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INTRODUCTION

This paper is a continuation of the first and second parts’
under the same title, hereafter referred to as /1:11/, Sections,
theorems, and formulae are numbered consecutively, starting
with Section 9 below. References’!—1%/are listed at the end
of Y/, references 18-/ at the end of 1V respectively.

9. A ONE-DIMENSIONAL MODEL
All results obtained so far in/1:11/ are merely existence
theorems, and the question on explicit construction >f the
potential U of a heterophase system from the knowledge of po-
tentials UY |, ic1 , and concentrations y=.(y, ), is still
open. Here we present an example illustrating that a "hetero-
phase potential", at least qualitatively, possesses the struc-—
ture predicted on the base of physical considerations /2:23/,
i.e., the resulting interaction potential (cf.Sectioa 7) con-
tains an "operator" term (corresponding to interactisn) and
a "scalar" term (corresponding to concentrations of jure phases).
Let S={0,1} , I={1,2} and d= 1. For i = 1,2 let p®
be a stationary (and uniformy mixing) Markov chain Jletermi-
ned by the stationary distribution p® = (p(® ,p® )  and the
entry-wise positive transition probability matrix [I() =
= (M) . _o1. As is pointed out in’/2%/ pp.14-15, P
is a’ Gibbs measyre to the interaction potential

~togrd if Va={t.t+1} for some tcZ,

y )] 1
5(1)(%): { )b (t+ 1) .1
0 otherwise ,

Let Z be a {1,2] =-valued sequence of independent and identi-
cally distributed random variables such that

ulzy=il=y . i=1,2, 0O<y <1, (9.2)

By redefining the basic probability space if necessary we may
suppose that the corresponding processes X(1 and X'®) are sto-
chastically independent (and hence jointly Markov), and 2 is
independent of the pair (XM | X®) ), According to Tieorems 6
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and 9, the sequence X=(X,6;tcZ) (cf. (3.9)) is again a Mar-
kov chain so that a formula like (9.1) must be valid for X,

too. Let P=(pg.py), M=(m ) . _o, and J(-)denote the
objects associated with X, From (3.9) it follows by a straight-
forward calculation that

= (1) _ @) . -
P, =V P +(1 vl)pr ;7 r=0,1, (9.3)

(Note that (9.3) is the same prescription of p as that one
resulting from (8.7); however, for two—point probabilities the
"heterophase' prescription will differ already from that one
given by the usual mixture). Using the above-mentioned inde-
pendence properties a direct calculation yields:

Dl' ﬂr's=u[(x‘.x )=r,S]— D(l) (1)+y p(z) (); r.SC{O,l}.(g.l;)

t+1 T, 2y

Consequently, on account of (9.3) and (9.4),

VoD 7)1y 2p @) 7 (@)

o= LU r.scio,1i, (9.5)
r,s
YID(rl) +Y D(z)

2

It follows that ﬂ(é )=0 wunless V={t,t+1} for some tcZ.
But if V={t,t+1}, then

‘l(_d)v\=lc~uzfvl NS CO s lngfexnf- 4( )(d)«\+

e X By (9.6)

+ log (v Dél) )14 EXD[—B (6)+log (¥ Déz) Nt

This example shows rather complicated relations between
original potentials U® and the resulting potential U of the
heterophase system., Furthermore, it is not possible to relate
this example to physical reality. Indeed, since a heterophase
system is related to the concept of phase transition (cf. Sec-
tion 5), more realistic models should describe heterophase
mixtures of two or more pure phases, corresponding to - single
potential. Such a model cannot be constructed based on our
example. Indeed, it is well-known (cf., e.g.,/2136/) that
short-range potentials on a one-dimensional lattice do not
exhibit a phase transition.

10. HETEROPHASE RANDOM FIELDS ON INFINITE TREES

The problem of phase transitions usually cannot be solved
explicitly 725/ This means that the existence of more than a
single Gibbs measure is indicated with the help of some quan-
tity (e.g., low and high density Gibbs measures for potentials
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of the Ising type). An explicit derivation of finite-dimensional
distributions of pure phases usually leads to serious combina-
tional difficulties, connected with the interaction between nei-
ghbouring sites on the boundaries of finite volumes. The diffi-
culties come from the fact that with growing volume V the num-
ber of mutually interacting sites on its boundary dV also inc-
reases. Usual techniques (correlation functions’/18.21/ con-

tours "2%/) yeild only estimates which can be used to deduce the
existence of different pure phases without calculating their
distributions exactly.

Difficulties of this type disappear when instead of the
lattice 29 we are working with a countably infinite homogeneous
tree T; such that each of its nodes terminates exactly d edges.
In this case dV also increases with increasing V, nevertheless,
the number of interacting boundary sites in dV remains bounded.
Hence for large volumes and for nearest neighbour potentials
the interactions on the boundary will have a vanishingly small
influence. Consequently, exact calculation of finite-dimensio-
nal distributions for Gibbs measures is possible’/2!/, Thus, it
appears reasonable to study heterophase random fields on such
trees, at least, for the purpose of getting a manageable examp-
le of a heterophase system. To this end let us start with some
definitions (cf.”2!, Chpt;10 and’27/).

A probability measure P on the space {0,1} Ta (and the cor-
responding random field X=(X, ;tC¢T,) 1is said to be a Markov

- ~* a4 s sremTn e
LAllUuUll L1CLIU \I'unr g 1L

.
(1) P is strictly positive on all f.d. subsets of {0,1} 9.

(ii) the conditional probabilities

P[X‘=1I¢H!]; {ti="T —vlti (10.1)
depend only on the values of ¢ at sites neighbouring t
(i. e., on those nodes uC Ty such that there exists an ed-
ge 301n1ng u with T),
and '
(iii) the conditional probabilities (10.1) are invariant with
respect to any isomorphism of the graph Ty -

We shall consider the case d= 3 (this is the minimal value
of @ for which one can prove nonunlg ueness of MRF given condi-
tional probabilities (10.1); cf. /21 .We fix a point tCTh ,
and use t;, t,, ty as the generic notation for its nearest neigh-
bours. From (iii) it follows that the conditional probabilities
of a MRF on T3 are uniquely determined by the parameter vector
a = (a;, a, » @y y@g,a, ), where

a, =P[X =11{1:X =1}l=k}, 0<k<3, (10.2)
j — —

Using equivalence of MRF and Gibbs fields it is possible to show
3



(c£./27, Thm.1) that a vector a determines the conditional pro-
babilities of a MRF if and only if there exist positive numbers
X and ¥y such that

ay=(1+y.x¥*3)t  pcx<s, (10.3)

In more detail, let U be a homogeneous binary nearest neigh-
bour potential, i.e., let

v if s=t,

U(s,t)= v if s,t are neighbours , (10.4)

0  otherwise ; s,teTy .

Then any i’G:‘I(U) will possess conditional probabilities
ak=[1+exp(%+ lv:vl)]—l » 0<k<3. (10.5)
It is easy to see, these are of the form (10.3) if we take
x=exp(v,/2); y=exp[(v0+3vl)/2]. (10.86)

The class of all MRF having.conditional probabilities a (cf.

710 1YY 311 ha An;marad ke d Taw antr abnnhacEia mabwdo
{ 2 owrll e donote

P R L B R e

7 p 1-p
M= , 0<p,g<1. 10.7)
1-4q q

Preston 721/, P.P.97-99 and Spitzer /21/ def.3 and Thm.2 const-
ructed a special MRF P“ (which behaves as a Markov chain along
any infinite path in our tree).For any vector a there exists

a matrix M of type (10.7) such that Fy Cﬂa- As is shown in’27/,
P cd, if and only if

PylX, =1Illi: X, =131=3]=(Lyya),
PylX, =115 X, =1} =2]=(14y0)7"

This. fact will play a central role in our considerations. The
MRF P, can be described as a Gibbs field to the potential (of
the form (10.4))

- 3 -
log [ (-*I“D—*g“~) ('i—‘g- 7 if s=t,
U(s,t)= (10.8)
Logl—P9 7, it  &,t are neighbours,
2 (1-pX3-q)

4 i\ 0  otherwise ,

(cf. /21/, Prop, 10.6). Conversely, if there is given a poten-
tial U of the form (10.4), then by solving the system cf equa-
tions obtained by equating the right-hand sides of (10.4) and
(10.8) we may construct the corresponding matrix M. A phase
transition occurs if there exist two different solutions

(P ,qM ) and (p®,q®) giving rise to two different mat-
rices M) M®  (c£./2V | Prop. 10.7). Note that if a'V , a®
a® denote the vectors (10.3) for the MRF's P 1y and P o
then M M

aM-a® ., 0ck<s. (10.9)

Indeed, @,/ sare uniquely determined by v, and v, via (10.5),
independently of the fact whether Vo » ¥y give rise to one or
to more than one MRF. So, suppose Vg » Vv, are chosen so that a
phase transition occurs’?! . Let M(‘l)a}M(z) denote the corres-—
ponding matrices, and let

My _ (1 1 @ _ .2 .2 ,
" —(no.frl). ” ‘("o'"z)' (10.10)

denote their stationary probability vectors. The associated
MRF's will be denote by

x‘”=(xﬁ"; tCT,), i=1,2, (10.11)

Let Z=(Z,; tcT,) be a family of independent and identically
distributed {1,2] -valued random variables with

Pr[Z‘=1]=yl=1—i’r[Zt=2], 0<y <1, (10.12)

In particular, the distribution of Z is invariant under any
isomorphism of the graph T, . Suppose that X(1), X} are sto-
chastically independent, and Z is independent of the pair

(XM [ X®)), Then it is easy to check that the random field X,
where .

z
X :x( )

XL teT,, (10.13)

Is again a MRF. Consequently, its conditional probabilities are
again determined by a parameter vector, say ﬁ=(a0,al.a2.a3 ).
The following formula is proved in the appendix:

Lemma 13. The parameter a, of the field X (cf. (10.13)) is
expressed by the formulae

- _ 1 2 -3
a3-[errl+(l—yl)nl] x

4 1,3 3 1,2 2
xf)’l (ﬂl) a, +3yl (l—yl)(rrl) mx



)<[7101aa + 1r11a3]+3y12(1—y1 )rrf (17?)2 x

1,2 1_1
X[(’TO) a1+2n ma

1,2
o +(171) a3]+

2
3 1,23 .3 1,8 _2
+71(1—71) ™ ("1) +y1(1~)'1)(ﬂ1) L

+3Y? (1—y1)2(ﬂ1)21712[(n§)>2a1+2n§x (10.14)

2 2,2 3 1, 2.2
xmray +(m) agl+ 8y, (1-y )7 (71)" x

2 2 4 243
x[n0a2+nla3]+(1—y4) (171) a3¥.

Now let U be a potential of type (10.4), where v, = 0 and
v, >0, By /2127 there exists a phase trandition for U.
As mentioned above, the vector a is uniquely determined by
(hence, by v,), but there exists two different matrices, M,
and M® such that Py , P o €(U)., Let (D | 7® ge-
note the correspondi%g stati‘o‘nary probability vectors (see
(10.10)). By Lemma 13 (and similar expressions for the remai-
ning parameters d;, 0 < i < 2) we can think of the "hetero-
phase potential” U as of the function (v, » v1)+U(y1.vl).
We use Lemma 13 to prove the following unexpected result:

Theorem 14. There exists a v*>0‘su'ch that for any O<v,< v,
there is a y=(y;,1-y,)cT for which [4[U(y,,v)Il=1,
. 1 lh .
In other words, the corresponding heterophase system has a uni-

que Gibbs distribution.

Proof. For fixed a,7() and #® we see from (10.14) that

dg =f3(y, sa, D, 2@, . (10.15)
where v, »f; (v, ;alﬂ(l) .ﬂ(2)) is a continuous function satis-
fying
im  fy(y, iagn®D ,0®)eag . (10.16)
o+
Y7
Since XM and X® are MRF's, it follows from (10.5) that
3 -1 )
ag=(1+e 1)7, (10.17)

Also @=(a,,d,,d,.d;) must be expressible in the form (10.5)
due to the fact that X (cf.(10.13)) is MRF, too. Since self-
interaction in X and X® is excluded (i.e., Vo = 0), and

since Z is an independent and identically distributed random
field, construction (10.13) cannot give rise to self-interac-
tion. Hence V, = 0 and from (10.5) we get

3V, _
g, =(1+e D7, (10.18)

On the other hand (a,n! ,z® are fixed!), using (10.15) and
(10.16) we can express dg in the form

3V, _1
z ! : 10.19
dg=(l+e ) +eg (7)) ( )
where ~
lim ¢ (y1)= lim c3(71)=1- (10.20)
y1 -» 0+ 71 - 1-

Consequen‘tly (omitting the argument of €,

3V 3v 8v, -1
lie '=(lee Dllse (Tre I .
It follows from this that
3v1
Vl=%loz[ l+e -11. : (10.21)

3v
l+tq(1+e 1y

If €5~ O (i.e., if either vy, ~0or y, -1), then it follows
from (10.19) and (10.20) that

8v v
v -1 -1 v, . 10.22)
vl..-a—lcg(l+e l).3 log e v, (
Now, the value ¥, is critical, for if ¥, <0 (¥y> 0) then the-
re is no (there is) phase transition. Consequently, we must e':how
when it is possible to have V; < 0. This can be true only if
the argument of logarithm in (10.21) will be less than one,
i.e., if

1 .
e >.2 =1 - 0). (10.23)
2(1+e1)

Suppose for a moment that (10.23) is true. Sinse the funetion
Y, 2 € (71) is continuous and has the properties (10.20), for
any o > O there is a r > O such that if either O < y, <r. or

1-r<y, <1, then ¢, (v )<o. "Find a value y, such that
(3(y1)=o/2, say. Since

v, .
Hm (e 1-1)/(2(1+e 1)]1=0, (10.24)
vy »0

7



we can find 8>0 so small that if 0<v, <5 then

3vl 3v1
(e "-1)/[2(1+e ")l<o/2=¢,(v ). (10.25)
In other words, if we can prove simultaneously 3(7 )<o and
(10.23), there will be no phase transition for U(y ' Yy ) for Yy

sufficiently distant from O and 1 for v, suff1c1entiy close to O.

But in order to prove these last assertions, it suffices to

prove €3(y,)>0, i,e., dg>a for any concentrations (y1 .

1-y)cI' (note that a_ =a for y,_c{0,1}), Since v, = 0 and
1 3 ] 1 0

v, > 0, (l0. 5) yields

3

az<a, <a, <ag; (10.26)
that is, in our system there is a tendency of placing a particle
at a site t (i.e., x&) =1) when the neighbouring sites are va-

cant. Consequently, the unconditioned probabilities must satisfy

al>a 172>a

1>ag, 7 >a,. (10.27)

Using (10.14) and (10.26) to lower—estimate @, we get the ine-
quality

dg > ag +[y11'111+(1—)'1)1721]—:3
2 . (10.28)
x ¥ (1-yl(1=y) (D)%l -a)+v2D3 (2~ a .

By (10.27) the term in square brackets in (10.28) is positive.
Hence a3:>a3. regardless of which concentrations (y 1-y1)CI"
were chosen.

11, CONCLUSIONS

Our results suggest rather complicated relations between
the original potential and the resulting "heterophase"” poten-
tial. Even in the simplest case discussed in Section 10 we were
able to get only qualitative results. Exact calculations do
not appear manageable analytically due to occurrence of trans-
cendent equations. Thus, the problem of calculating heterophase
potentials turns out to be open and very accute. More specifi-
cally (and this may be the simplest problem to start with),
it is of interest to relate the construction (3.9) with cal-
culations not of the probabilities themselves, but merely of
observables of physical interst (mean values of "spin", free
energy, entropy, etc.). And, above all, to investigate the dy-
namical properties.
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APPENDIX

Here we shall prove Lemma 13. By definition,

Here we used the definition of A(j)
and (XM | X®), according to which

The specific problems of

and independence of Z

%=PHXRA|XH=X%=X%=1L (A.1)
Let
A =1z, =intx® 11, j-1.2. (a.2)
Note that A(1)N A(2)=0 since [z, =11n([z, -21=0
The condition in (A.1) will be expressed as the unlon of the
following mulually disjoint events:
1 1

B(=(2, . =LONX -2 =% =11

12 3
E@)=[2Z, , _-(2 1 1)]n[x‘2’ ")= xPo11;

1 & 3
E(3)= ... (1,2,1) ... , ;
E(d)= ... (1,1,2) ... 5 (A.3)
E(B)= ... (2.2,1) ... ;
E(6)= ... (2,1,2) ... ;
E(M= ... (1.,2,2) ... H

@ _® (2)
E(8)=[Z:1.:2,z =(2,2 2)]n[x X't2 =x,_3 =11,
Now
&3_=Pr[A(!)UA(2)IXH=Xt2=I_{‘3 =1] =
=PrlAMDIR, =X, =X, =1]1+Pr[AR)I X, =X =X, = 1=
. 1 - . ®)

=7, Pr[xc =1/ th =Xt2 =x‘3 =1]+.(1—yl)Pr[X‘ =1|th=xt2=xt3=1.].



PrlAD =Pri(Z, = DAXY =0 - e3P 2112, =i PrlZ, = 1]
=P x® -11prlz, =il
Hence

8 : 8
s =n Prx =1 U E@+(1-y)PUxP =11 U E@). (a.4)
£=1 £=1

In the first step, we evaluate the probability

i’r[
4

I cow

8 . :
E#)l= X PrfE(L)]. (A.5)
1 f=1

Using independence of Z and X(l), independence of the random
variables Z,,Z, (u#t), the fact that X1 is a MRF and that
the sites tl, t2, t; are not nearest neighbours of each other,
we get

Prl E(D)=Pri( 2 =1, [P x P x50
1 2 3

ll,lz,ls
-pr(z, gty =(1.1,1)]xPr[x(t‘l)sx(tlzLx£‘3)=1|ztl.,tg"3=(1,1,1)]=
-7 Pr[x“' Y- XY -1,
i.e.,
Pr{E(D]=y8 (n])3. ' (A.6)

In a similar way, on the base of symmetry properties,

Pr(E®)] = Pr[ E@3)l = PrE4)] = 2oy ) n? (A7)
PrlE() = PrLE®) = PrUE] = v, (1-y,)%n }(rD)? (A.8)
br[E(s)]=(1_yl)3(n§)3. (A.9)

Summing (A.6) up to (A.9) we get

. 8 1 2.3 :
Pr[eu E(D]=(y;m i+ (1-y))n )" (A.10)
=1

Consequently,

gy = (v, m+ (1-y)e2)3 xly, gl Prilx= UNE@)I+

10

8 . @ ,
+(1—yl) b3 Prl[Xt =1]NE (&)} . (A.11)

because of (A.10) and the relation

" (¢)) 8
Pri{X, =11N¢( Eul E(IN!}
E3=‘yl i =z +(1_y1)x

Next we evaluate the probabilities entering into the formula
(A.11).

PrilxP-1IN E(1)}=

: 1) ()} (1) 1) = =

=Pl X, =1.xtl =xt2 =xt3 =1'Zt1,t2.t3 =(1,1,1)] =
(1) 1) () () B

=Pr(X, =1,xtl=xt2=xt3=1! ztlvtz-‘3 =(1,1,1)] x

<Pz, . . =(L11l =y Pl xP=11x D x Do x D11«
10 ety 1 . “1 % "3

< Pr [x(” (1)= x4,

3
i.e.,
prixP= 1IN E(] = y3(x))%ay . (A.12)
Next |
(a)_ : o kD1 x®_ gD D
P (X, 1]1’1-1‘](2)l=yl(l—yl)Pl'[Xt =11xt1=Xt2=xt3 =1] x

(@)_ X(1)_x(1) 1].
! '3

1
xPr[X(z)—X(l) x“) 1] = y2(1-y Onf prlxP-1) x|
Since X() and X(z) are independent random fields, the event

[X(z)—ll can be eliminated from the condition without chan-
ging the conditional probability, i.e.,

Prl[x“)=1]ﬂ E(2)}=

- (hPa-y, )nzPr[X(l)_llX(l) D= 11,

11
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6yAayT NOMeWaTbCA CTaTbM, COAEpPNaliMe OpPUrMHANbHLE HayuJHWE,
Hay4HO~TeXHUJYECKne, MEeTOAMYECKME M NPUKNAAHWE pe3ynbTaTol,
Tpebyoumne cpouHon nyGnmkauyum. Byayum uacTteo ''Coobuennin
OMAK"', ctaTteu, Bowepuwe B cOHOpHWK, MMEOT, Kak W apyrue
n3anaHua OUAU, cTaTyc odwnumanbHux NyGAMKauwi ,

C6opHuk ''Kpatkne coobuenun OWUAKN'' Gypet suxoauTb
pPerynfapHo.
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Theory of condensed matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.
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Mlona Ha OeCKOHEUHHX OBHOPOOHHIX AepeBBLAX

B paboTe mnpepnoxeH IpOCTON Pe3yiIbTaT, Kacawmuica GopMbl
rerepodba3Horo NnoTeHNHANIa ONA OJHOPOOHOM cucTemnl. OcranbHasa
yacTh paboThl MOCBAMEHAa H3YuUeHMI0 MApPKOBCKHX moje#t Ha Gecko-
HEeUYHhIX OOHOPOAHHMX OepeBbhAX. !

Pa6ora BmmonHeHa B JlabopaTOpHH TeopeTHUeCKOoH GHIHKH
OHAH.

Npenpunt O6begHHEHHOrO HHCTHTYTa AAEPHMX HMccnenosamuit, NyBua 1985
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Heterophase Random Fields.
Fields on Infinite Homogeneous Trees

We present a simple result concerning the form of hete-
rophase potential for a one-dimensional system. The rest
of the paper is devoted to the study of Markov fields on
infinite homogeneous trees.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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