0GbEARREHHbIA
MHCTHTYT
AABPHBIX
WCCAEA0BANKA

ALLE

E5-85-669

A.Dvuredfenskij

ON A DISCRETE MODIFIED
M/Gl/e/» QUEUE

Submitted to "Aplikace Matematiky"

1985


http:30.09.85

1. INTRODUCTION

During the last few years the use of discrate queusing systems
with finitely or infinitely many servers has been increasing.The dis-
crete systema are used 2s mathematical models of, for example, mass
servicing machines electronic machines, transport problems, communica-
tion channels ”/, sutomated filmleas blob~length measurements in track
chambers in high-energy physics ’zl. particle counters ’3’. ete,

For a modified queue we suppose that the service times and inter-
arrival times of all customers served during any buay period are inde-
pendent random variables with not necessarily identical distridution
functions. Modified M/GI/1 queue has been investigated by Yeo 747 and
Welch ,5,, modified GI/M/1 mnd GI/GI/1 queues by Pakea I"", and
GI/M/1 by Shanthikumar %/, Modified GI/GIA> has been studied, on the
particles counter language, tu’al.

The joint distribution of the busy and idle periods, for the
GI/M/1 queue, has been derived by Kalashikov ’9’. For the discrete mo-
dified counter with prolonging dead time, the joint distridution of the
deand time and idle period is obtainmed in ’3’.

An important claas of discrete queueing systems appears in a pro-
cess of automated measurement systems when the interarrival times, rk.
have the geometric distribution

F(T, = nh) = (1=p)p™, ny1, k21, (1.1)

where O <p<1, and h> 0 is a discretization stap,

For exsmple, the measurement in track chambera in high-energy phy-
sics leads to thia model ’2,. Along the particle trajectory we may ob-
serve a chain of stresmers which are deszcribed as circles having centres
on a trajectory. The number of streamer centres is a homogemeous Pois-
son process, and our task is to determine the blob and gap lengths.
The actual measurements are performed using the scaaning spparatus, so
that the experimental dats on the blob-length measurements have discre-
te values. Interpreting the blob and the gap as the buay and idle pe-
riods we obtain a discrete gueueing system N/GI/eoc with {1.1), Some
discrete queueing models with finitely many servers and with (1.1) may
appear in communication channels "’.

In the present nots we derive the busy period probability law for
a discrete modified M/GI/c/co queue for sny 1sc4 se, First we concen-
trate on the discrete modified M/UI/c queus with finitely many servers,

Then we shall continue, in more detail, with the cases of single-server
and two-server queues, and with the queue having infinitely many ser-
vers, We note that the formulae presented are computationally conve-
nient for practical use, and the computational process may be simply
programmed for computer, too, Some remarks on computing, and on parti-
cular cases of queues will be done in Part 5,

2, DISCRETE MODIFIED M/Gl/c/= QUEUE_

Suppose that a queue is idle before the moment t=0 and let customers
arrive at discrete instants 0< ?]c-?; < ..s<«<=, which are multiples of
a step h>0, into a queueing system with ¢ (1 <c<=o) available ser-
vers, and with a waliting room having infinitely many places (if 1<c<
<oo), Lst J(k, k>1, be a service time of the k-th customer, and let
'rk ® il‘1 - ?1, k>1, be the interarrival time between the arrivals

y 1s the time

c
'

of the k+1-st and the k-~th customers, The busy period, B®
interval during which at least one server 1a busy. The idle period, I
is the time interval during which no customer is served, The sum, c€ =
= B® & Ic, of the busy period and the successive idle period is said

to be a cycle,
For the discrete modified gueue we suppose that

P(c[1 = nh) = (l-p)pn, n>0, (2.1)

P(T, = nh) = (1=-plp “,nx1, k=1, (2,2)

and the first busy pericd is produced by the sequence of service times
i)(k{;:‘. i x kl:Z1 is assumed to be a sequence of independent posi=-
tire random variables, independent of the input procees {Tk‘;:1 and

¢ yv and with the distribution laws

pLoxk = ah) = h (), n>1, k=21, (2.3)
where 523 hk(n) = 1, k>1, Moreover, we suppose that any successive

busy period is resumed with the initial conditions, independently of

previous periods, so that, the sequence of the busy periods (idle pe-

riods, cycles, respectively) are i.i.d. random variables, This discrete

modified queue will be denoted by éLC = (p; h1,h2,...).
For a given queue ;;c = (p; hyyhsy e ) it is convenient to consi~-
c

o0
der a sequence of discrete modified queues.i;kfk_1, where : = (P;hk,
e =

hk’ yess),yk21, Define, for any k' the corresponding busy periods,

Bk' idle periods, IE. and cycles, Cﬁ, respectively. For simplicity
we put h = 1,

Due to the known properties of the geometric input process, the id-
le periods have the geometric distribution law with the same parameter

p, that is, for Pic(n) =z P(IE = n), we have
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PLC(n) = (1-p)p™ ', B3 1, k1. (2.4)

Moreover, the busy and idle periods are independent random variables,

Denote by A an event that the busy period begins from t = O. Due
to (2. 1), we have P(A) = 1 = p. We define p, (J) = peXx% = 3, 1), for
k,J>1. Therefore

pk(J) | hk(Jl (1=-p), (2.5)
and for jJ = O we put
pk(O) = p, kz1, (2.6)

We denote the conditional probability in question, P(BE =nl| A), by
Pg(n), and the joint distribution, P(BS = n, A), by PP{(n). Clearly

Prtn) = PPE(n)/(1 = p), A1, kx1. (2.7
Let WC(n,3) = P(Bf = n, x% =23, 8, 021, 12320, k1. Then
c nooe
PP (n) = J? Weln,3), nz1, k21, (2.8)

Let now n> 1 and 1< c<«=c be given (the queue with infinitely many
servers will be treated in Part 4), For any i, 1=1<nAc, where xAys
= niu (x,y), and , for any 1411‘.n, 0:-3 <n=8+1 (243‘1). we define

(n; J‘,...,J ) as Lthe conditional probnbillty of Bk = n under the
conditlon that, for any 1<s<1i, at tha time t = s either a customer
arrives and his service time is J, (ir 1321) or no customer arrives
(r j. = 0). Hence

Wein,3) = p () Agnid), 1<J<n, n31, k31, (2.9)

and 1r 1=1< nac, then

AS(n33gp00esdyl = 3:?0 Piot (J1e1) AR(Ridqreensdyady ). (2.70)

Using the properties of the conditional probability and the inde~
pendence of the dead time from the idle period we may prove the follow=-
ing relationships for A;(n;J1,....Jl).

Lgeth =ms (2.11)
PPE(1) = WE(1,1) = p (1)p.

Let n> 2 and uuppoao that we know all AS (n, Ji,...,J ) for any
1«vemac, 1<mecn, k»1, Then the proco.a of evaluating lk(n,J'.....
Ji)' 1<i=nnac, will be (algorithmically) divided into five ateps.

(I) Existence of "gaps™: There is an integer u, 2 cu <i, with Ju-O,
such that max(jqsdptlsesesd,_q+u-2) Qu. Then

l:(n;31.....11) = 0, (2.12)

In the following let there be no "gaps"”,

4

(II) Existence of "busy periods stuck together”: There is an inte«
ger u, 2<uci, such that -ax(j1,1201,...,3u_‘¢u-2) = u=1, Then

ctnv J‘n--th }'= Ak*u_l_(u’;(n-u-lgju.....Ji), (2,13)

where (u); denotes the number of zeros in {31,....juf.

Now, let there be nc "busy periods stuck together”,

(III) Existence of "zeros": There are two possible cases.first, we
suppose that there is an integer u, 2<u=i, with (J1>, 2) 12-41.....
Jyoq> 1, and §, = O. Then

u=1
k(n Jyseeerdyaq0 Ju“,...,Jl) = (5K
= Ak*(u)?(n351'1v--°'ju_"lyju’1v---:11’|
where (u)' denotes the number of units in {J1....,ju} N
Second, let (11 2) Jpreenndy g2 21, JL = 0, Then
Ak(nij1"-'l.‘1-1'°] = lk’(“?(n-i;31-1,....1‘_‘—1). {2.15)

In the following let there be no"zeroa”",

(IV) Let 1«1 <n<c, Here we may assume without loss of generality
that

AP PR P AR T PR S (%)
Indeed, if there is an integer u, 1<u<can, such that u-l+ju4 u+j
then

us1’

A (U,J‘.o--.J ) = lk#J‘J )(“DJ,:--'oJu 1'Ju"*‘ j -1, JUOZ""'Ji)'
(2.16)
where S(x) = 0, if x # 1, otherwise &ix) = 1, Applying finitely many
times this argument we get (x).
Therefore let (+) hold, Assume that in the ordered i-tuple
(J1,j2¢1.....3101-1) there are s "staira", that is, there exist s in-
dices t, ... t € £1,...,1} such that ty = 1 and

J .00 ) + t -2>) + t =1 To00= J » % =25
ts ts-\ s=1 ta-l s=1 tu_z-i 8-2

S 0> J"z + t.z-l Tnsed Jt,' -vt ‘2>‘1t + !.1-1 Beaes Ji + 1 -1,

= n. Defline recuraively 9 - 0, TF 5

It is convenient to put tu" =

= va-1

+ tv¢1 - tv' for 1< v< s, Then

SIS seensdy) = pA:’&JL)(n-1;j}-1.....J‘-H +

[+ 5 S

Akuﬂj Je1 (B=15y=Voeueydg=1) Foy Py lu) (2.17)
s t'7‘1 =ty

S Ve c y

" SE- 1 "ku‘%. +u) ‘k.é‘ui)n‘“"' -‘1"""'Jt'-|""

J, =1+u, ] Y0009 Ja=1¥e
tv % tv“ ' v: 4%

“
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(V) In the following we shall deal with the case '2«1i<c<n., For
our aim it is sufficient to consider only the case when 1 = c. Indeed,
if 1«1 -c, then using (2,10) c-i-times we get the case i = c,

Denote, for A:(n;J.‘,...,Jc).

3 = minldy, Jo=lieee,d #c=1), s = min { t: Jprt=1 = Jf.

First we suppose that j>c. Hence J1.....Jc>,2, and the c+1-st cus=-
tomes finds all servers busy, so that, it may be served only if the
service of the s-th customer will be finished, Therefore

n=Jj
A:(n;j,,....jc) & pAﬁ(n-l;J1-1....,Jc-1) + o pk’c(u) ‘zu("’”
.)1-1.....J’_i-'l.J.—1+U.J“1-1.....JC-H. (2.,18)

Second, let ) 2c, The previous four steps guarantee J‘>/2,J2,....
Jc7/1' Hence, the c+1-st customer finds at least one server idle, con=-
sequently, it may be served immediately after its arrival, Therefore

c c

Ak;?éj‘l"""’c) = plk*sn(n"‘;11'10~°-u.,a_"‘nc'3"1. ‘1801-1""'3c‘l)+

(u) AS

+ esve1 (B=173,=1 000y 3, q=T,6=80u, 0, =1,.00,3 =1),(2.19)

=1 Pksec
where s* denotes the number of the units in the aet 5'11"""’:‘ -
- *J'l"""’aa'

All five steps prove the following theorem,

THEOREM 1 , The busy period probability law of the discrete modi-
fied queue ;: = (p; hk’hku"“)' k>1, for any 15-c¢qn, is given by
formula (2.7), where PP:(n) is algorithmically calculated from (2,8)
through (2.19). '

COROLLARY 1,1, The probability law of the cycle, P:c(ﬂ =z P(C; = 1),

of the discrete modified queue [;; = (p; by q0eee), k21, T2ecoo,
is given by

Ce e c Ie
Pk (1) = Aemel Pk(n) Py (m), (2.20)
n,m>1

where Pictn) is calculated by (2.4).

Some practical remarks on the actual computation of A:(n;J‘.....Jth
1«i<nAc, will be done in Part 5,

3, DISCRETE MODIFIED SINGLE SERVER AND TWO-SERVER

Here we concentrate on the discrete modified single ¢l = (p; hy,

hk”,...), k> 1, For thia case it is clear that it is necessary to eva-
luate only A;(n;J), for any 1= j<n, and any k> 1, Consequently, the
formulae (2.13) and (2,18) have simpler forms, Summarizing this we have,
for PP;(n) and A:(n;j!, k> 1, the following recursive relationships,

1
A (131) = p
e ' } (3.1)
PPk(1,1) = pkh)p.
If n>2, then
Tininy - ppt
lk(n,l) = PPk’1(n-U. (3.2)
If 2<3j<n=1, then n-j
1 1
ALtnz3) = pAL(n=133=1) « 25 B (1) AL (a=jiei=1), (3.3)
A;(n;n) = pllln-l;n-l) z pn. (3.4)
Hence, for any n>,n1, we have
= 1
PRA(n) = 2 By (3) Aptnid), (3.5)
Pln) « PPL(n)/(1=p). (3.6)

THEOREM 2, The buay period probability law of the discrete modified
single aorvor;: = (p; hk,hk”....). k>1, 1s given by (3,6), where
PP;(nl and A; n;j) are calculated from (3.1) through (3.5).

For the discrete modified queue with two servers, : = (p; hk'hkol'
«+«)y k>1, the general formulae from Part 2 reduce to the following
form.

A;‘:l‘l;ﬂ = p,
(3.7)

PP;‘:(‘II = pkHl -
2 2

A (2;1) = PPL_ (1),
2 2 2

Ak(Z,Z) = p o+ PP'“‘(I), (3.8)

)< 2
peZ(2) = p (1) AZ(2;1) « b (2) AZ(2;52),

2
Ai(zn.m = 0, A (231,1) = p, } -

22(2;2,0) = »p, aZ(2;2,1) = .
Now let n> 2. Then
lE(nﬂ,O) = O,
: . (3.10)
Ak(n;hl) = Ak(n-'lgil, 1<{ <n=1,
1f 2X3.n, then
A2(n31,0) = AZ(n-153-1), (3.11)

For 1< 1< n-1, there are two possible cases,
First, let 1 + 1 <3, then



Dl 2
AL(n;d,0) = plr’s(“(n-l;_i-l,l-l) +
Neial

= 2
&= pk;z(“’ Ak"(n-1;1-1.1-l+u). (3.12)
where cﬁx) = 1, if x = 1, otherwise 6-(!) = 0,

Second,let i+ > j, Then

+

Ne=
2. o . (3.13)
Metnidat) = pAY oy 1) (n=151,5-2) o g Prea WIAZ | (n=131, 3-24u)

Hence, for any n> 2, we have

n  n-1
200y . 2 2 2
PPk(n) * 32l dwo pktj) pk+,(1) Ak(n;J.i), (3.14)
and finally
2 2
Pk(n) = PPk(n)/(I-p), (3.15)

and thils proves the following theorem.

THEOREM 3. The busy period probablility law of the discrete modi-

2
fied two-server queue ¢fk = (p3 hk'hkol""" k>1, is given by (3.15)
using formulae from (3.7) through (3,14},

4, DISCRETE MODIFIED M/GI/ee QUEUE

The method developed in thes second part for the discrete modified
M/Gl/c/=° queue, where 15 c<os, may be used for the discrete modified
queue with infinitely many servers. Obviously here we do not need the
walting room because any customer finds at least one idle server, In
the following we shall see that in order to determine P(n) = P(BS® =
= nl A) it is necessary to evaluate only Azﬁn;J). for a:y 1ﬁujsn?
Therefore the step (IV) and (2.17) have simpler form, and we obtain

oG
the next formulae, for ;;k = 4ps3 hk'hkoi"")' k=1,

Fe(n) = PPL(n)/(1-p), n31, . (4.1)
n

PFL(n) = E, Wiln,3), nx1, (4,2)

Weln,3) = p (4) AT(n3Y), T=jen, mxi. (4.3)

K 031 = p,

PP‘;‘tn = u:’n,n = p (1) p. } (4.4)

Let n> 2, Then
Ap(n;1) = ppzﬁn-t), th.5)

and, for any 2<j=<=n, we have
o s (4.6)
A°° = ]12i= e =123= vy i
K(mid) = PRIA=133-1) » A (net50en) Z g (1) + 25 WET, (e, 1)

(here, as usually, the sum over the empty set is defined as 0).

This proves the following theorem.

THEOREM &, The busy period probability law of the discrete modisfied
queue :’: (p; hk’hkol""" k>1, is given by (4.1), where PPk(n) is
evaluated from (4.2) through (4,6).

We note that the cycle probability law of the discrete modified
queue :'= (p; hk'hk¢1"“)' k>1, is given by (2.20), where we put
¢ s %0 ,

Theorem 4 genernlizescfhe analogous result from 3 concerning the

discrete modified gueue ;? z (p; hl'hz"")' where h1 = h2 2 eee o

5. CONCLUSION

We see that the actual computation of the busy period probability
law is relatively simple in the case when we have either only few ser-
vers (for example, ¢ = 1,2) or infinitely many servers, In other cases
the result of Theorem | may be simply programmed for a computer, Here
we note only that the following relationships hold,

IfT 1=i«n<c<ee , then

ASIn; 8y 0sovedy) = ST MALS 00 0ndg)s (5.1)
A:(n;J) - A:"(n:J) = AZTn;J), (5.2)
PE(n) = PE*1(n) = PL(n), (5.3)

and they enable us to simplify the computation for a queue with a large
number of available servers.

b 1) o hk(J) (k> 1) are non-zero only for few integers J, then the
calculation 1s simple, too. Indeed, it suffices to evaluate, for exam-
ple, for H:(n,J) only a few of them (that is, only Hc(n.J) with hk(J)>
> 0). Analogically we proceed for other quantities ‘k‘“531-----11’-

We say that the discrete modified queue € = (p; h 'hz"""
2 +es « If m = 1, then we obtain

l«<cgoc, 18 of order m, if h- z h-.I
the usua! (non-modified ) queue, and in this case all above formulae do

not depend on the subscripts k.

If m>1, then the computation of the busy period probability laws
for the queues ¢: = (p; hk, hk",...). 1=k<m, 1=c=oo, may be or-
ganized so that firat of all we calculate all necessary expressions for
k = m,then we continue for k = m-1, etc,, for k = 1,
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