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INTRODUCTION 

This paper is a continuation of the first and second parts .. 
under the same title, hereafter referred to as 11 •111• Sections, 
theorems, and formulae are numbered consecutively, starting 
with Section 9 below. References 11 - 151are listed at the end 
of 111 ; references 116 - 241, at the end of 1111 , respectively. 

9. A ONE-DIMENSIONAL MODEL 
• 

All results obtained so far in/1,11/ are merely eKistence 
theorems, and the question on explicit construction Jf the 
potential Uof a heterophase system from the knowledge of po­
tentials u<n , i r; I , and concentrations y =.(y

1
). r; 1 is still 

open. Here we present an example illustrating th~t a "hetero­
phase potential", at least qualitatively, possesses the struc­
ture predicted on the base of physical considerations /9,23/, 

i.e., the resulting interaction potential (cf.Sectio1 7) con­
tains an "operator" term (corresponding to interactim) and 
a "scalar" term (corresponding to concentrations of ~ure phases). 

Let 8=10,11 • 1=11,21 and d= I. For 1 = 1,2 Let pO) 
be a stationary (and uniformy mixing) Markov chain ·ietermi­
ned by the stationary distribution p (I) = (pO> , pO) ) and the 
entry-:wise positive transition probability0matr\.x flO~ = 
= (trr ~I) )r 8 .. 0 1 • As is pointed out in 1251, pp.l4-15, p(i) 
is a'Gibbs meas~re to the interaction potential 

- lo rr (I) if 
~ fi,(&)fh(t+1) 

V "' I t , t + 11 for some t r; Z , 
(9. I) 

0 otherwise • 

Let Z be a 11~1 -valued sequence of independent and identi­
cally distributed random variables such that 

(9. 2) 

By redefining the basic probability space if necessary we may 
suppose that the corresponding processes X <1> and X i2) are sto­
chastically independent (and hence jointly Markov), and Z is 
independent of the pair (X(l) , x<2>). According to T1eorems 6 

Otrrt.t.R~:HtHHW~ BHCTITJI' ~ 
~~c~D~ ~~elOBIUII 

',··' if:':s Jl!"' .TCEr{A 
. ------------
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and 9, the sequence X=(Xt;t<;;;Z) (cf. (3.9)) is again a Mar-
kov chain so that a fornrula 1 ike (9. I) must be valid for X , 
too. Let P=(P 0,P1), ll=(77rs)rs=Ol and ~(·)denote the 
objects associated with X. 'From (3.'9) it follows by a straight­
forward calculation that 

p = y p(l) + ( 1.- y ) p(2) . 
r 1 r 1 r ' 

r = 0,1. (9. 3) 

(Note that (9.3) is the same prescription of p as that one 
resulting from (8.7); however, for two~point probabilities the 
"heterophase" prescription will differ already from that one 
given by the usual mixture). Using the above-mentioned inde­
pendence properties a direct calculation yields: 

p 77 = u [(X • X ) = r, s] = y2 p< 1) 77< 1) + 112 p<2) ,<2) ; r, s <;;; I 0 ,11. (9. 4) 
r r, s t t+ 1 1 r r, s 2 r r, s 

Consequently, on account of (9.3) and (9.4), 

IT 
r,s 

~p(1) 77 (1) + Y.2P(2) ,(2) 
1 r r,s ~-r __ r~ 

y p(1) + y p(2) 
1 r 2 r 

r. s r;; IO ,11. (9. 5) 

It follows that S<c;Dv)=O unless V=lt,t+11 
But if V = It, t + 11 , then 

for some t r;; Z . 

• l (2) . ( 1) • 
4 ( m ) = lo!7f v n< ) + v n 1- ln!7 r exn r- 4 ( cf, __ ) + 

v l c,b(t) ;:: c,b(t) v v 

+log(y
1
2P( 1) )11 exp[-j(

2
)(c;6 )+log(y 12p~2) )]1. 

c;/l(t) v ~J..>(t) 

(9. 6) 

This example shows rather complicated r~lations between 
original potentials u<O and the resulting potential U of the 
heterophase system. Furthermore, it is not possible to relate 
this example to physical reality. Indeed, since a heterophase 
system is related to the concept of phase transition (cf. Sec­
tion 5), more realistic models should describe heterophase 
mixtures of two or more pure phases, corresponding to - single 
potential. Such a model cannot be constructed based on our 
example. Indeed, it is well-known (cf., e.g. / 21 •261 ) that 
short-range potentials .on a one-dimensional lattice do not 
exhibit a phase transition, 

10. HETEROPHASE RANDOM FIELDS ON INFINITE TREES 

The problem of phase transitions usually cannot be solved 
explicitly 125/, This means that the existence of more than a 
single Gibbs measure is indicated with the help of some quan­
tity (e.g., low and high density Gibbs measures for potentials 

2 

of the Ising type). An explicit derivation of finite-dimensional 
distributions of pure phases usually leads to serious combina­
tional difficulties, connected with the interaction between nei­
ghbouring sites on the boundaries of finite volumes. The diffi­
culties come from the fact that with growing volume V the num­
ber of mutually interacting sites on its boundary av also inc­
reases. Usual techniques (correlation functions /l6,2tl, con-
tours 1251 ) yeild only estimates which can be used to deduce the 
existence of different pure phases without calculating their 
distributions exactly. 

Difficulties of this type disappear when instead of the 
lattice zd we are working with a countably infinite homogeneous 
tree Td such that each of its nodes terminates exactly d edges. 
In this case av also increases with increasing V, nevertheless, 
the number of interacting boundary sites in av remains bounded. 
Hence for large volumes and for nearest neighbour potentials 
the interactions on the boundary will have a·vanishingly small 
influence. Consequently, exact calculation of finite-dimensio­
nal distributions for Gibbs measures is possible /21/, Thus, it 
appears reasonable to study heterophase random fields on such 
trees, at least, for the purpose of getting a manageable examp­
le of a heterophase system. To this· end let us start with some 
definitions (cf. 1211,Chpt;JO and 1271 ). T 

A probability measure P on the space I 0,11 d (and the cor­
responding random field X= (Xt ; t c;;; Td ) is said to be a Markov 

.. ,.. ..... ~-~-' • If"' 
l.i:lllU1JW .L.l.lt:.LU \.L•.U:U: J LL '1' 

(i) Pis strictly positive on all f.d. subsets of 10,11 d. 

(ii) the conditional probabilities 

P [ xt = 1 I cbl tl 1 ; It I = Td - I t I , (10. I) 

depend only on the values of cb at sites neighbouring 
(i.e., on those nodes u<;Td such that there exists an ed­
ge joining u with T), 

and 
(iii) the conditional probabilities (10.1) are invariant with 

respect to any isomorphism of the graph Td • 
We shall consider the case d .. 3 (this is the minimal value 

of d for which one can prove nonuni1ueness of MRF given condi­
tional probabilities (tO. I); cf. 121• 71. We fix a point t<;.T3 • 
and use t 1 , t 2 , t 3 as the generic notation for its nearest neigh­
bours. From (iii) it follows that the conditional probabilities 
of a MRF on T3 are uniquely determined by the parameter vector 
a • (a0 , a 1 , a

2 
, a 

3 
, a4 ) , where 

all: • P [ xt = 111 J : Xt - til = k I • o < k < a . 
j 

(10.2) 

Using equivalence of MRF and Gibbs fields it is possible to show 
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(cf / 271,, Thm. I) that a vector a determines the conditional pro­
babilities of a MRF if and only if there exist positive numbers 
x and ~ such that 

ak = ( 1 + y. x2k-3 )-1 . 0<k<3. (10.3) 

In more detail, let U be a homogeneous binary nearest neigh­
bour potential, i.e., let 

{ 
vo if s = t. 

U(s,t)= vl if s.t are neil:dl hours , (10.4) 

0 otherwise ; s,t~T3 • 

Then any P ~ ~ (U) will possess conditional probabilities 

vo -1 
ak={1+exp(-+kv

1
)], 0<k<3. 

2 - -
(10.5) 

It is easy ~o see, these are of the forru (10.3) if we take 

X=exp(v1/2); v=exp[(v0 +3v1)/2]. (10.6) 

The class of all MRF having.conditional probabilities a (cf. 
ttn ~\\ .... .;,, 1-.~ "" .... - ....... ~~ 1-. .. ,. d 'lj'....,_ ........ ,T ................. h ... ,.. .. .;,. __ .__.: .. .. 
' ...... _,, .................... _ -- ... ·---- .... J ~·a . ....... _ _ ...... J ....,.._.._.._ ..... _~---- ....,.. ___ ........ .. 

M= (:_, :-·) . O<p,q<l. (10.7) 

Preston 1211 , p.p.97-99 and Spitzer 1211 • def.3 and Thm.2 const­
ructed a special MRF PM (which behaves as a Markov chain along 
any infinite path in our tree).For any vector a there exists 
a matrix M of type (10.7) such that PM c;;!{a. As is shown in 1271• 

P11 ~~a if and only if 

[ . . 8 -1 
P 11 Xt = 1 II l.1 . xt . = 111 = 31 = ( 1 + vx ) • 

J 

PM[Xt =1lll.i:Xt· =11i=2]=(1+VX)-
1
• 

] 

This fact will play a central role in our considerations. The 
MRF PM can be described as a Gibbs field to the potential (of 
the form (l 0~ 4)) 

U(s,t)= f 
(( 1--q)3(1-p 1 

log ----- -·- -·- ) . ; 
p 1 - q 

. .!.tod--pq __ ], 
2 (1.p)(1-Q) 

l 0 otherwise • 4 

if 

if 

s = t. 

(10.8) 
s , t are neighbours • 

(cf. 1211
, Prop, 10.6). Conversely, if there is given a poten­

tial U of the form (10.4), then by solving the system cf equa­
tions obtained by equating the right-hand sides of (10.4) and 
(10. 8) we may construct the corresponding matrix M. A phase 
transition occurs if there exist two different solutions 
(p(t) • qO>) and (p<2l. q<2>) giving rise to two different mat­
rices M< 1>,M<2) (cf. 1211 , Prop. 10.7). Note that if a< 1>, a<2> 
a<2> denote the vectors (10. 3) for the MRF' s P (l) and P (2 ) 
then M M 

l),_( 1) = '\(2} • 0 ~ k ~ 3 • 

Indeed, at'sare uniquely determined by v
0 

and v
1 

via 
independently of the fact whether v0 , v1 give rise 
to more than one HRF. So :;uppose v0 v are chosen 
phase transition occurs 1h' . Let M(1)/M<2> denote 
ponding matrices, and let 

rr ( 1) = (" 1 17 1) rr(2) = (" 2 ~2) 
0'1' 0'2' 

(10. 9) 

(10.5)' 
to one or 
so that a 
the corres-

(10. 10) 

denote their stationary probability vectors. The associated 
MRF's will be denote by 

x<I}=(X~t); t~T3 ). i=1,2, (10. I I) 

Let Z=(Z, ~ t~T.,) be a familv of independent and identicallv 
distributed 11.21 -valued random variables with 

Pr ( Z = 1 1 = y = 1 - Pr [ Z = 2 1 • 0 < y < 1 • 
' 1 t 1 

(10.12) 

In particular, the distribution of Z is invariant under any 
isomorphism of the graph T3 • Suppose that X< 1>. X<2 > are sto­
chastically independent, and Z is independent of the pair 
(X< 1>, x< 2>). Then it is easy to check that the random field X. 
where 

(Z t ) 
Xt=Xt • t~T3 , (10.13) 

Is again a MRF. Consequently, its conditional probabilities are 
again determined by a parameter vector, say a= (a

0
• if 

1
• a

2
, a

3 
) • 

The following formula is proved in the appendix: 

Lemma 13. The parameter a
3 

of the field X (cf. (10.13)) is 
expressed by the formulae 

- 1 2 1-3 as = r y1 1T 1 + ( 1 - y 1) "t )( 

X jy14 (rt11)3a3 + 3y: {J- yl)(rt;)2 IT; X 
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x [ "01aa ~ "las ] + 3 Y 12 ( 1 - Y 1 ) "l ( "f ) 2 x 

x [ ( TT ~) 2 a 1 + 2rr ~ TT {a 2 + ( TT ~) 2 a a] + 

+ r 1 ( 1 - y 1 ) a "11 ( "~ ) a + y ~ ( 1 - y 1 X "~ ) a "12 + 

2 2 12 2 22' 2 
+3y1 (1-y1) (771) "1 [(rro) a1+2"o x (10.14) 

x "12 a 2 + ( "~) 2 a a1 + 3 y 1 ( 1 - y 1) a" { ( "~) 2 x 

x ( "~a 2 + "~a a 1 + ( 1 - y 4 ) 
4 

( TT ~) 3 a a I , 

Now let U be a potential of type (10.4), where v0 = 0 and 
v1 > 0. By 121•271 • there exists a phase trandition for U, 
As mentioned above, the vector a is uniquely determined by 
(hence, by v1), but_ there exists two different matrices, M< 1), 
and M<2> such that P ( 1) , P (2) c;;; -~ (U). Let rr< 1> , "(:?) de-
note the correspondi~g stati~nary probability vectors (see 
(10. 10)). By Lemma 13 (and similar expressions for the remai­
ning parameters ib, 0 S i S 2) we can think of the "hetero­
phase potential" U as of the f1,1nction (y1 , v1)-.tJ(y1,v1). 
We use Lemma 13 to prove the following une~pected result: 

Theorem 14. There exists a v*>O·sll;ch that for any 0<v1<v*, 
there is a Y=(y1'1-y1)c;;;r for which 11(0(y1,v Hl=l. 
In other words, the corresponding heterophase system~as a uni­
que Gibbs distribution. 

Proof. For fixed a ,rr< 1> and "(2) we see from (10.14) that 

as = f3 ( y 
1 

; a 
1

rr (1) , "<2> ) , ( I 0. 15) 

( 1) (2) 
where Y 1 -+ f3 ( y 1 ; a 1rr , " ) is a continuous function satis-
fying 

. ( . (1) (2) ) lim r 3 y1 ,a 1rr ·" =a3 • 
o+ 

(10. 16) 

y 1 -+ 1-

Since X <1> and x<2> are MRF's, it follows from (10.5) that 

a3 = (1 + e3v1 )-1. (10. 17) 

Also a=(a
0
,a1,a2 ,a3 ) must be expressible in the form (10.5) 

due to the fact that X (cf.(IO.IJ)) is MRF, too. Since self­
interaction in X <1> and x<2> is excluded (i.e., v0 = 0), and 

6 

since Z is an independent and identically distributed random 
field, construction (10.13) cannot give rise to self-interac­
tion. Hence v0 = 0 and from (10.5) we get 

av _1 
ii

3 
=O+e 1 ) • (10.18) 

On the other hand (a , rr< 1
) , 11<2> 

(10.16) we can express i 3 in the 
are fixed!), using (10.15) and 
form 

- av-1 -1 
aa=(1+e ) +fa(yl). (10.19) 

where 

lim fa ( y 1).. lim fa ( Y 1 ) = 1 . (10. 20) 

y1 -+0+ y1-+ 1-

Consequently (omitting the argument of fa)' 
a'V

1 
av

1 
sv 1 _1 

1 + e = (1 + e H 1 +fa (1 + e )] • 

It follows from this that 

av 1 v = .!. lold -..-.:1:...:!:.+..::e:__ ___ _ - 1 1 • (10.21) 
1 3 av 

1+£ (l+e 1 ) 
~ 

If fa- 0 (i.e., if either Y1 -0 or y 1 -l), then it follows 
from (10. 19) and (10.20) that 

1 av 1 1 av 1 v
1 

- 3 lol!; (1 + e - 1) = 3 lOll: e = V 1 , (10.22) 

Now, the value v1 is critical, for if v1 < 0 (v1 > 0) then the­
re is no (there is) phase tra~sition. Consequently, we must show 
when it is possible to have v1 < 0. This can be true only if 
the argument of logarithm in (10.21) will be less than one, 
i.e., if 

3v
1 e -1 

f3 > (> 0). 
2 (1 + e3vl) 

(10.23) 

Suppose for a moment that (10.23) is true. Sinse the function 
r

1 
-+fa (y

1
) is continuous and has the properties (10.20), for 

any u > 0 there is a r > 0 such that if either 0 < r 1 < r or 
1 - r < y < 1 , then l 3 ( y 1) < u • Find a value y such that 
£ (y ) }u/2, say. Since 

1 

3 1 3v av . 
lim (e L1)/[2(1+e 1)]=0. (10.24) 

v1 -+ 0 
7 



we can find 8 > 0 so small that if 0 < v
1 

< 8 then 
3v 3v 

(e 1-1)/f2(1+e 1 )1<al2=£
3

(y
1
). (I o. 25) 

In other words, if we can prove simultaneously taCY 1)<a and 
(10.23), there will be no phase transition for U(y1,v1 ) for v 1 
sufficiently distant from 0 and I for v1 sufficiently close to 0. 
But in order to prove these last assertions, it suffices to 
prove t 3 (y1)>0, L~ •• a 3 >a3 for any concentrations (y1 , 
l-y

1
)(;r (note that ii

3 
=a

8 
for y

1 
~10,11). Since v0 = 0 and 

v1 > O, (10. 5) yields 

a 3 < a2 < a 1 < ao (10.26) 

that is, in our system there is a tendency of placing a particle 
at a site t (i.e., x~> =1) when the neighbouring sites are va­
cant. Consequently, the unconditioned probabilities must satisfy 

1 2 
11 1 >as • 171 >aa • (10.27) 

Using (10. 14) and (10.26) to lower-estimate a3 we get the ine­
quality 

1 2] -3 iis >as +[Y1771+(1-y1)"1 x 

[ 2 2 .3 1 2 1 3 . 2 1 x Y 1 ( 1 - y 1 ) ( 1 - Y 1 ) ( 17 1 ) ( 17, - a.,) + y , ( 17. } ( 17. - a~ ) • 
- - - .., .. • ..&. u 

( 10. 28) 

By (10.27) the term in square brackets in (10.28) is positive. 
Hence a3 > a

3
• regardless of which concentrations (y

1
,1- y 1 )~r were chosen. 

11. CONCLUSIONS 

Our results suggest rather complicated relations between 
the original potential and the resulting "heterophase" poten­
tial. Even in the simplest case discussed in Section 10 we were 
able to get only qualitative results. Exact calculations do 
not appear manageable analytically due to occurrence of trans­
cendent equations. Thus, the problem of calculating heterophase 
potentials turns out to be open and very accute. More specifi­
cally (and this may be the simplest problem to start with)~ 
it is of interest to relate the construction (3.9) with cal­
culations not of the probabilities themselves, but merely of 
observables of physical interst (mean values of "spin", free 
energy, entropy, etc.). And, above all, to investigate the dy­
namical properties. 
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APPENDIX 

Here we shall prove Lemma 13. By definition, 

a3 = Pr [X t = 1 I X t = X t = X t = 1] • (A. I) 
1 2 3 

Let 

A( D = f z t = iln I xt<n = 11 • j = 1,2. (A.2) 

Note that A(1)HA(2)=.~ since {Zt =t]n[Z1 =21=~. 
The condition in (A.I) will be expressed as the union of the 
following mulually disjoint events: 

{1) (l) ( 1) 
E c 1) =I z, , t = < 1.1.1 )ln [ xt = xt = x, = 11 ; 

1. 2' 3 1 2 3 

E (2) =I z t.. t_ . 1_ = (2 .1.1 )]n [ x ~2 > = x! t) = x! 1> = 11 ; 
... .:;; ~ 1 ~ ;;s 

E(3)= ... (1,2,1) 

E(4)= 

E(5) = 

E(6}= 

(1,1,2) 

(2,2,1) 

(2,1,2) 

(A.3) 

E(7)= (1.2,2) 

(2) (2) (2) 
E(8)={Zt t.... t =(2,2,2)]n[x, =Xt =Xt =1], 

1'<::'3 ·1 2 3 

Now 

a3 =Pr[A(l)UA{2)1Xt =X =X =1]= 
1 '2 1s 

- -
=Pr{A(1)IX, =X, =X, =1]+Pr(A(2)IX 1 =X, =X, =11== 

1 2 3 1 2 ~a 
.. (1) .. (2) 

=Y
1 

Pr[Xt ==liXt =Xt =Xt =1]+(1-y)Pr{X 1 =llX, =Xt =Xt ==ll. 
1 2 3 1 1 2 8 

Here we used the definition of A(j) and independence of Z 
and (X<1> , x<2>), according to which 
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Pr[ A( j)) = Pr[ ( Z t = j) A (X ~J) = 1 )) = Pr[ X ~n = ll Z t = j) • Pr[ z, = i] 

= Pr[x:J> =llPr[Z, =j]. 

Hence 

- 8 - 8 
a

3 
=Y1 Pr[X~

1 )=11 U E(f>)+(l-y )Pr[X(2)=11 U E(t)l. 
f= 1 

1 t f= 1 

In the first step, we evaluate the probability 

8 8 
Pr[ U E(f)] = I Pr[E(f)) • 

f= 1 f= 1 

(A.4) 

(A.S) 

Using independence of Z and x< 1>, independence of the random 
variables Zu, z, ( u-' t), the fact that X (l) is a MR.F and that 
the sites t 1 , t 2 , t 3 are not nearest neighbours of each other, 
we get 

[ 
(1) (1) (1) 

Pr E(1)]=Pri[Z, t t =(1,1,1)]n[x, =X, =X, ==111= 
1. 2' 3 1 2 3 

- . (1) (1) (1) 
=Pr[Zt t t =(l,l,l))xPr[X =X, =X =liZ . =(1,1,1)]= 

1' 2' a '1 2 'a t1,t2,t3 

.. y.,Pr[XP 1 =X~' 1 =Xl'J = 1], 
1 '1 t 2 t 3 

i.e., 

Pr[E(l)] = y~ (IT~) 3 , 

In a similar way, on the base of symmetry properties, 
.. . - 2 12 2 
Pr[E(2)] = Pr[E(3)]= PdE(4)] = y {1-y )(11 ) IT , 

1 1 1 1 
- - . 21 22 
Pr[E(5)]=Pr[E(6)] =Pr[E(7)] =Y 10-Y1) IT 1(1T 1 ) • 

Pr[ E(S)} = ( 1 - y ) 3( ~r2 ) 3 • 
1 1 

Summing (A.6) up to (A.9) we get 

8 1 2 3 
Pd u E < e )] = <, 1 IT 1 + < 1 - , 1 > IT 1 > • 

f= 1 

Consequently, 
8 -

a3 =(Y1 1Tf+(1-y 1 )1T~)-3 xlY1 I Prt[x<l)=llnE(f)l+ 
f= 1 t 

10 

(A.6) 

(A. 7) 

(A. B) 

(A. 9) 

(A.IO) 

8 - (2) 
+(1-y) I Pri[Xt =llnE(f)ll. 

1 f= 1 

(A. II) 

because of (A. 10) and the relation 

a3 = y 1 

.. 8 
Prl[X\1) = tln ( U E(f))J 

f= 1 

8 
Pr[ U E (f)} 

f= 1 
. 8 
PrlfX~2)=1]n( f~l E(f))J 

X -------------------- • 
8 

Pr[ U E(f)] 
f= 1 

-+(1-y )x 
1 

Next we evaluate the probabilities entering into the formula 
(A. II). 

Pr Hx?>=lJn E(l)l= 

- (1) (1) (1) (1) 
=Pr[Xt =l,Xt

1 
=X'2 =Xt

3 
=l,Z,

1
,t

2
,,

3 
=(1,1,1)]= 

(1) (1) (1) (1) 
=Pr[Xt =1,Xt =Xt =Xt =11 z, t t :o(l,l,l)]x 

1 2 3 1'2'3 
3- (1) (1) (1) (1) 

x Prf z. . . = ( 1.1.1 )1 = y Pr[ X. = 1 I X. = X. = X. = 11 x 
• 1. ~ • -~ 1 • • 1 -~ ·;:s 

x Pdx?>= x~l)= x~~> = 11. 
1 2 -6 

i.e., 

(1) 3 1 3 
Pr I[ X = 11 n E ( 1 )] = y 1 ( " 1) a 3 • (A. 12) 

t . 

Next 

Prl[ x?> = t]n E (2)1 = y2
1

( 1- y 1) Pr[ x<
1
> = 11 x<

2> = x< 
1
> = x< 

1
> = 11 x 

t t 1 t 2 's 

·P-·r[ x<2>_ x< 1>- x< 1>-11- 2(1 ) 2 -P [ x< 1>-11 x<2>- x< 1>_ x< 1>- 11 X t - t - t - - y -Y IT1 r - t - t - t - • 
1 2 3 1 1 12 3 

Since x<l) and X <2> are independent random fields, the event 
rx[2>= 1) can be eliminated from the condition without chan­
gink the conditional probability, i.e., 

PrHx?>= l]n E(2)1= 

=l (IT 1 ) 2(1-Y )IT 2 Pr[X(1)=1IX<1>=x<
1
>= 1]. 

1 1 1 1 t '2 's 

11 
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8 06"1teAMHeHHOM MHCTHTyTe RAepHbiX HCCJleAOBaHMH Ha~aJl 
awxoAMTb c6opHMK "KpamKue coo61.14eHUR OH.HH". B HeM 
6YAYT nOMe~aTbCR CTaTbH 1 COAeP*a~Me OpMrMHaJ1bHble Hay~Hble, 
Hay~HO-TeXHM~eCKHe, MeTOAM4eCKHe H npMKJlaAHWe pe3yJ1bTaTw, 
Tpe6y~He cpo~HOH ny6J1HKa~HM, 6YAY411 4aCTbiO 11C~eHMH 
O~UIH11 , cTaTbM, aoweAwMe a c6opHMK, HMeJOT, KaK 111 APYrHe 
H3AaHHR OH~H, cTaTyc o~H~HaJlbHbiX ny6nHKa~IIIH. 

C6opHMK 11KpaTKHe coo6~eHHR OH~H11 6yAeT awxoAMTb 
peryJlRPHO, 

The Joint Institute for Nuclear Research begins publi­
shing a collection of papers entitled JINR Rapid Communi­
cations which is a section of the JINR Communications 
and is intended for the accelerated publication of impor­
tant results on the following subjects: 

Physics of elementary particles and atomic nuclei. 
Theoretical physics. 
Experimental techniques and methods. 
A~:~1~~!t~~~. 
Cryogenics. 
Computing mathematics and methods. 
Solid state physics. Liquids. 
Theory of condensed matter. 
Applied researches. 
Being a part of the JINR Communications, the articles 

of new collection like all other publications of 
the Joint Institute for Nuclear Research have the status 
of official publications. 

JINR Rapid Communications will be issued regularly. 



COHHUN.CATIONS, JINR RAPID COMMUNICATIONS, PREPRINTS,AND 
PROCEEDINGS OF THE CONFERENCES PUBLISHfD BY THE JOINT INSTlTUTE 
FOR NUCLEAR RESEARCH HAVE THE STATUS OF OFFICIAL PUBLICATIONS. 

JINR Communication and Preprint references should cohtain: 

- names and initials of authors, 
-abbreviated name of the Institute (JINR) and publication 

index, 
- location of publisher (Dubna), 
-year of publication 
- page number Of necessary). 

For example: 

1. Pervushin V.N. et at. JINR,P2-84-649, 
Dubna, 1984. 

Referer.ces to concrete articles, included into the Pro­
ceeciinnc; c;hnulri rnnt-;:>in 

- names and initials of authors, 
- title of Proceedings, introduced by word 11 1 n r 11 

-abbreviated name of the Institute (JINR) and publication 
index, 

- location of publisher (Dubna), 
-year of publication, 
-·page number. 

For example: 

Kolpakov I.F. Inr XI Intern. Symposium 
on Nuclear Electronics, JINR,D13-84-53, 
Dubna, 1984, p.26. 

Savin I.A., Smil'110V G.I. In: JINR Rapid 
Communications, N2-84,Dubna,1984,p.3. 
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WySIH w. E5-85-663 
feTepo4Ja3Hble CJIYl!aHHble rrOJISI. 
nonSI Ha 6ecKoHel!HhlX OAHOPOAHhlX AepeBhHX 

B pa6oTe rrpeAJio~eH rrpocTo~ pegyJibTaT,Kac~~~cSI clJop~ 
reTepo4Ja3HOrO IIOTeH~HaJia AJISI OAHOpOAHO~ CHCTe~. 0CTaJibHaSI 
qaCTh pa60Tbi IIOCBSI~eHa H3yl!eHHIO MapKOBCKHX IIOJie~ Ha 6eCKO­
Hel!HhlX OAHOPOAHhlX AepeBbSIX. 

Pa6oTa B~OJIHeHa B na6opaTOPHH TeOpeTHl!eCKO~ ~H3HKH 
mum. 

npenpHHT O&be~HeHHOro HHCTHTYTa RAePHWX HCCJteAOBaHHA. ,lly6Ha 1985 

. .. 
Sujan S. E5-85-663 
Heterophase Random Fields. 
Fields on Infinite Homogeneous Trees 

We present a simple result concerning the form of hete­
rophase potential for a one-dimensional system. The rest 
of the paper is devoted to the study of Markov fields on 
infinite homogeneous trees. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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