <= iff Q<Py. Hence m(MVN) <.
Applying the Gleason theorem to mo:='m|L(o'pm)=m|L(Pm) we see
that MM VN) =0. ) Q.E.D.

LEMMA 3.4. Let the conditions of Lemma 3.3 are fulfilled.
Then any measure m on L(H) has a carrier.

Proof. Let us denote W={P:mP) =0}. It is clear that (1)
W4 (ii) if Q<P,P <% , then QcN; (iii) if PLQand P, Qe ,
then PVQ €M; (iv) if P, and P, € M, then P VP €M , where Py
denotes the one~dimensional suﬁspace generated yby a non-zero
vector x&H. Let us put Pp =V{P:m(P)=0}. Then fron‘1L Lemma 3.3.
and (i)-(iv) we have that m(P7)=0. Define A =P2". Then A is
a carriear nf a meacure m . Q.E.D.

We recall that a subset WcL(H) with (i)~(iv), from the last
proof, is said to be called an ideal.

THEOREM 3.5. Let the conditions of Lemma 3.3 are fulfilled.
If, for X ,.+., %5 , W have

x; (& 11') Xy @y )A poxyBy) X EDA o (3.5)

for any permutation (i,,..., 1,) of (l,...,0) and anyEl,...,
E € B(R) where Ap is a carrier of a measure m, the.:n'xl,...,xn
have a joint distribution in m. Moreover, the condition (3.5)

is equivalent to

A A A=A

L 5 o t ST

A_ A (3.6)

I m
for any permutation (iy,...,ip) of (},...,n), where A is an
Hermitean operator corresponding to an observable x.

Proof. It is known/28/ that (3.5) implies (x,(E A ..AxE)A =
= x (E 1)...xn(En)Am. Hence

1 1 in
(E,,...E DA = 21 x,( E)..x ( EDA _<IA =A.,

m

11



where I is the identical operator on H. Therefore a(B
for all E,...,E , consequently, Ag> A, , where A, is the com-
mutator of x;,..., xpand m(A_) =0. Repeating the first part
of the proof of Theorem 2.6 we finish our proof. Q.E.D.

We see that measures with m(H) = On finite-dimensional Hil-
bert space are in some sense '"pathological’. More useful infor-
mation we may obtain in an infinite~dimensional separable Hil-
bert space.

LEMMA 3.6. Any o -finite measure on L(H) of an infinite-di-
mensional separable Hilbert space has a carrier.

Proof. If mH)<e, then the assertion follows immediately
from Gleason's theorem. ’

Let now m(H) =« . Define M= {P:m(P) =0}. We claim to show
that M is an ideal of L(H). For that it is necessary to show
that if p,, Py €M, then Py vP_&ll. Wé may limit ourselves
with P tP ’Px’épy The o -finiteness of m entails that there is
at least one three-dimensional P such that m(P)<e and Px £ 0,

Py # 0. Then there is ¢ €Psuch that ztx and z1y . Applying the
Lugovaja-Sherstnev lemma to a three-dimensional space P =
=F vPy vPy we have that m(P,vP ) <~, and, consequently, M(P) <,
too. Using the Gleason theorem for a finite measure m = mL(P)
we have m(vaPy) =0,

Now we show that if Py ,..., Pyném, thenP =Py, v,,vP, €.
Lemma 3.2 implies that m(P) <~ and Lemma 3.3 entails that m(P)=0,

Define the submanifold D generated hy an ideal M wiaN- fv .
Py eMUO} and let M be a subspace of H generated by D . Then
M= viP: m(P) = 0, dimP <w}. The separability of a Hilbert space
implies that there is a sequence of finite-dimensional subspa-

ces of H, {P i, _; , with m(P,)=0, such that M ='V1Pn.l;’n may be
n=

chosen such that P; <Py <... .The continuity of m from below en-
tails mM) =0. The element Am=MJ'is a carrier of a measure m.

Q.E.D.

Note 2. The author does not know whether Lemma 3.6 holds for
a non-separable Hilber space whose dimension is a non-real meas-
surable cardinal. For that it is necessary and sufficient to
show that m(M) < . For more details, see the proof of Lemma 3.9.
The following elementary Lemma has been proved in /5.

LEMMA 3.7. Let My,..., M, €L{H), where H is an arbitrary Hil-
ber space. Let (i;,...,i,) be any permutation of (1,...,n), .

i1 i
If04f€ M;A..A"M,, where °M=M,!M=M, then
Mll'"Mln f=M..Mf, (3.7)
for any permutation (j1 ,...,jn) of (1,..., n).
12
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THEOREM 3.8. Let H be an infinite-dimensional separable
Hilber space. If Xy,...,Xp have a joint distribution in m and
at least one observable is o-finite with respect to m,then
(3.5) holds (for any permutation ( ij,...,ip) of (I,...,n)).
If X1,...,%X, are bounded observables, then (3.6) holds.

If m is o -finite and for xy,..., X, there holds (3.5),then
Xy ,...,X, have a joint distribution in m, If at least one
observable is ¢ —-finite with respect to m, then the joint dis-
tribution is unique.

Proof. Since at least one observable is ¢ -finite with res-
pect to m, we see that m is ¢-finite measure, consequently,
the carrier of m exists. Due to Lemma 2.7 A <A ,<a(E,,..E ),
where A, is the commutator of x,,...,%x, defined by (2.4). The-
refore if chﬂf then t € a(El,..-,En) and f is a finite linear
combination of vectors from x (“E YA L. AX (]“En)for any per-

mutation (jl""’jn) of (1,...1, n). Due to Lemma 3.7,

X, 1(E i1) ...xin(Ein)f =x,(E) ...xn(E D0

for any permutation of (i ,,...,i ) of (1,...,n), and, conse-
1 n
quently, (3.5) holds.
For bounded observables, (3.6) is a consequence of the spect-
ral theorem for Hermitean operators. )

The second part of the proof is analogous to the proof of
Theorem 3.5. Q.E.D.
Tn the following the nravioue Theorem will ho ovtendad to
a non-separable Hilbert space. We recall that a cardinal I is
said to be non-real measurable if there is no positive measure
v, v # 0,on the power set of I with v({a}) = 0, for eachacl,

LEMMA 3.9. Let H be a Hilbert space whose dimension is a
non-real measurable cardinal. Let m be a measure on L(H) with
m(H) =~. Let us put A* =V{P: m{P)=0}. If at least one obser-
vable is o-finite with respect tom and %;,...,%; have a joint
distribution in m, then

2y By ) wexy B )A =x,(Ep..xE)A, (3.8)

for any permutation (i ,...,i)) of (1,...,n ) and all Eireers
E, € BR,).

If m(At)<ow,m is o-finite and (3.8) holds, then x,...,x,
have a joint distribution in m. If at least omne observable
is o -finite with respect to m, then the joint distribution
is unique.

Proof. The first part of the theorem is similar to that in
Theorem 3.8.

In the second part we show that m(A')<e implies m(A') =0,
that is, A will be a carrier of m. The generalized Gleason
theorem for a non-separable Hilbert space’®l/entails that there
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is aLuniqué operator T€t(H) such that m(P) = w(TP) whenever
P <A™, The operator T has a form T= X xMfi@f, where f,1 fj,i;éj s
1

HEyll=1,1,€H, x>0, for any i, £OF :x-(x,0f x€H. Hence m(P) =0
iff PLf, for any i (here PL f; denotes that xLf;, for all x€ P).

Hence &% 1L f, for any i, so that, m(Al) =0. For the rest of the
proof we appeal Lemma 2.7, Q.E.D.
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IOBypeueHckHil A. E5-85-867
CoBMecTHhe pacnpefesieHHs Haﬁnmnaeme H Mepnl

¢ 6ecKOHeUHbIMM 3HaYeHHAMH

B pamMkax nogxoza KBAHTOBBIX JIOTMK K aKCHOMATH3alMH KBaHTOBOII
MeéXaHHKH H3y4YalwTCs COBMeCTHhHIE paclnpefeileHHsa HablmogaeMblx B Me—
pax, NpHHHMAaKMHX OeCKOHeYHnle 3HadveHusa. IlpensioxeHs HeoOXOIgUMbie
H OoCTaTOUHble YCJOBHA OJIA CYNEeCTBOBAHHA COBMECTHLIX pacrnpegene-
HHH. Mogenb KBaHTOBOH IOTHKM NpoctpaHcTBa ['mnsbepra usydaercs
6onee noapoGHO,

Pa6ora BeinosiHeHa B JlaGopaTOpHH BhIYUCIHTEIIbHON TeXHUKH
u aBTomaTtu3auun OWIU.

NlpenpHHT O6begHHEHHOTO HHCTHTYTAa AMEPHHIX uccneposauuit, Jy6ua 1985

Dvuregenskij A. E5-85-867
Joint Distribution of Observables and Measures

with Infinite Values

In the frame of the quantum logic approach to axiomatizatioq
of quantum mechanics we study the joint distribution of obser-
vables in measures attaining infinite values. The necessary
and sufficient conditions to existence of the joint distribu-
tion are given. The Hilbert space quantum logic model is inves-
tigated in more detail.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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