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INTRODUCTION

This paper is a continuation of the first part urder the
same title, hereafter referred to as I. Sections, theorems,
and formulae are numbered consecutively, starting with section
5 below. References’1~15/are listed at the end of I.

5. FUNDAMENTAL FEATURES OF HETEROPHASE SYSTEMS

Let us present some basic conclusions about the nature of
heterophase systems (see also/157),

(1) A heterophase system describes a certain "mixture'" of
pure thermodynamical phases. . R

(1) The mixture in (I) should be understood (locally; cf.
Remark 1) in the sense that configurations ty»ical of
the heterophase system consist of "pieces'" of confi-
gurations, typical of the pure phases comprising that
system.

(IIT) Though local fluctuations are possible, there exist de-
finite concentrations with which the pieces o configu-
rations mentioned in (II) are met in the infinite vo-
lume limit (see (2.2)).

(V) A heterophase system itself should be macroscopically
observable in the usual sense of equilibrium statistical
mechanics.

These are the basic aspects of the "static'" situation when
dynamics is not taken into account. Though dynamical properties
are of primary interest, one has to develop an equilibrium theo-
ry prior to dealing with dynamics. Furthermore, there are cer-
tain specific difficulties related to dynamics of heterophase
systems.

In fact, much work has been done on dynamics of irfinite par-
ticle systems (e.g., Glauber dynamics/1%/ exclusion with speed
change/18.24/ )/ and for the mentioned model mechanisms of time
evolution the time-invariant measures coincide with Cibbs
(=equilibrium) measures. However, the ergodic theorems desc-—
ribing the approach to equilibrium can be proved only when the
time-invariant measure is unique. Hence, they do not apply to
systems exhibiting a phase transition (i.e., non-uniqueness of
the Gibbs measure).
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On the other hand, the concept of a heterophase system does
not make sense at all when phase transition is absent. This
makes the dynamical problems for heterophase systems rather
difficult, unless we meet the following phenomenon: we have
a system with a phase transition, but the heterophase system
composed of the different pure phases has a unique Gibbs mea-
sure. A model system which exhibits such a surprising behaviour
will be studied in the next paper.

A phase transition can be understood in two different ways:
(a) a symmetry preserving phase transition, i.e., non—uniqueness

of the infinite-volume Gibbs measure for a given potential
such that all thesé measures obey the same symmetry group;
(b) phase transition as a spontaneous symmetry breaking, i.e.,
existence of Gibbs measures with a given symmetry group as
well as ones having lower (broken) symmetry.
The first interpretation is commonly employed in mathematically
oriented literature on phase transitions (see’/3:17.22/ ) The se-
cond one seems physically more relevant and natural (e.g., ima-
gine a ferromagnetic phase with paramagnetic fluctuations/9:23/ ),

Of course, the two interpretations of a phase transition lead
to different requirements on the concept of macroscopic observa-
bility. In the wide framework of stationary random fields I
ergodicity is appropriate. This follows from the interpretation
of the formula '

.

FUIR(®) pc KmodPi=1, P cH() (5.1)
as given in/18/ (see also Section 19 of/13/), Within equilibrium
systems of statistical mechanics we need another concept, for
(a) the measures considered have special properties (they are
Gibbs measures) and (b) they are not, in general, invariant so
that we cannot speak about ergodicity with respect to the group
T-2Z%. Here the results of I are not applicable, and it is the
problem we start with. '

6. HETEROPHASE RANDOM FIELDS AND LOCAL SPECIFICATION

Since our aim is to deal with random fields for which no
symmetry group is singled out, we may consider the space ST,
where T is any countably infinite set. Recall from/20/ (cf. al-
s0/17.22/ ) that a local specification is a family

Q={qv¢(A):VGG, pecsT, AcSTy 6.1)

such that )

(a) for any Ve @ and ¢GST »q (-):Sv-»[O,l] is a probability
measure, A

2

(b) for any Ve andAe Sv,d>-»qv¢(A’):ST~» [0,1] is 8 ¥ measurable,
where V=T~ V, ) v Vo-Vy T
(c) if v, cV, c@, then for any Ac§'1l, Be§ , and ¢€§

qV2,¢(A B)=Bl'qVl ,c(V2;¢',qS)(A)qv2,¢ (d¢f), (6.2)
where

d’(t) if tGV2,
c(Vy:b'9) =

d(t) it t¢V2 .

A probability measurePG‘fP(Skd) is said to be a specified random
field to the specification q in symbols, Pc (g, if

P@AISY) (A) P-ae., Ve d, AcSY. (6.3)

“Yv.4
We suppose that R (Q) # ¢. This is the case, e.g., if [S|<= and
the specification is continuous in the sense that

lim sup |q, ¢,(A) "qv.c(w;d”.d’)(A”; 0.
wir ¢° ‘

Let

6" -/ §7 (6.4)

denote the tail o ~field. We say Pc¢ P(8) has a trivial tail if

P(E) ¢{01] for any Ec (§T) . (6.5)

As is shown in/gof the following assertions are equivalent:
- Pc R(Q has a trivial tail,
-PcExtfR(q), i.e., P is an extreme point of the convex set
(q). and T
- P is regular, that is, for any A€ 8,

Um  sup |P(ANB) —P(A)P(B) |= 0. (6.6)

ve@,vtr ped

In other words P has short-range correlations’/®!/ Of course,
(6.6) is a reasonable formulation of macroscopic observability

in case when a symmetry group is absent. This can be seen also
from the fact that there exists a decomposition at infinity of
any Pc R(q), i.e., a decomposition of P into fields having a tri-
vial tail. Formally, that decomposition can be parametrized again
by configurations:




T

Ecs, 6.7)

P(E) = f QyE)P(dg), PcR@,
and analogues of all properties of ergodic decompos1t10n, as
well as an analogue of its interpretation, are valid /217 gince
canonical systems of measures are associated with an arbitrary
Rokhlin measurable partition of a Lebesque space/ef we can pro-
cess exactly in the same way as indicated in the proof of Theo-
rem 3 and get the following result:

1) (cf.

Theorem 4. Let Pc R(Q) n}((P(‘)y (6.3) and (2.1)).

Then

P{¢cR: Q4e SR(q)n}((P(”y Di=1. (6.8)

In particular, if R(g) n}((P(” Y JI)#d then also

Ext R Q) n }((P(i),yi.l);é 4 .

However, unlike Theorem 3 the conclusion of this assertion is
rather conditional, for it presupposes that R(Qn }((P(l) AVE D .
We do not know general conditions for this, but we sha11 meet
situations in which the following assertion is true:

"Theorem" 5. Let {P(i) 1cllc R(@. Lety= (y1 )1GI T,
there exists a local spec1f1cat10n q such that

Then

S@)nie®y 0.

7. HETEROPHASE RANDOM FIELDS AND MARKOV PROPERTY

Markov property is physically important because under rather
general conditions Markov fields are equivalent to Gibbs fields.
We shall consider the simplest state space

S=10,11 7.1

Consequently, any configuration ¢<{0,1} may be identified with
a subset of T, namely, with
N(¢) ={tecT: () =11 (7.2)

Let |{t"—t”" ] denote the usual Euclidean distance between points

t’, t”eT=2¢ For any set VcZ%we let 9V denote the set of
all nearest neighbours of V:

av=ite Z9Sv: ||t-V| =11 (7.3)
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More generally, if R>1, put

&V =1te zZ5V: |[t-V || < R} (7.4)

Since minf||t'—t*||: t,t’¢ 29, v4t7i= 1, we actually have 9,V=3V.
Remark 4. We may in an obvious way define the concept of
nelghbours and R —neighbours also when instead of Z9 the set T
is a countable graph., Then all considerations below will remain

valid (see’2l/ for more details on Markov and Gibbs fields on
countable graphs) However, for the sake of simplicity we shall
work with T=Z9 throughout the rest of this section.

A{0,1} - valued random field X=(X,,t ¢ T) defined on a pro-
bability space (Q, F, u) is said to be R -Markov ((R21)if P =

= dist (X) 1is positive on all f.d. sets E= ST (8§ =the power_
set of {0,1} ), and if for any Ve d, ¢ ci01lV  andé - <01}V
(recallV=T\V) v
u[(Xt;tGV) =¢V|(Xt;tG V) =¢§ l=
(7.5)

~ul ®, iteV) = o | (X ;e EAY) =$3RV].

A 1-Markov field is called simply Markov. The measureP=dist(X) c
c?¢o0,11) is also said to be R -Markov and Markov respectively.

Theorem 6. Let 1x"" i€ I{ be a set of Markov fields defined
on a common probability space (2, F,u). Let Z be an I -valued
random field, 1ndependent of the set {x):ic1} and such that
dist (2) ¢P (1) 1is strictly positive for all f.d. sets Ec §T
Then the random field X, constructed via (3.9), is Markov. More
generally, if X® is R® —Markov and sup{RM:i¢ I1<R < o, then
X 1is at most R -Markov (i.e., X is R’ -Markov for someR‘< R).

Proof. We shall deal only with the case R=1 and I={1,2}. An
extension toR21 and to an arbitrary countable I is straight-
forward, however, the formulae 1nvolved are rather complex.

Let P dist (X). If Ee {0,117 is any f.d. set, P(E)>0 since
P(l)(E) >0 for eachicl, and dist (Z) is positive on f.d. sets
ingT . and P(E) does not depend on more coordinates than those
which determine E because of the properties of the channel v
defined in the proof of Theorem 1,

Let ve @, ¢ c{0,11V, 3, <10,11¥ . We must show (7.5) with
R=1 (i.e., dp _a ). Slnce Z 1is not supposed statiomary, fini-
te-dlmen31ona1 distributions dist [(Zt,tGV)] depend not only on
Ve @ but also on its location.

First consider one-dimensional fields (d =1).
tc¢ Z9 there is a number 0 <q; < 1 such that

}L[Zt=1]=qt=1-ﬂ.[zt=2].

Then for any




By redefining the space (Q, ff p) we can assume that the random
fields X(1) and X(® are stochastically independent, and Z is
independent of the pair (X1)X®) ), 1In particular, finite-di-
mensional distributions of X(1) and X® are 1ndependent proba-
bility vectors, too. Consider the case V={t}, and let t={%t] =
=T>{t]. A direct calculation yields

plE& o g@ & ren - -5_1-

(Z; ).

e LX P2 g1 x ) ety = @

r (7.6)

z d -
¢ -0 )ulx® =g 10 e =3 1.

, (Z . ) )
If t’=t-1, then either Z,. -1 and hence X, =X, or, =2
and Xiz & X(z) . Since X(1) and X® are 1ndependent, only the
first case remalns in the condition of the first summand in
(7.6), and only the second case remains in the condition of
*he second summand. S1m11ar1y for the case t’=t+1., Ift’=t-2,

(zt) - (1) Z , =9 and Y(zt ) (2) T

then either 7. ;» =1 and X, Te
the first case we use the Markov property of X(E) , in the second
one independence of X(1) and X®, This permits'to exclude both
cases from conditions in each of the two conditional probabili-
ties in (7.6). Exactly the same argument applies to t’=t+2
t-3, t +3, etc. Consequently,

X2 8m 1k e -3 1-

= qu X =0 1 @D XD ) (B0, Fe 1) +

(®) (2) x(®) )

+ A=)l X =M (X" X7 ) = (B (t-1), $(t+1))]=

(Z,)_

(2,_p) (2 '
T e RERTCY ¢ St SALD B CYCR I T

=ulX =0 X, v'c alth =45 4 1.

It is easy to see that any probability measure on sT is unique-
ly determined by the values it takes on f.d. sets of form (1.5),
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whereVe @ is a connected set. In case d=1 it suffices to take
the sets V ={-n,..,n |, n=0,1,2,... . The boundary of any
of these sets consists again of exactly two points so that the
preceding analysis applies and we are done in case d=1.,

If d>1, then it is clear (although somewhat cumbersome ‘to
write down explicitly) that the conditional probability in
(7.5) may be expressed as a combination of conditional probabi-
lities

i - -
W&, Eev) =gy 1, te V) =31 tate ey, 217,

with coefficients being functions of the components of the pro-
bability vector

Wl 2, steV) =g, 1; v, clt,21").

For any fixed (I,;:t eV)c {1,2lv the boundary effects can be eva-
luated as above, and some combinatorics lead to the desined
conclusion.

By combining Theorem 6 with the end of the proof of Theorem I
(starting with (3.15) and (3-16)) we get the following result:

Coroliarz 7. Let the hypothesis of Theorem 6 be satisfied,
and let the random field Z satisfy (3.15) and (3.16) for some
f1xed y= (y‘)“:_1 erl. Then the set of Markov fields in HX

,!.A’ 15 Tl """l"'.}

In other words, if the sibfields 1XW:4c1} are all
Markov, then for any yCI' there exists a heterophase
random field obeying the Markov property, too. Of course, the
latter two assertions admit also a formulation in terms of
Gibbs f1e1ds. To this end recall some concepts (cf.17.21,22/ ),
If U:@-R is an arbitrary function, then due to the identifi-
cation (7.2) we may put

UA) =U@p), Ac@, ¢<10,11T N(¢) =A. 7.7

A set ACT is said to be a simplex if for any two distinct
points t ,px €A we have lit-ull=1.  Any function u : @ - R

such that U(6)=0 is said to be a potential. Here the empty set
corresponds, according to (7.2), to the configuration e={(t) ;
te T), where ((t) =0, Any potential 4, induces an interaction
potential ‘IU :@> R! via the Mobius formula

g, = = %), acaq. (7.8)
XCA

If Jy(A)£0 only when A is a simplex then, U is said to.be
a rearest neighbour potential. If V,V€®@ and V'3 VU 9V
(cf. (7.3)), we define the Gibbs d1str1but10n in V given the

' 1




boundary conditions & by the properties that

my, #£8) = Z‘zlaepr(qS e &), dct01}” (7.9)
where

z = 3 expU ,

e G

Here, if V ,We.Q,VAW=0,4c{0,1} and ¢c1011Y, soyecio V¥
is defined by (compare with Sect.6)

d(t) if teV,

be¢)®-=
: y() it teWw, 7.11)

A measure P€?{10,1}) is said to be a Gibbs measure (and X ,
dist(X)= P, a Gibbs field) to the nearest neighbour potential
if for any V ,V’, ¢ and § specified as above

W&, teV) =glEreVaV) =3l =ny o (@), (7.12)
'Y ov
i.e.,
SN It FITYILIE SEPTY
ViPav PlaGiO'I}T:$v’ =3} (7.13)
vV

The property of nearest neighbour interaction is contained in
(7.13), for it can be rewritten in the form

"v,$‘¢) ="y By ().

In what follows we shall deal only with nearest neighbour po-
tentials. By Thm.4.1. of Preston’*4/,if Pc P({0,1}) is positive
on all f.d. sets, then P is a Markov measure if and only if
there exists a nearest neighbour potential U : @, R! such that
P is a Gibbs measure to the potential U,in symbols, P c4(U).
As is well-known, the set §(U) is non-empty in this case,

and Gibbs and specified random fields are equivalent notions
(in the sense that any nearest neighbour potential gives rise
to a continuous specification and conversely, to any nearest
neighbour potential one can define a specification such that
R@ = JU); cf£./24/), Corollary 7 may be reformulated in terms
of specified random fields:

Corollary 8. Let 8S={0,1}, and let pW¢ fﬂ(q(‘) ); i€l, where
the qU.S s are specifications determined by nearest neighbour
potentials. Then for any y= (71)1GI € I' there exists a specifi-

cation q such that Q{(q)n}((i’(‘),yi.l) £ ¢. In particular, Theo-
rem 5 is true.

8. HETEROPHASE RANDOM FIELDS AND GIBBS PROPERTY

Let Ve(, and let ¢ci0,1 1T be such that N(¢) UéN(¢>) c V (see
(7.2), (7.3)). 1f P is a Markov field, we can define a nea-
rest neighbour potential U corresponding to P by

Plde 101} gy =9}
PIEcioni: g =cyl

where €(t) =0. Consequently, Theorem 6 may be reformulated as
follows:

U(¢) = log , defony) 8.1)

_Theorem 9. Let {P(l):iGHC?({O,H) be a set of Gibbs measures,
P(‘)G_‘_](U(i)), where U is a nearest neighbour potential for
eachicl. Let X be a {0,1}-valued random field constructed
via (3.9), where dist X" )=P{M) for eachicl, and let Z sa-
tisfy the assumptions of Theorem 6. Then there exists a nea-
rest neighbour potential U such that dist (X) ¢ §(U) (we shall
write also X € J(U)). ,

Note that if T= Z, the random fields X in Theorem 9 are
stationary, and Z satisfies the conditions (3.15) and (3.16),
then we ran aceart the axiatence of a nearest npl'ghhmn" noten=

tial U such that

Jo nmaothn K&y .0 £ 4 8.2)

for any ¥=(y,)icy €I'. As mentioned above, a reasonable desc-
ription of macroscopic observability provides the concept of
regularity (cf. (6.6)). However, we shall deal only with the
weaker property of X having a trivial tail (i.e., (6.5) is true
for P=dist(X)). Indeed, if X& 4(U), then the equivalences stated
in Section 6 share their validity due to the above mentioned
relations between specified random fields and Gibbs fields(this
is shown in/3/ for a large class of potentials including ours).
Trivial tail enables us to avoid imposing too strong conditions
on Z. We shall need only the following one. Let A=dist(Z) and,
for any VCT , )~V=dist;((Zt ;te V))., The field Z is said to be
mixing if for any V ,We @ ,¢y €1V and § €IV,

lim | A Z) = A ¢)|=0,
;TL' (v-;)uw('/'° ) =A, W) A, ()] (8.3)
where V+t={u+t: ue V } (cf. (7.11)). The next assertion is

valid for an arbitrary countable discrete state spaceS$.



Lemma 10. LetiP(”:iGI}(:?(S) be a set of regular measures,
let dist(X(D)=P() ,i€l. Let X be constructed via (3.9),where
Z is a stationary mixing random field, stochastically indepen-
dent of the set{X®:ici}. Then X has a trivial tail (i.e.,
(6.5) is true for P = dist(X)).

Proof. (6.5) is a consequence of the fact that the o -fields
ST and(87T) (cf. (6.4)) are independent under P, and this in
turn follows from the following mixing property: for any f.d.
sets E,E € §T,

lim | P(TD E E)- PO E)PE)| =0, , (8.4)

t+o0

We shall prove (8.4). To this end fix two f.d. sets, say
E=l¢e8T: ¢ _ccl, E-{gcsT: g eC),

where V ,We d,cC csSY and CcS¥ Let A= dist( Z) and let v denote
the channel introduced in the proof of Theorem 1 (cf. (3.11)-
(3.13) and note that the fact that v is input historyless and
nonanticipatory without and stationary assumption on the X® g,
being a more consequence of the independence assumption (3.8)).
Then

PE)=pl(X,:teV) ecCl=P{1TxisecsT: 6,6 Cll=

T (¢V(9)
=I1@G¢GS:¢GCM@¢h 2A¢¢ndm ite e Cl.
T v v v t

I z/;vcl

By expressing P(r(s) (E)) andP(E) in the sdme manner we see that

the difference 1n (8.4) can be written as follows:
W(w) W ()

| = wlX, iuwevs)ecc, (xu JuewW) eClx
ye1’v :
g c1¥
- ¥ (u))
Yy @0 P- 12 w1, vevan cela, @ix
<13 pl@FMucw) el LN
yei¥

By changing the basic probability space if necessary we may
suppose that the set {P™):icf} is jointly regular. From this
?nd (8.3) we see that the latter difference approaches zero as

Lemma 10 allows us to strengthen Theorem 9 in order to get
the desired property of macroscopic observability for hetero-
phase random fields:
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Theorem 1. Let (P :ic1},iXP:i<1l , 2 and X be as in
Theorem 9. Suppose in addition that Z 1is mixing andl*”@Expgaﬂq
for anyie I, Then there exists a nearest neighbour potential U
such that

P = dist(X) € Ext{(U). (8.5)

In particular, for any y= (y)iGI &¢I’ there exists a nearest
neighbour potential U such that

Extyn K@Dy D £ ¢ . | (8.6)

Similarly to the concepts of joint stationarity (cf. (3.5),
(3.6)) and of joint weak mixing (cf. (3.5), (3.17)) we can de-
fine also the concept of joint mixing. Then we have the following
result:

Lemma 12. Let {XW:ic1ic M@E) be a jointly mixing set, and
let Z be an 1 -valued random field independent of the set
{X®:ic 1}, Let X be defined via (3.9). If 7z 1is ergodic[weak
mixing, mixing] then X is ergodic [mixing, weak mixiag],

Proof. By repeating the arguments of ’V, from the fact that
XYy icl} is jointly mixing it follows that the channel v
(Cf. (3-::), (3 :3)) Lo a aI.LUl.l5J._y LuLALLLs deLLUudL_y \,h&uuc}..

Using 1, Theorem, p.929 we get the claim,

Remark 5. Lemma |2 in a very transparent form illustrates
the difference between "heterophase mixtures'" and the usual
mixtures

F =1§1y‘ (8.7)
- Since P“) ¢ & (8), we have from (5.1) that
P[iglR(P“))].—.l, 8.8)

where R(PM)=R(¢) (cf. (4.3)) for geR with P,=PD 1 ¢c1, Con-
sequently, the average <f>, cannot be calculated as an ergodic
(Cesaro) average, for it depends on the choice of ¢ in sets
R(PW ), Since the averages<f>  depend on the particular confi-
guration observed, mixtures (5.7) cannot describe macroscopi-
cally observable systems. On the other hand, heterophase mixtures
can possess, in principle, arbitrarily good ergodic properties.

11
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duanyeckoe o6OCHOBAHHE, MAPKOBCKOE CBOMCTBO

H ONMHCaHHe DaBHOBeCHA

Hocne npepncTaBleHHs KOPOTKOro 0630pa GH3HYECKUX 3aKIIo—
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CBOMCTBO COCTAaBHBIX CHNy4YalHbIX MoOned W ycTaHOBIeHa BO3MOXHOCTH
onHcaHus paBHoBecHA /ru66coBckoro/ 3THX CHcTeM.

Pa6ora BmmonHeHa B JlabopaTopuH TeopeTHuYeckoit ¢usuku OUAU

NpempuuT O6begMHEHHOro MHCTHTYTAa AflePHHX MccnepoBanuh. [Jy6ua 1985
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Heterophase Random Fields.
Physical Background, Markov Property,
and Equilibrium Description

After presenting a brief summary of physical conclusions
about the nature of heterophase systems the Markov property
of composite random fields and of heterophase random fields
is studied, and the possibility of equilibrium (Gibbsian)
description of such systems is established. :

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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