$$
85^{2}-867
$$

обьединенный ИHCTMTYT адерных исследований

дубна

$$
1865 / 86
$$

E5-85-867
A.Dvurečenskij

JOINT DISTRIBUTIONS OF OBSERVABLES AND MEASURES WITH INFINITE VALUES

Submitted to "Annales d'Institut Henri Poincare Sect.Physique theorique"

1.INTRODUCTION

Let us suppose that the set, L, of all experimentally verifiable propositions of physical system forms a quantum loqic. According to Varadarajan ${ }^{1 /}$, assume that the quantum logic L is an orthomodular orthocomplemented σ-lattice with the minimal and maximal elements 0 and 1 , respectively, and with an orthocomplementation $\perp: a_{\rightarrow a^{\perp}}$, $a, a^{\perp} \in L$, which satisfies (i) $\left.\mathbf{(a}^{\perp}\right)^{\perp}=a$, for any $a \in$; (ii) if $a<b$, then $b^{\perp}<a^{\perp}$; (iii) $a \vee a^{\perp}=1$, for any $a \in L$; (iv) if $a<b$, then $b=a V\left(a^{\perp} \wedge b\right)$. Here < denotes a partial ordering on L, and \wedge and v denote the meet and the join.

Two elements a and b of L are said to be (i) orthogonal and write $a \perp b$ if $a<b^{\perp}$: (ii) compatible and write $a \leftrightarrow b$, if there are three mutually orthogonal elements a_{1}, b_{1}, c such that $a=a_{1} \vee c$, $\mathrm{b}=\mathrm{b}_{1} \vee \mathrm{c}$.

Physical quantities are identified with the observables of the quantum logic. An observable on L is a map x from the set, $B\left(R_{1}\right)$, of all Borel measurable subsets of the real line R_{1},
 $x\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\bigvee_{i=1}^{\infty} x\left(E_{i}\right)$ if $E_{i} \cap E_{j}=\emptyset, i \neq j$. An observable is bounded if there is a compact subset $C \subset R_{1}$ such that $x(C)=1$. Two observables x and y are compatible if $x(E) \leftrightarrow y(F) f o r$ any $E, F \in B\left(R_{1}\right)$.

Physical states are identified with the states of the quantum logic, that is, a state is a map m : $L \rightarrow[0,1]$ with (i) $m(1)=1$;

The more general notion as a state is a measure or a signed measure. So, we say that a map $\left.m: L \rightarrow R_{1} U\{-\infty\} U_{+\infty}\right\}$ is said to be a signed measure on L if (i) $m\left({\underset{V}{=}}_{\infty}^{\infty} a_{i}\right)=\sum_{i=1}^{\infty} m\left(a_{1}\right)$ whenever $a_{i} a_{i}$, $i \neq j$; (ii) $\mathrm{m}(0)=0$; (iii) from the values $\pm \infty$ it attains only one; for the sake of definiteness we consider $+\infty$ as the possible value. The positive signed measure is called a measure.

An element a is a carrier of a measure m if $m(b)=0$ iff $b \perp a$. It is clear that if a carrier of a measure exists, then it is unique. The signed measure m is (i) finite if $|m(a)|<\infty$, for any $a \in L$; (ii) σ-finite if there is a sequence of mutually orthogonal elements $\left\{a_{i}\right\}_{i=1}^{\infty}$ with $\underset{i=1}{\infty} a_{i}=1$ and $\left|m\left(a_{i}\right)\right|<\infty$ for any i. An observable x is σ-finite with respect to a signed measure m if there
is sequence $\left\{E_{i}\right\}_{i=1}^{\infty} \subset B\left(R_{i}\right)$ such that $E_{i} \cap E_{j}=\emptyset, i \neq j, \bigcup_{i=1}^{\infty} E_{i}=R_{1}$ and $\left|m\left(x\left(E_{i}\right)\right)\right|<\infty, i \geq 1$.

We say that a signed measure m is continuous from below (above) on an element $a \in L$ if, for any $a_{1}<a_{2}<\ldots$ with $\bigvee_{i=1}^{\infty} a_{1}=a$ ($a_{1}>a_{2}>\ldots$ with $\bigwedge_{i=1}^{\infty} a_{1}=a$ and at least for one $\left.n_{0}\left|m\left(a_{n_{0}}\right)\right|<\infty\right)$ we have $m(a)=\lim m(a)$ Similarly as in $/ 2 /$ we may prove that a finitely additive function on L with $m(0)=0$ is a signed measure iff m is continuous from below on any element of L, or, equivalently, m is continuous from above on the minimal element 0 .

2. JOINT DISTRIBUTIONS

For an observable x, an event $x(E)$ denotes that the measured value, ξ, of the corresponding physical quantity lies in a Borel subset $E \in B\left(R_{1}\right)$. If a quantum mechanical system is described by a measure m, the expression
$\mu_{x_{1} \ldots x_{n}}^{m}\left(E_{1} x \ldots x E_{n}\right)=n\left({ }_{j=1}^{n} X_{j}\left(E_{j}\right)\right), \quad E_{j} \in B\left(R_{1}\right), j=1, \ldots, n$,
denotes the measure of the simultaneous measurement of the observables x_{1}, \ldots, x_{n} which give measured quantities lying in the Borel subsets $E_{:} \in B\left(R_{i}\right) . i=1 \ldots, n$

According to Gudder $/ 3 /$, we say the observables x_{1}, \ldots, x_{n} have a joint distribution in a measure m if there is a measure $\mu_{x_{1} \ldots x_{n}}^{m}$ on the set $B\left(R_{n}\right)$ of all the Borel subsets of R_{n} such that (2.1) holds.

Gudder ${ }^{/ 3 /}$ introduced the notion of the joint distribution only for a state (it is named type I joint distribution, too). This type has been studied in $/ 5-12 /$. Urbanik ${ }^{/ 4 /}$ defined another type of a joint distribution in a state (type II joint distribution) for the summable self-adjoint operators in a Hilbert space, and Gudder $/ 9 /$ generalized this notion for bounded observables on a sum logic.

For given observables x_{1}, \ldots, x_{n} the function $\mu_{x_{1}}^{m} \ldots x_{n}$, defined on all measurable rectangles of $B\left(R_{n}\right)$ via (2.1), may be extended to a measure on $B\left(R_{n}\right)$ for (i) any measure m; (ii) only some measures; (iii) no measure. According to this, we may say that the observables x_{1}, \ldots, x_{n} are (i) compatible; (ii) partially compatible; (iii) incompatible. This characterization was investigated in ${ }^{\text {/5.6/ }}$.

If m is a state, then the joint distribution, if it exists, is determined unambiguously on $B\left(R_{n}\right)$. For a measure m with $m(1)=\infty$, the uniqueness must be studied in more detail.

The notion of joint distribution in a measure may be generalized to any set $\left\{x_{t}: t \in T\right\}$ of observables in a natural way: we say that observables $\left\{\mathbf{x}_{\mathrm{t}}: \mathbf{t} \in \mathrm{T}\right\}$ have a joint distribution in a measure m if any finite subset of $\left\{x_{t}: t \in T\right\}$ has one. The generalization of this notion to σ-homomorphisms defined on a measurable space (X, \mathcal{S}) is straightforward (here $\mathrm{d}^{(}$is a σ-algebra of subsets of X and a map $\mathrm{x}: \delta \rightarrow \mathrm{L}$ is a σ-homomorphism if (i) $\mathrm{x}(\mathrm{X})=1$; (ii) $x(E) \perp x(F) i f \quad E \cap F=\not \subset$; (iii) $x\left(\bigcup_{i=1}^{\infty} E_{i}\right)={\underset{i}{V}}_{\infty}^{\infty} x\left(E_{i}\right),\left\{E_{i}\right\} \subset \mathcal{S}$.
S.P. Gudder in ${ }^{/ 7}$ posed the following problem:
VII. Joint distribution. Can a joint distribution be defined for noncompatible observables? The answer to that problem for states has been obtained in the papers

In the present note we solve this problem for measures with $m(1)=\infty$. The solution will contain the answer for measures on a Hilbert space logic, too.

In the sequel we suppose that the observables x_{1}, \ldots, x_{n} are given and for the joint distribution $\mu_{x_{1} \ldots x_{n}}^{m}$ of x_{1}, \ldots, x_{n} in a measure m we shall write simply μ.

LEMMA 2.1. Let observables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ be compatible. Then, for any measure m on L, there is a joint distribution. If at least one observable is σ-finite with respect to m, then the joint distribution is unique.

Proof. For compatible observables x_{1}, \ldots, x_{n}, there is a unique σ-homomorphism $x: B\left(R_{n}\right) \rightarrow L$ such that $x\left(R_{1} \times \ldots \times E_{i} \times \ldots \times R_{1}\right)=x_{i}\left(E_{i}\right)$, $\mathbf{i}=1, \ldots, \mathrm{n}$; see $\% 1, \mathrm{Th} .6 .17 /$ Let us put $\mu(B)=m(\mathrm{x}(\mathrm{B})), \mathrm{B} \in \mathrm{B}\left(\mathrm{R}_{\mathrm{n}}\right)$. Then μ is a well defined joint distribution.

The uniqueness of the joint distribution follows from the uniqueness of the extension of g-finite measures defined on the set of all rectangles of $B\left(R_{n}\right),{ }^{\prime 2 /}$.Q.E.D.
$a\left(E_{1}, \ldots, E_{n}\right)=\stackrel{1}{V}{ }_{i_{1} \ldots i_{n}=0}^{n} \wedge_{j=1}^{n} x_{j}\left({ }^{i_{j}} E_{j}\right), E_{1}, \ldots, E_{n} \in B\left(R_{1}\right)$,
where ${ }^{\circ} E=E^{c}=R_{1}-E,{ }^{1} E=E$.
We put (if it exists)
$a_{o}=\Lambda\left\{a\left(E_{1}, \ldots, E_{n}\right): E_{1}, \ldots, E_{n} \in B\left(R_{1}\right)\right\}$.
In the paper ${ }^{\prime 13 / i t}$ is shown that the elementa a_{0} exists, and, moreover, there is a sequence $\left\{\left.a\left(E_{1}^{k}, \ldots, E_{n}^{k}\right)\right|_{k=1} ^{\infty}\right.$ such that
$a_{o}=\wedge_{k=1}^{\infty} a\left(E_{1}^{k}, \ldots, E_{n}^{k}\right)$.
The element a_{o} is called a commutator of x_{1}, \ldots, x_{n}, and the main properties of the commutator are investigated $\mathrm{i}_{11}{ }^{12,13 /}$.

LEMMA 2.2. Let x_{1}, \ldots, x_{n} have a joint distribution in m.
(i) $m\left(a\left(E_{1}, \ldots, E_{n}\right)\right)=m(1), \quad E_{1}, \ldots, E_{n} \in B\left(R_{1}\right)$,
(ii) $m\left(\wedge_{i=1}^{n} x_{i}\left(E_{i}\right) \wedge \wedge_{k=1}^{K} a\left(E_{1}^{k}, \ldots, E_{n}^{k}\right)\right)=m\left(\bigwedge_{i=1}^{n} x_{i}\left(E_{i}\right)\right)$,
for any $E_{1}, \ldots, E_{n}, E_{1}^{k}, \ldots, E_{n}^{k} \in B\left(R_{1}\right), k=1, \ldots, K$, where K may be an integer or ∞.

Proof. Part (i)
$m(1)=m\left(\bigwedge_{j=1}^{n} x_{j}\left(R_{1}\right)\right)=\mu\left(R_{1} x \ldots x R_{1}\right)=\mu\left(\left(E_{1} \cup E_{1}^{c}\right) x \ldots x\left(E_{n} \cup E_{n}^{c}\right)\right)=$
$={ }_{i_{1} \ldots i_{n}} \sum^{\frac{1}{2}}=0^{\mu\left({ }^{1} E_{1} X \ldots X^{I_{n}} E_{n}\right)=m\left(a\left(E_{1}, \ldots, E_{n}\right)\right) .}$
Part (ii)
$m\left(\wedge_{1=1}^{n} x_{i}\left(E_{i},\right)\right) \geqslant m\left(\hat{n}_{1}^{n} X_{i}\left(E_{i}\right) \wedge \wedge_{k=1}^{K} a\left(E_{1}^{k}, \ldots, E_{n}^{k}\right)\right)=m\left(\hat{i n}_{1}^{n} x_{i}\left(E_{i}\right) \wedge\right.$

$=\sum_{i_{1} \ldots i_{n}=0}^{\frac{1}{2}} \mu\left(\prod_{j=1}^{n}\left(E_{j} \cap \prod_{k=1}^{K} i_{j} E_{j}^{k}\right)\right)=\mu\left(E_{1} x \ldots x E_{n}\right)=m\left(\bigwedge_{i=1}^{n} x_{i}\left(E_{i}\right)\right)$.
Q.E.D.

COROLLARY 2. 3 . If x_{1}, \ldots, x_{n} have a joint distribution in m, then, for the commutator a_{0}, we have
$m\left(\bigcap_{i=1}^{n} x_{i}\left(E_{i} \wedge a_{0}\right)=m\left(\bigcap_{i=1}^{n} x_{i}\left(E_{i}\right)\right)\right.$,
for any $E_{1}, \ldots, E_{n} \in B\left(R_{1}\right)$.
$m\left(a_{o}\right)=m(1)$.

Proof. (2.6) follows from Lemma 2.2 and (2.4). For (2.7)
it is sufficient to put $E_{1}=E_{\boldsymbol{g}}=\ldots=E_{n}=R_{1}$.
measure then
$m\left(x_{i}(E) \wedge a_{o}^{\perp}\right)=0$.
(2.8)

Proof. From the results of the paper ${ }^{13}$ /follows that $\mathbf{a}_{\mathrm{o}}^{1} \leftrightarrow \mathrm{x}_{\mathrm{j}}(\mathrm{F})$ for any $F \in B\left(R_{1}\right)$ and any $j=1, \ldots, n$. Hence $a_{o}^{\perp} \leftrightarrow x_{1}(E)$ and from
(2.6) we have
$m\left(x_{i}(E)\right)=m\left(x_{i}(E) \wedge a_{o}\right)+m\left(x_{i}(E) \wedge a{ }_{o}^{1}\right)=m\left(x_{i}(E)\right)+m\left(x_{i}(E) \wedge a_{o}^{\perp}\right)$,
consequently, (2.8) holds.
Q.E.D.

LEMMA 2.5. Let x_{1}, \ldots, x_{n} have a joint distribution in a measure m. If at least one observable is σ-finite with respect to m, then
$\mathrm{m}\left(\mathrm{a}_{\mathrm{o}}{ }_{\mathrm{o}}\right)=0$.
Proof. Iet $\left\{E_{n}\right\}_{n=1}^{\infty} \subset B\left(R_{1}\right)$ be a sequence with $E_{i} \cap E_{j}=\emptyset, i \neq j$, $\bigcup_{n=1}^{\infty} E_{n}=R_{1}$, and, for some $x_{1},\left|m\left(x_{i}\left(E_{n}^{\prime}\right)\right)\right|<\infty, n \geq 1$. Since $a_{0} \leftrightarrow x_{1}\left(E_{n}\right)$, for any n, then, due to 11 , Lemma6.10/ $a_{o}^{\perp} \wedge_{n=1}^{\infty} \mathbb{x}_{1}\left(E_{n}\right)=$ $=\bigvee_{n=1}^{\infty}\left(a_{o}^{\perp} \wedge x_{i}\left(E_{n}\right)\right)$. Check
$m\left(a_{o}^{\perp}\right)=m\left(a_{o}^{\perp} \wedge 1\right)=m\left(a_{0}^{\perp} \wedge{\left.\underset{n=1}{\infty} x_{1}\left(E_{n}\right)\right)=\sum_{n=1}^{\infty} m\left(a_{o}^{\perp} \wedge x_{i}\left(E_{n}\right)\right)=0, ~}_{n}\right.$
when we use (2.8).
Q.E.D.

THEOREM 2.6. Let x_{1}, \ldots, x_{n} be observables and let m be a measure. If (2.9) holds, then there is a joint distribution of
 σ-finite with respect to m, then the joint distribution is unique.

If x_{1}, \ldots, x_{n} have a joint distribution in m and at least one observable is σ-finite with respect to m, then (2.9) holds.

Proof. The first part. of Theorem follows from the following. Let a_{0} be a commutator of x_{1}, \ldots, x_{n}. Then, according to ${ }^{\prime 13}$ $\mathbf{x}_{i 0}(E)=x_{j}(E) \wedge a_{o}, \quad E \in B\left(R_{1}\right), i=1, \ldots, n$, defines an observable $x_{i o}, i=1, \ldots, n$, in a quantum $\operatorname{logic} L_{\left(0, a_{0}\right)}=\left|b: b \in L, b<a_{o}\right|$ (here the greatest element is a_{o}, an orthocomplementation "'" is defined viab $b^{\prime}=b^{\perp} \wedge a_{0}\left(b<a_{0}\right)$). Moreover, $x_{10}, \ldots, x_{1 n}$ are mutually compatible observables. Hence, due to Lemma 2.1,
$\mathrm{x}_{10}, \ldots, \mathrm{x}_{\mathrm{no}}$ have a joint distribution in a measure $\mathrm{m}_{\mathrm{o}}=\mathrm{m} \mid \mathrm{L}_{\left(0, \mathrm{a}_{0}\right)}$. From (2.9) we have
$m\left(\bigcap_{i=1}^{n} X_{i}\left(E_{i}\right)\right)=m\left(\bigcap_{i=1}^{n} x_{i}\left(E_{i}\right) \wedge a_{0}\right)+m\left(\bigcap_{i=1}^{n} x_{i}\left(E_{i}\right) \wedge a_{o}^{1}\right)=m_{0}\left(\bigcap_{i=1}^{n} x_{i o}\left(E_{i}\right)\right)$,
which entails that x_{1}, \ldots, x_{n} have a joint distribution in m.
Repeating the same arguments as those in the proof of Lem-
ma 2.1 we establish the uniqueness of a joint distribution.
The second part of the assertion of Theorem follows from
Lemma 2.5.
O.E.D.

LEMMA 2.7. Let a_{m} be a carrier of a measure m. If x_{1}, \ldots, x_{n}
have a joint distribution in m and at least one observable is σ-finite with respect to m, then
$\mathrm{a}_{\mathrm{m}}<\mathrm{a}_{\mathrm{o}}$,
and

$$
\begin{equation*}
a_{m}<a\left(E_{1}, \ldots, E_{n}\right) \text {, for any } E_{1}, \ldots, E_{n} \in B\left(R_{1}\right) \text {. } \tag{2.10}
\end{equation*}
$$

If (2.10) holds, or, equivalently, (2.11) is true, then x_{1}, \ldots, x_{n} have a joint distribution in m. If at least one observable is σ-finite with respect to m, then the joint dis-
tribution is unique.

Proof. (2.10) and (2.11) follow from the definition of a carrier, Theorem 2.6 and (2.4).
Q.E.D.

Note 1. The condition
$m\left(a\left(E_{1}, \ldots, E_{n}\right)^{\perp}\right)=0$, for any $E_{1}, \ldots, E_{n} \in B\left(R_{1}\right)$,
is necessary and sufficient condition for x_{1}, \ldots, x_{n} to have a joint distribution in a state (or finite measure) ${ }^{\text {/5,6,13/ }}$. For a measure with $m(1)=\infty$ this condition is known only in special cases, see Lemma 2.7.

LEMMA 2.8. Let a logic L be σ-continuous, that is, for any $a_{1}<a_{2}<\ldots$ and, any a, we have $\left(\underset{i=1}{\infty} a_{i}\right) \wedge a=V_{i=1}^{\infty}\left(a_{i} \wedge a\right)$. Let there hold for a measure m and observables x_{1}, \ldots, x_{n}

$$
\begin{align*}
& m\left(\hat{j}_{j=1}^{n} x_{j}\left(E_{1}^{j} \cup E_{2}^{j}\right)\right)=\sum_{k_{1} \ldots k_{n}=1}^{2}\left(\hat{j}_{j=1}^{n} x_{j}\left(E_{k_{j}}^{j}\right)\right), \\
& . E_{1}^{j} \cap E_{2}^{j}=\emptyset, E_{1}^{j}, E_{2}^{j} \in B\left(R_{1}\right), \quad j=1, \ldots, n . \tag{2.13}
\end{align*}
$$

If at least one observable is σ-finite with respect to m,then there is a unique joint distribution of x_{1}, \ldots, x_{n} in m.

Proof. It is easy to verify that (2.13) implies that μ : $\mathrm{E}_{1} \mathrm{x} \ldots \mathrm{xE} \mathrm{n}_{\mathrm{n}} \mapsto \mathrm{m}\left({ }_{\mathrm{j}}^{\mathrm{n}=1} \mathrm{x}_{\mathrm{j}}\left(\mathrm{E}_{\mathrm{j}}\right)\right)$, is a finitely additive function on the set \mathcal{P}_{n} of all rectangles. The a-continuity of a logic and the continuity of m from below entail that μ is a σ-additive and σ-finite function on \mathscr{P}_{n}. Therefore it may be extended to a measure on $B\left(R_{n}\right)$.
Q.E.D.

The results of all the above assertions may be extended to the set of observables $\left\{\mathbf{x}_{\mathrm{t}}: \mathrm{t} \in \mathrm{T}\right\}$ such that there i at most countable subset $\mathbb{Q} \subset U\left\{R\left(x_{f}\right): t \in T\right\}$, where \mathbb{Q} generates the minimal sublogic of L containing the set $U\left\{R\left(x_{t}\right): t \in T\right\}$ (here $R(x):=$ $=\left\{\mathbf{x}(\mathrm{E}): E \in B\left(R_{1}\right)\right\}$. In particular, this is true for a sequence
of observables. For given observables $\left\{x_{t} t \in T \mid\right.$ we define the commutator, $a_{0}(T)$, of $\left\{x_{t}: t \in T\right\}$ (if it exists)via
$a_{0}(T)=\wedge \mid a_{0}(F): F$ is a finite subset of $\left.T\right\}$,
where $a_{0}(F)$ is the commutator of observables $x_{t_{1}}, \ldots, x_{t_{s}}$ and $F=\left\{t_{1} \ldots{ }^{t}{ }^{t}\right\}$.

From/13/it follows that $a_{0}(T)$ exists, and, moreover, there is a sequence of finite subsets F_{n} CT such that

$$
\begin{equation*}
a_{0}(T)=\wedge_{n=1}^{\infty} a_{0}\left(F_{n}\right) . \tag{2.15}
\end{equation*}
$$

THEOREM 2.9. Let $\left\{x_{t}: t \in T\right\}$ be a system of observables for which there is at most countable subset $\mathbb{C} \subset U\left\{R\left(x_{1}\right): t \in T\right\}$, where \mathcal{A} generates the minimal logic containing all $R\left(x_{t}\right), t \in T$. If $\left\{x_{t}: t \in T\right\}$ have a joint distribution in m and at least one observable is σ-finite with respect to m, then
$m\left(a_{0}(T)^{\perp}\right)=0$.
If (2.16) holds, then there is a joint distribution of $\left\{x_{t}\right.$: $t \in T \mid$. If at least one observable is σ-finite with respect to in, then there is a unique σ-finite measure μ on $\prod_{i \in T} B\left(R_{1}\right)$ such that
$\mu\left(\bigcap_{j=1}^{n} \pi_{t_{j}}^{-1}\left(E_{j}\right)\right)=m\left(\bigcap_{j=1}^{n} x_{i}\left(E_{j}\right)\right), \quad E_{1}, \ldots, E_{n} \in B\left(R_{1}\right)$,
wiere n_{t} is che projection írom $\mathrm{K}_{1}^{\mathrm{T}}$ onco K_{1}.
Proof. It is clear that if $F_{1} \subset F_{2} \subset T$, then $a_{0}\left(F_{2}\right)<a_{9}\left(F_{1}\right)$.
Let $\mathrm{X}_{\mathrm{t}_{\mathrm{o}}}$ be σ-finite with respect to m . Then (2.15) implies
$a_{0}(T)=\bigcap_{n=1}^{\infty} a_{0}\left(F_{n}\right)>\bigcap_{n=1}^{\infty} a_{0}\left(F_{n} \cup f t_{0} f\right)>\bigcap_{n=1}^{\infty} a_{o}\left(\sum_{i=1}^{\beta}\left(F_{i} u f t_{0} f\right)>a_{0}(T)\right.$.
Theorem 2.6 entails $m\left(a_{0}\left(B_{n}\right)^{1}\right)=0, n \geq 1$, where $B_{n}=\bigcup_{i=1}^{n} F_{i}$ ufit $\}$.
The continuity of m from below gives (2.16).
Conversely, let (2.16) hold. Then, for any finite subset $F \subset T$, we have $m\left(a_{0}(F)^{\perp}\right)=0$. Now we claim to show that there
is a unique μ on $\prod_{t \in T} B\left(R_{1}\right)$ for which (2.17) holds. Let $x_{t_{o}}$ be σ-finite with respect to m, and let for some $E \in B\left(R_{q}\right)$ have $0<m\left(x_{t_{0}}(E)\right)<\infty$. Define a system of functions, $\|_{F}^{E}: F$ is a finite subset of $T\}$, on $\underset{t \in T}{ } \boldsymbol{H}^{B\left(R_{1}\right)}$ via
$\mu_{F}^{E}\left(\bigcap_{j=1}^{n} \pi_{t_{j}}^{-1}\left(E_{j}\right)\right)=m\left(x_{t_{0}}(E) \wedge \wedge_{j=1}^{n} x_{t_{j}}\left(E_{j}\right)\right)$,
where $E_{1}, \ldots, E_{n} \in B\left(R_{1}\right), F=\left\{t_{1}, \ldots, t_{n}\right\}$. The system $\left\{\mu_{F}^{E}: F\right.$ is a finite subset of T fulfills the conditions of Kolmogorov's
consistence theorem ${ }^{/ 23 /}$, hence there a unique measure μ^{E} on $\prod_{i \in T} B\left(R_{1}\right)$ with (2.18). Define $\mu(B)=\sum_{i=1}^{\infty} \mu^{E_{i}}(B)$, where $B \in \underset{i \in T}{H_{T} B\left(R_{i}\right)}$ and $\left\{E_{1}\right\}_{1=1}^{\infty}$ is a measurable partition of R_{1} with $0<m\left(x_{t_{0}}\left(E_{1}\right)\right)<\infty$, $i \geq 1$. The function μ is well defined and it is σ-additive and σ-finite. It is easy to check that (2.17) is fulfilled. The uniqueness of μ follows from the extension theorem for σ-finite measure on the set of all cylindrical sets. Q.E.D

Analogically we may prove Lemma 2.7 for the case described in Theorem 2.9; it suffices to change a_{o} to $a_{o}(T)$.

The proofs of the following two lemmas are simple and they are omitted.
LEMMA 2.10. Let at least one observable $x_{1}, i=1, \ldots, n$, be σ-finite with respect to m. Then x_{1}, \ldots, x_{n} have a joint distribution in m iff $f_{1} \circ x_{1}, \ldots, f_{n} \circ x_{n}$ have it for all the Borel measurable real-values functions, where $f \circ \mathbf{x}(E):=x\left(f^{-1}(E)\right)$, $E \in B\left(R_{P}\right)$. In this case there holds

LEMMA 2.11. Let M be a collection of measures on L and let a measure m_{0} be a superposition of $M, i . e ., m(a)=0$, for any $m \in M$, implies $m_{0}(a)=0$. Let, for any $m \in M$ and m_{0}, there be at least one oheorvohlo whinh is =-finito with reonort to thom If x_{1}, \ldots, x_{n} have a joint distribution in any $m \in M$, then they have a joint distribution in m_{0}.

3. HILBERT SPACE LOriIC

One of the most important examples of quantum logics is the set, $L(H)$, of all closed subspaces of a Hilbert space of H over the real or complex field C. This is a case of the great importance in quantum mechanics. In this case observables may be identified with self-adjoint operators (not necessarily bounded), according to the spectral theorem.

The famous Gleason theorem 16 asserts that a state m on a separable Hilbert space H, $\operatorname{dim} H \geq 3$, is induced by a positive von Neumann operator T via the formula
$\mathrm{m}(\mathrm{P})=\operatorname{tr}(\mathrm{TP}), \quad \mathrm{P} \in \mathrm{L}(\mathrm{H})$.
Here we identify the subspace P with its orthoprojector T^{P} onto P. We recall that a bounded operator T on H is said to be an operator with finite trace if $\operatorname{tr}(T):=\sum_{\mathrm{a}}^{\mathrm{E}} \mathrm{I}\left(\mathrm{Tz}_{\mathrm{a}}, \mathrm{x}_{\mathrm{a}}\right)$ is absolutely convergent series, independent of the used orthonormal basis $\left\{x_{a}: a \in I \mid\right.$.

The Gleason theorem has been generalized in/16,17/ for all bounded signed measures on $L(H)$ for a separable Hilbert space whose dimension is at least 3. Eilers and Horst ${ }^{18 /}$ proved Gleason's theorem for finite measures on $L(H)$ for non-separable Hilbert space, and Drisch ${ }^{/ 19 /}$ extended (3.1) for bounded signed measures on a $\operatorname{logic} L(H)$ of a non-separable Hilbert space whose dimension is a non-real measurable cardinal.

For the measures on $\mathrm{L}(\mathrm{H})$ with $\mathrm{m}(\mathrm{H})=\infty$ we need the following notions. A bilinear form is a function $t: D(t) \times D(t) \rightarrow C$, where $D(t)$ is a linear submanifold of H (named the domain of t) such that t is linear in the first argument and antilinear in the second one. If $t(x, y)=t(y, x)$, for all $x, y \in D(t)$, then t is said to be symmetric; if for a symmetric bilinear form t we have $t(x, x) \geq 0$, then t is said to be positive. Let t be a symmetric bilinear form and $B \geq 0$ be a self-adjoint operator. Then $t \circ B$ denotes a symmetric bilinear form defined via $t \circ B(x, y)=t\left(B^{1 / 3}, B_{1}^{1 / 2} y\right)$, when the corresponding assumptions on the domains of t and B are satisfied. Symmetric bilinear form is said to be a bilinear form with finite trace if (i) $D(t)=H$; (ii) $t(x, y)=(T x, y)$, for all $x, y \in H$, where T is an operator with finite trace. We put $\operatorname{tr} \mathrm{t}=\operatorname{tr}(\mathrm{T})$, and we write $\mathrm{t} \in \operatorname{tr}(\mathrm{H})$, where $\operatorname{tr}(\mathrm{H})$ is the set of all bounded operators with finite trace.

Lugovaja and Sherstnev ${ }^{\prime 20 /}$ proved that, for any σ-finite measure m on $L(H)$ of an infinite-dimensional separable Hilbert space there is a unique symmetric positive bilinear form t with a dense domain such that

$\operatorname{tr} t \circ P \quad$ if $\quad t \circ P \in \operatorname{tr}(H)$,

$\mathrm{m}_{4}(P)=\{$
$\infty \quad$ otherwise.
In the paper ${ }^{/ 21 /}$ this result has been extended to σ-finite f -bounded measures on $L(H)$ of a Hilbert space whose dimension is a non-real measurable cardinal.

The joint distribution of observables on $\mathrm{L}(\mathrm{H})$ in a state has been studied in ${ }^{\mathbf{3}, 5 /}$. It was proved that x_{1}, \ldots, x_{n} have a joint distribution in a state m induced hy $T \in \operatorname{tr}(H)$ via (3.1) iff
$x_{i_{1}}\left(E_{i_{1}}\right) \ldots x_{i_{n}}\left(E_{i_{n}}\right) T=x_{1}\left(E_{1}\right) \ldots x_{n}\left(E_{n}\right) T$,
for any permutation (i_{1}, \ldots, i_{n}) of ($1, \ldots, n$) and all E_{1}, \ldots, $E_{n} \in B\left(R_{1}\right)$.

In the following we shall study the existence of a joint distribution for a measure m on $L(H)$ with $m(H)=\infty$, and the condition analogous to (3.3) will be proved. First of all we begin with a finite-dimensional Hilbert space.
LEMMA 3.1. (Lugovaja-Sherstnev ${ }^{\prime 20}$). Let $\operatorname{dim} H=3$ and let m be a measure on $L(H)$ with $m(H)=\infty$. If there are a one-dimensional Q and a two-dimensional P with $\mathrm{m}(\mathrm{Q})<\infty, \mathrm{m}(\mathrm{P})<\infty$, then $\mathrm{Q}<\mathrm{P}$.

Denote
$P_{m}=V(P: m(P)<\infty\}$.
The following lemma has been proved in ${ }^{121 / .}$.
LEMMA 3.2. Let $3 \leq \operatorname{dim} H \leq \infty$ and let m be a measure with $m(H)=\infty$.
If there is a two-dimensional Q_{0} with $m\left(Q_{0}\right)<\infty$, then $m(Q)<\infty$ iff Q< $\mathrm{P}_{\mathrm{m}}{ }^{\text {. }}$

LEMMA 3.3. Let $4 \leq \operatorname{dimH}<\infty$ and let m be a measure with $m(H)=\infty$. Let there be a three-dimensional Q_{0} with $m\left(Q_{0}\right)<\infty$. If $m(M)=m(N)=0$, then $\mathrm{m}(\mathrm{M} \vee \mathrm{N})=0$.

Proof. Due to Lemma 3.2, $m(Q)<\infty$ iff $Q<P_{m}$. Hence $m(M V N)<\infty$. Applying the Gleason theorem to $m_{0}:=m\left|L_{\left(0, P_{m}\right)}=m\right| L\left(P_{m}\right)$ we see that $\mathrm{m}(\mathrm{M} \vee \mathrm{N})=0$.
Q.E.D.

LEMMA 3.4. Iet the conditions of Lemma 3.3 are fulfilled. Then any measure m on $L(H)$ has a carrier.

Proof. Let us denote $\mathbb{M}=\{\mathrm{P}: \mathrm{m}(\mathrm{P})=0\}$. It is clear that (i) $\pi \neq \bar{\square} ;(\mathrm{ii})$ if $Q<P, P \in \pi$, then $Q \in \Pi$; (iii) if $P_{\perp} Q$ and $P, Q \in \Pi$, then PVQ $\in M$; (iv) if P_{x} and $P_{y} \in \mathbb{M}$, then $P_{x} \vee P_{y} \in$ 州, where P_{x} denotes the one-dimensional subspace generated by a non-zero vector $x \in H$. Let us put $P_{m}^{\circ}=V\{P: m(P)=0\}$: Then from Lemma 3.3 and (i)-(iv) we have that $\mathrm{m}_{\mathrm{m}}^{\mathrm{m}}\left(\mathrm{P}_{\mathrm{m}}^{\circ}\right)=0$. Define $A_{m}=P_{m}^{o \perp}$. Then A_{m} is s carriar nf a meactire m
Q.E.D.

We recall that a subset $\mathbb{M} \subset(\mathrm{H}(\mathrm{H})$ with (i)-(iv), from the last proof, is said to be called an ideal.

THEOREM 3.5. Let the conditions of Lemma 3.3 are fulfilled. If, for x_{1}, \ldots, x_{n}, we have
$x_{i_{1}}\left(E_{i_{1}}\right) \ldots x_{i_{n}}\left(E_{i_{n}}\right) A_{m}=x_{1}\left(E_{1}\right) \ldots x_{n}\left(E_{n}\right) A_{m}$,
for any permutation (i_{1}, \ldots, i_{n}) of ($1, \ldots, n$) and any E_{1}, \ldots, $E \in B\left(R_{1}\right)$ where A_{m} is a carrier of a measure m, then x_{1}, \ldots, x_{n} have a joint distribution in m. Moreover, the condition (3.5) is equivalent to
$A_{x_{1}} \ldots A_{x_{i}} A_{m}=A_{\mathbf{I}_{1}} \ldots A_{\mathbf{x}_{n}} A_{m}$,
for any permutation (i_{1}, \ldots, i_{n}) of ($1, \ldots, n$), where A_{1} is an Hermitean operator corresponding to an observable x.
Proof. It is known $/$ R2/ that (3.5) implies $\left(x_{1}\left(E_{1}\right) \wedge \ldots \wedge x_{n}\left(E_{n}\right)\right) A_{m}=$ $\left.=x_{1}{ }_{1} E_{1}\right) \ldots \mathbf{x}_{n}\left(E_{n}\right) A_{m}$. Hence
$a\left(E_{1}, \ldots, E_{n}\right) A_{m}=\sum_{i_{1} \ldots i_{n}=0}^{1} x_{1}\left({ }^{1} E_{1}\right) \ldots x_{n}\left({ }^{i_{n}} E_{n}\right) A_{m}=I A_{m}=A_{m}$.
where I is the identical operator on H. Therefore $a\left(E_{1}, \ldots, E_{n}\right)>A_{m}$, for all E_{1}, \ldots, E_{n}, consequently, $A_{0}>A_{m}$, where A_{0} is the commutator of x_{1}, \ldots, x_{n} and $m\left(A_{0}\right)=0$. Repeating the first part of the proof of Theorem 2.6 we finish our proof. Q.E.D.

We see that measures with $\mathrm{m}(\mathrm{H})=\infty$ on finite-dimensional Hilbert space are in some sense "pathological". More useful information we may obtain in an infinite-dimensional separable Hilbert space.

LEMMA 3.6. Any σ-finite measure on $\mathrm{L}(\mathrm{H})$ of an infinite-dimensional separable Hilbert space has a carrier.

Proof. If $m(H)<\infty$, then the assertion follows immediately from Gleason's theorem.

Let now $m(H)=\infty$. Define $\pi=\{P: m(P)=0\}$. We claim to show that π is an ideal of $\mathrm{L}(\mathrm{H})$. For that it is necessary to show that if $P_{z}, P_{y} \in \Pi$, then $P_{z} \vee P_{y} \notin$. We may 1 imit ourselves with $P_{x} \not \subset P_{y}, P_{z} \neq P_{y}$ The σ-finiteness of m entails that there is at least one three-dimensional P such that $m(P)<\infty$ and $P x \neq 0$, $P y \neq 0$. Then there is $z \in P$ such that $z \pm x$ and $z \perp y$. Applying the Lugovaja-Sherstnev lemma to a three-dimensional space $P=$ $=P_{z} \vee P_{x} \vee P_{y}$ we have that $m\left(P_{x} \vee P_{y}\right)<\infty$, and, consequently, $M(P)<\infty$, too. Using the Gleason theorem for a finite measure $\mathrm{m}_{\mathrm{o}}=\mathrm{mL}(\mathrm{P})$ we have $m\left(P_{x} \vee P_{y}\right)=0$.

Now we show that if $P_{y_{1}}, \ldots, P_{y_{n}} \in \Pi$, then $P=P_{y_{1}} \vee, \ldots, P_{y_{n}} \in \Pi$. Lemma 3.2 implies that $m(P)<\infty$ and Lemma 3.3 entails that $m(P)=0$.
 $\left.\left.P_{I} \in \mathbb{M}\right\} \boldsymbol{U} 0\right\}$ and let M be a subspace of H generated by D. Then $M=v\{P: m(P)=0, \operatorname{dimP}<\infty \downarrow$. The separability of a Hilbert space implies that there is a sequence of finite-dimensional subspaces of $H,\left\{P_{n}\right\}_{n=1}^{\infty}$, with $m\left(P_{n}\right)=0$, such that $M=V_{n=1}^{\infty} P_{n} \cdot P_{n}$ may be chosen such that $P_{1}<P_{2}<\ldots$. The continuity of m from below entails $m(M)=0$. The element $A_{m}=M^{\prime}$ is a carrier of a measure m.
Q.E.D.

Note 2. The author does not know whether Lemma 3.6 holds for a non-separable Hilber space whose dimension is a non-real meassurable cardinal. For that it is necessary and sufficient to
show that $m(M)<\infty$. For more details, see the proof of Lemma 3.9.
The following elementary Lemma has been proved in ${ }^{\prime / \%}$.
LEMMA 3.7. Let $M_{1}, \ldots, M_{n} \in L(H)$, where H is an arbitrary Hilber space. Let (i_{1}, \ldots, i_{n}) be any permutation of ($1, \ldots, n$). If $0 \neq f \epsilon^{t_{1}} M_{1} \wedge \ldots \wedge^{i_{n}} M_{n}$, where ${ }^{c} M=M,{ }^{1} M=M$, then
$M_{j_{1}} \ldots M_{j_{n}} f=M_{1} \ldots M_{n} f$,
for any permutation $\left(j_{1}, \ldots, j_{n}\right)$ of $(1, \ldots, n)$.

THEOREM 3.8. Let H be an infinite-dimensional separable Hilber space. If x_{1}, \ldots, x_{n} have a joint distribution in m and at least one observable is σ-finite with respect to m,then (3.5) holds (for any permutation (i_{1}, \ldots, i_{n}) of ($1, \ldots, n$)). If x_{1}, \ldots, x_{n} are bounded observables, then (3.6) holds.

If m is σ-finite and for x_{1}, \ldots, x_{n} there holds (3.5), then $\mathbf{x}_{1}, \ldots, x_{n}$ have a joint distribution in m. If at least one observable is σ-finite with respect to m, then the joint distribution is unique.

Proof. Since at least one observable is σ-finite with respect to m, we see that m is σ-finite measure, consequently, the carrier of m exists. Due to Lemma $2.7 \mathrm{~A}_{\mathrm{m}}<\mathrm{A}_{\mathrm{o}}<\mathbf{a}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right)$, where A_{0} is the commutator of x_{1}, \ldots, x_{n} defined by (2.4). Therefore if $f \in A_{m}$ then $f \in a\left(E_{1}, \ldots, E_{n}\right)$ and f is a finite linear combination of vectors from $x_{1}\left({ }^{j}{ }^{1} E_{1}\right) \wedge \ldots \wedge X_{p}\left({ }^{j_{n}} E_{n}\right)$ for any permutation $\left(j_{1}, \ldots, j_{n}\right)$ of $(1, \ldots, n)$. Due to Lemma 3.7,
$x_{i_{1}}\left(E_{i_{1}}\right) \ldots x_{i_{n}}\left(E_{i_{n}}\right) f=x_{1}\left(E_{1}\right) \ldots x_{n}\left(E_{n}\right) f$,
for any permutation of (i_{1}, \ldots, i_{n}) of ($1, \ldots, n$), and, consequently, (3.5) holds.

For bounded observables, (3.6) is a consequence of the spectral theorem for Hermitean operators.

The second part of the proof is analogous to the proof of Theorem 3.5.
Q.E.D.

In tho fnllowing tho provinus Thonrom will bo ovtondod to a non-separable Hilbert space. We recall that a cardinal I is said to be non-real measurable if there is no positive measure $\nu, \nu \neq 0$, on the power set of I with $\nu(\{a\})=0$, for each $a \in I$.

LEMMA 3.9. Let H be a Hilbert space whose dimension is a non-real measurable cardinal. Let m be a measure on $L(H)$ with $\mathrm{m}(\mathrm{H})=\infty$. Let us put $\mathrm{A}^{\perp}=\mathrm{V}\{\mathrm{P}: \mathrm{m}(\mathrm{P})=0\}$. If at least one observable is σ-finite with respect to m and x_{1}, \ldots, x_{n} have a joint distribution in m, then
$x_{i_{1}}\left(E_{i_{1}}\right) \ldots x_{i_{n}}\left(E_{i_{n}}\right) A=x_{1}\left(E_{1}\right) \ldots x_{n}\left(E_{n}\right) A$,
for any permutation (i_{1}, \ldots, i_{n}) of ($1, \ldots, n$) and all E_{1}, \ldots, $E_{n} \in B\left(R_{1}\right)$.

If $m\left(A^{\perp}\right)<\infty, m$ is σ-finite and (3.8) holds, then x_{1}, \ldots, x_{n} have a joint distribution in m. If at least one observable is σ-finite with respect to m, then the joint distribution is unique.

Proof. The first part of the theorem is similar to that in Theorem 3.8.

In the second part we show that $m\left(A^{\perp}\right)<\infty$ implies $m\left(A^{\perp}\right)=0$, that is, A will be a carrier of m. The generalized Gleason theorem for a non-separable Hilbert space'21/entails that there
is a unique operator $T \in t(H)$ such that $m(P)=t(T P)$ whenever $P<A^{\perp}$. The operator T has a form $T=\sum_{i} \lambda_{i} f_{i} \otimes \vec{f}_{i}$, where $f_{1} \perp f_{j}, i \neq j$, $\left\|f_{i}\right\|=1, f_{i} \in H, \lambda_{1}>0$, for any $i, f \otimes \vec{f}: x \rightarrow(x, \cap) f x \in H$. Hence $m(P)=0$ iff $P \perp f_{i}$ for any i (here $P \perp f_{i}$ denotes that $x \perp f_{i}$, for all $x \in P$).
Hence $A^{\perp} \perp f$, for any i, so that, $m\left(A^{\perp}\right)=0$. For the rest of the proof we appeal Lemma 2.7.

REFERENCES

1. Varadarajan V.S. Geometry of Quantum Theory, v. 1, Van Nostrand, Princeton, New York, 1968.
2. Halmos, Measure Theory, IIL, Moscow, 1953.
3. Gudder S.P. J.Math.Mech., 1968, v.18, p. 325.
4. Urbanik K. Studia Math.., 1966, v.21, p. 117.
5. Dvurečenskij A., Pulmannová S. Math.Slovaca, 1982v.32,,p. 155.
6. Dvurečenskij A., Pulmannová S. Rep. Math.Phys., 1984, v. 19, p. 349.
7. Gudder S.P. Some unsolved problems in quantum logics. In: Mathematical Foundations of Quantum Theory, A.R.Marlow ed., p. 87, Academic Press, New York, 1978.
8. Dvurečenskij A.Math.Slovaca, 1981, v.31, p. 347.
9. Pulmannova' S. Int.J. Theor.Phys., 1978, v.17, p. 665.
10. Pulmannová S. Found Phys., 1980, v.10, p. 641.
11. Pulmannová S. Found Phys., 1981, v.11, p. 127.
 v. 34, p. 391.
12. Pulmannová S., Dvurećenskij A. Ann.Inst.Henri Poincaré, sect. Phys.Théor. 1985, v.42, p. 153.
13. Dvurečenskij A. Math.Slovaca. 1986, v.36, p.
14. Gleason A.M. J.Math.Mech. 1957, v.6, p. 885.
15. Sherstnev A.N. On the Concept of Charge in Non-Commutative Measure Theory, Verojat.metody i kibernet., vyp. 10-11,1974, p.68, Kazan, KGU (in Russian).
16. Dvurečenskij A. Math.Slovaca. 1978, v.28, p. 33.
17. Eilers M., Horst E. Int.J.Theor. Phys. 1975,v.13, p. 419.
18. Drisch T. Int.J. Theor. Phys. 1979, v.18, p. 239.
19. Lugovaja G.D., Sherstnev A.N. Izv. vuzov, Matem., 1980, no. 12, p. 30.
20. Dvurečenskij A. Math.Slovaca. 1985, v.35, no.4, p.31\%.
21. Halmos P.R. Hilbert Space Problem Book, "Mir", M., 1970.
22. Yeh J. Stochastic Processes and the Wiener integral, M. Dekker Inc. New York, 1973.

Received by Publishing Department
on December 2, 1985.

Двуреченский А.

Совместные распределения наблюдаемых и меры
с бесконечными значениями
В рамках подхода квантовых логик к аксиоматизации квантовой механики изучаются совместные распределения наблюдаемых в мерах, принимающих бесконечные значения. Предложены необходимые и достаточные условия для существования совместных распределеннй. Модель квантовой логики пространства Гильберта изучается более подробно.

Работа выполнена в Лаборатории вычислительной техники и автоматизации оияи.

Препринт Объединенного института ядерньх исследовании. Дубна 1985

Dvureでenskij A.

Joint Distribution of Observables and Measures with Infinite Values

In the frame of the quantum logic approach to axiomatization of quantum mechanics we study the joint distribution of observables in measures attaining infinite values. The necessary and sufficient conditions to existence of the joint distribution are given. The Hilbert space quantum logic model is investigated in more detail.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

