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INTRODUCTION 

This paper is a continuation of the first part ur.der the 
same title, hereafter referred to as I. Sections, theorems, 
and formulae are numbered consecutively, starting with section 
5 below. References11- 161are listed at the end of I. 

5. FUNDAMENTAL FEATURES OF HETEROPHASE SYSTEMS 

Let us present some basic conclusions about the nature of 
heterophase systems (see also/161), 
(I) A heterophase system describes a certain "mixture" of 

pure thermodynamical phases. 
(II) The mixture in (I) should be understood (locally; cf. 

Remark I) in the sense that configurations tyJical of 
the heterophase system consist of "pieces" of confi
gurations, typical of the pure phases compristng that 
system. 

(III) Though local fluctuations are possible, there exist de
finite concentrations with which the pieces o: configu
rations mentioned in (II) are met in the infinite vo
lume limit (see (2.2)). 

(IV) A heterophase system itself should be macroscopically 
observable in the usual sense of equilibrium ntatistical 
mechanics. 

These are the basic aspects of the "static" situation when 
dynamics is not taken into account. Though dynamical properties 
are of primary interest, one has to develop an equili.brium theo
ry prior to dealing with dynamics. Furthermore, then' are cer
tain specif\c difficulties related to dynamics of heterophase 
systems. 

In fact, much work has been done on dynamics of irfinite par
ticle systems (e. g., Glauber dynamics /19( exclusion with speed 
changei 18.2V ) , and for the mentioned model mechanisms of time 
evolution the time-invariant measures coincide with Cibbs 
(aequilibrium) measures. However, the ergodic theorens desc
ribing the approach to equilibrium can be proved only when the 
time-invariant measure is unique. Hence, they do not apply to 
systems exhibiting a phase transition (i.e., non-uniqueness of 
the Gibbs measure). 

liVIIiH~f.!HWA RHtnt'f'JJ' t · 
ll€fr2~X .. tKC~~~~~t.Hltll 

s~·,~r~ H>, ,; r {:.~ ~J.l:, · 
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On the other hand, the concept of a heterophase system does 
not make sense at all when phase transition is absent. This 
makes the dynamical problems for heterophase systems rather 
difficult, unless we meet the following phenomenon: we have 
a system with a ph:se transttion, but the heterophase system 
composed of the different pure phases has a unique Gibbs mea
sure. A model system which exhibits such a surprising behaviour 
will be studied in the next paper. 

A phase transition can be understood in two different ways: 
(a) a symmetry preserving phase transition, i.e., non-uniqueness 

of the infinite-volume Gibbs measure for a given potential 
such that all thes~ measures obey the same symmetry group; 

(b) phase transition as a spontaneous symmetry breaking, i.e., 
existence of Gibbs measures with a given symmetry group as 
well as ones having lower (broken) symmetry. 

The first interpretation is commonly employed in mathematically 
oriented literature on phase transitions (see/3,17,22/ ). The se
cond one seems physically more relevant and natural (e.g., ima
gine a ferromagnetic phase with paramagnetic fluctuations/9,23/ ). 

Of course, the two interpretations of a phase transition lead 
to different requirements on the concept of macroscopic observa
bility. In the wide framework of stationary random fields I 
ergodicity is appropriate. This follows from the interpretation 
of the formula 

- I- • 

r ~ U IK VP) : f/J "= K mO<l t' I = 1 , t' ~ ]It liS) (5. I) 

as given in1181 (see also Section 19 of 1131 ). Within equilibrium 
systems of statistical mechanics we need another concept, for 
(a) the measures considered have special properties (they are 
Gibbs measures) and (b) they are not, in general, invariant so 
that we cannot speak about ergodicity with respect to the group 
T=Zd. Here the results of I are not applicable, and it is the 
problem we start with. 

6. HETEROPHASE RANDOM FIELDS AND LOCAL SPECIFICATION 

Since our aim is to deal with random fields for which no 
symmetry group is singled out, we may consider the space sT, 
where T is any countably infinite set. Recall from/20/(cf. al
sof17,22/ ) that a local specification is a family 

q =I qv. c/1 (A) : v ~ (1 , ¢ ~ s T • A ~ ~ T 1 (6. I) 

such that 
(a) for any V~ (1 and c/1 ~ S T , q~ ¢ (·): ~ v -.[0,1] is a probability 

measure, • 

2 

I 

I 

I 

I 

.. 

(b) for an1 Vt.;, (1 andA~ SV, ¢-.qV,c/1 (A):ST-+ [0,1] isS '~!.measurable, 
where V =T' V, v. v . v s 2- 1 sT (c) 1f V1 cV2 t.;, (1, then for any A~ S 1, B~ , and ¢ ~ 

qv. ..~.(A B)= fqv (V . ..1..' ..~..)(A)qv. ..~..(d¢'), (6. 2) 
2·~ B 1 ,c 2 • ~ • ~ 2 ·~ · 

where { q, '(t) 

, ) = 
c (V2 ; c/1 • ¢ ¢ (t) it 

t r+ V2 

if t ~ V2 • 

A probability measure P ~ P(S) is said to be a specified random 
field to the specification q in symbols, P ~ 9{(q), if 

P(A I SV) =qv.¢ (A) P -a.e., V ~ (1, A~ S v . (6.3) 

We suppose that9{(q)/=#. This is the case, e.g., ifi:SI< .. and 
the specification is continuous in the sense that 

lim sup I qv "',(A) -llv c(W·-'-' q,)(A)I ... 0. 
WfT ¢' .~ • .~ • 

Let 

(ST) .. n S v 
v~cr 

(6.4) 

denote the tail u -field. We say Pte 9'(8) has a trivial tail if 

P(E) te I 0,11 for any Ete(ST). .. (6.5) 

As is shown in120: the following assertions are equivalent: 
- P ~ !R(q) has a trivial tail, 
- e t.;, Est !R(q), i.e., P is an extreme point of the convex set 

~(q), and T 
- P is regular, that is, for any At.;, S , 

Um sup I P(An B) -P(A) P(B) I• 0. (6.6) 
V te (1, VtT areS\' 

In other words P has short-range correlations/21~ Of course, 
(6.6) is a reasonable formulation of macroscopic observability 
in case when a symmetry group is absent. This can be seen also 
from the fact that there exists a decomposition at infinity of 
any Pt.;,!l{q), i.e., a decomposition of P into fields having a tri
vial tail. Formally, that decomposition can be parametrized again 
by configurations: 
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P(E)= f Qc/>(E)P(d¢), 
R 

T 
P ~ !R (q) , E ~ S , (6. 7) 

and analogues of all properties of ergodic decomposition, as 
well as an analogue of its interpretation, are valid 121!since 
canonical systems of measures are associated with an arbitrary 
Rokhlin measurable partition ~f a Lebesque space16~ we can pro
cess exactly in the same way as indicated in the proof of Theo
rem 3 and get the following result: 

Theorem4. LetP~9t(q)n}{(P<!~1 .1) (cf. (6.3) and (2.1)). 
Then 

PlcJ>~R: Qc/>~ !R(q) n }{(p(i>,yi ,I) I= 1. (6.8) 

In particular, if !R(q) n }{ (P(i)' y
1 

,1) f d then also 

Ext !R (q) n }{(p<i),y
1 

,I) I= d • 

However, unlike Theorem 3 the conclusion of this assertion is 
rather conditional, for it presupposes that !it(q)n }{(p(i~y1 ,I).# 0. 
We do not know general conditions for this, but we shall meet 
situations in which the following assertion is true: 

"Theorem" 5. Let IP(i): i~ I I c ~ (q). Let y = (y
1 

) 1 ~ 1 ~ r. Then 
there exists a local specification q such that 

.. '" :htq J n n ll:"'-', y1 ,lJ 1' 0 • 

7. HETEROPHASE RANDOM FIELDS AND MARKOV PROPERTY 

Markov property is physically important because under rather 
general conditions Markov fields are equivalent to Gibbs fields. 
We shall consider the simplest state space 

s =10,1}. (7. 1) 

Consequently, any configuration ¢~10,1 I may be identified with 
a subset of T, namely, with 

N(¢) =It~ T: c/>(t) =11. (7. 2) 

Let II t'-t" II denote the usual Euclidean distance between points 
t', t"~ T= Z~ For any set V c zd we let av denote the set of 
all nearest neighbours of V: 

d a v = It.(;; z .... v: II t-v II = 1 I. (7. 3) 
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More generally, if R.;:: 1, put 
. d 
flaV:It~Z-..V:IIt-VII:s: Rl. (7 .4) 

Since minlllt'-t"ll:t',t"t;; zd,t',#t"l= 1, we actually have a1V=aV. 

Remark 4. We may in an obvious way define the concept of 
neighbours and R -neighbours also when instead of zd the set T 
is a countable graph. Then all considerations below will remain 
valid (see1211 for more details on Markov and Gibbs fields on 
countable graphs). However, for the sake of simplicity we shall 
work with T=Zd throughout the rest of this section. 

AI0,11 -valued random field X=(Xt,t ~ T) defined on a pro
bability space (0, ~, ll) is said to be R -Markov ( R;;;1) if P 
= dist(X) is positive on all f. d. sets E= S T ( S = the power_ 
set of{O,ll ), and if for anyVt;;G,¢ ~I0,11V andcP- ~IO,llv 

- v v (recall V =T 'V) 

jl [ (Xt; t ~ V) = cP I (Xt; t ~ V) = i- ] = v v 
= llf (Xt ; t '""V) = .pv 1 ext; t ~ aRV) = i a R v 1. 

(7 .5) 

A.1-Markov field is called simply Markov. The measureP=di&t(X)~ 
t;; P(I0,11) is also said to be R -Markov and Markov respectively. 

"' 
Theorem 6. Let IX'.': it;; I I be a. set of Markov fields defined 

on acommon probability space (O.~.Il)· Let Z be an I -valued 
random field, independent of the set I x<O: i ~I I and such that 
dist (Z) ~p (I) is strictly positive for all f. d. sets E ~ g T • 

Then the random field X, constructed via (3.9), is Markov. More 
generally, if X (i) is &(i) -Markov and sup I R(i): i ~ I I:;:; R < oo, then 
X is at most R-Markov (i.e., X is R'-Markov for someR'..$ R). 

Proof. We shall deal only with the case R = 1 and I=l1,21. An 
extension to R;;; 1 and to an arbitrary countable I is straight
forward, however, the formulae involved are rather complex. 

Let P=dist(X). If E~ IO,llT is any f.d. set, P(E)>O since 
p(i)(E) >0 for each i~I. and dist (Z) is positive on f.d. sets 
in~ T, and P(E) does not depend on more coordinates than those 
which determine E because of the properties of the channel v 
defined in the proof of Theorem 1. 

Let Vt;; G ,¢v~I0,11v .~v'"-IO,liV. We must show (7.5) with 
R=l (i.e., aR=a ) . Since Z is not supposed stationary, fini
te-dimensional distributions dist [(Zt; t '"- V)] depend not only on 
V '"- (j but also on its location. 

First consider one-dimensional fields (d =1). Then for any 
t ~ zd there is a number 0 < qt < 1 such that 

ll [ zt = 1 J = q t = 1 -" [ z t = 21. 
5 



By redefining the space (0.~.~) we can assume that the random 
fields x< 1> and X (2) are stochastically independent, and Z is 
independent of the pair (X< 1 ~ x<2> ) • In particular, finite-di
mensional distributions of xO> and X <2> are independent proba
bility vectors, too. Consider the case V=ltl, and let t=ltl = 
cT' It I. A direct calculation yields 

(Zt) (Zt, >. , 'r\ -
~ [ (X -= .P (z) I (X t , t '" t, = .P - J = 

t . t 

=q1 ~rx~1 >= .P(t) I<X~~~·>; t'~t) =¢r 1 + 
(7 .6) 

(2) (Z , ) - _ 
+ (1-q )~ [ X

1 
= ,P(t) I (X ,t ; t'~ t) =.P- ]. 

t t t 

(Zt, ) (1) 
If t'=t-1, then either Zt' =1 and hence Xt, =X

1
_
1 

or, Z
1

, =2 

and x<~t') = x~:>1 • Si nee X(l) and X (2) are independent, only the 
first

1
case remains in the condition of the first summand in 

(7.6), and only the second case remains in the condition of 
':he second summand. Similarly for the case t'= t + 1. If t'=t-2, 

• (Z') (1) • (Z •) (2) then eJther 7..· =1 .<lnn x.,t =X. - nr 7., -9 , ... ~X .t _y . T-
- " " ~o-te:;. I. ----- I. ~L-il:: • _._ .. 

the first case we use the Markov property of X(2)
2 

, in the second 
one independence of x< 1> and x<2>. This permits1to exclude both 
cases from conditions in each of the two conditional probabili
ties in (7.6). Exactly the same argument applies to t'=t+2 
t-3, t +3, etc. Consequently, 

~-L[X~Zt)=o/>(t)I(X<~t'> ;t'~t) ..,'J>_ J.., 
t t 

"'~~ rx~1 > .. .p(t) 1 <x:~~ .x\~ 1 ) = <¢<t-1). 4)(t+1))J + 

+ (1-q1 > ~r x~2 >,., .P<t> l<x\~ 1 .x~:~ > .. <¢ (t-1). 4l<t +1))1= 

(Z ) (Z ) (Z } 
"'~[X t "',P(t) I( X t-1 • X t+l ) = (~ (t-1), ?J(t+ 1)) J .., 

t t-1 t+1 

=J.L(Xt=o/>(t) IXt,; t'~ a ttl> .. ¢alt 1]. 

It is easy to see that any probability measure on ST is unique
ly determined by the values it takes on f.d. sets of form (1.5)• 
6 

• 
~ 

l 

whereV~ (j is a connected set. In case d .. 1 it suffices to take 
the sets V .. 1-n, ... ,n I, n"' 0,1,2, ..•• The boun<;lary of any 
of these sets consists again of exactly two points so that the 
preceding analysis applies and we are done in case d .. 1. 

If d>l, then it is clear (although somewhat cumbersome·to 
write down explicitly) that the conditional probability in 
(7.5) may be expressed as a combination of conditional probabi
lities 

(it) - - v 
!l[(Xt ; t ~V)"'ol>vi<Xt ;t~ V) .. .p_ ); (it ;t€; V)~ 11, 21 , 

v . 
with coefficients being functions of the components of the pro
bability vector 

(~[Zt ;t~V)=tfivl: tfiv~l1,2lv). 

For any fixed (it; t ~ V)€; 11.21 V the boundary effects can be eva
luated as above, and some combinatorics lead to the desined 
conclusion. 

By combining Theorem 6 with the end of the proof of Theorem 
(starting with (3. 15) and (3-16)) we get the following result: 

Corollary 7. Let the hypothesis of Theorem 6 be satisfied, 
and let the random field Z satisfy (3.15) and (3.16) for some 
fixed y=(y1 ) 1 ~ 1 ~r. Then the set of Markov fields in J<(x< 1 ~ 
4• t\ ! - --- ----~-· '1 'A I ..e..~ u.vu. ~lUt' ""'J e 

In other words, if the sibfields 'tx<O:i(;ll are all 
Markov, then for any y c;;; r there exists a heterophase 
random field obeying the Markov property, too. Of course, the 
latter two assertions admit also a formulation in terms of 
Gibbs fields. To this end recall some concepts (cf/17.21,22/ ) • 
If U:(l ... R 1 is an arbitrary function, then due to the identifi
cation (7.2) we may put 

U(A)-=U(¢), A~C1. ¢~10,11~ N(.p) .. A. (7.7) 

A set AcT is said to be a simplex if for any two distinct 
points t .~ 'iPA we have llt-ull= 1. Any function u : C1 ... R 1 

such that U(~)-0 is said to be a potential. Here the empty set 
corresponds, according to (7.2), to the configuration c~(t) ; 
t ~ T), where f(t) = 0. Any potential ~!7 induces an interaction 
potential ~ U : C1 ... R 1 via the Mobius formula 

~U(A)., I (-1}A'X~(X), Ate-C1. (7.8) 
XCA 

If gu(A) f, 0 only when A is a simplex then, U is said to be 
a rearest neighbour potential. If V , V'~ (j and V'~tz;· V 1U_ iJV 
(cf. (7.3)), we define the Gibbs distribution in V given the 
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boundary conditions ¢ by the properties that 

-1 - v 
17v -lc/J)=Z .l'expU(c/J e c/J), q,c;;;{0,1}, 

,C/J' v,'P 

where 

Zv. ;p ~ _ exp U(c/J e i$), 
c/J~Io,1lv 

(7.9) 

(7. IO) 

Here, if V , W ~ (f, Vn w ... c;t, cP ~10,1} 
is defined by (compare with Sect.6) 

and t/1€ I 0,11 v, q, • t/1~ I 0,11".vw 

{ 

c/J(t) if t t;; v-. 
(c/J e t/1 )(t) = 

t/1 (t) if t ~ w. (7. II) 

A measure P~ P (I 0,11) is said to be a Gibbs measure (and X , 
dist(X) = P, a Gibbs field) to the nearest neighbour potential 
if for any V , V' , q, and i$ specified as above 

~-tf(Xt ;t~V) =c/JI(Xt;t'~V''-V) =i$1 = 17v ::r· (c/J). 
• '~'av 

i.e., 

.,. _ ftf..\ = P{./)t;; {0,1lT: fl>v,_~_<} • ~~ 
v • cp av" . P I¢ ~ I 0,1}T: .P = ¢ I . 

v' ... v 

(7. I2) 

\I.I.J) 

The property of nearest neighbour interaction is contained in 
(7. I3)~ for it can be rewritten in the form 

17 ...lc/J) = 17 ::r (c/J). 
v,cp· v. '~'av 

In what follows we shall deal onll with nearest neighbour po
tentials. By Thm.4.I. of Preston141,if pc;;;P(I0,11) is positive 
on all f.d. sets, then P is a Markov measure if and only if 
there exists a nearest neighbour potential U : d-+ R 1 suc_h that 
Pis a Gibbs measure to t"he_potential U,in symbols, P~~(U). 

As is well-known, the set~ (U) is non-empty in this case, 
and Gibbs and specified random fields are equivalent notions 
(in the sense that any nearest neighbour potential gives rise 
to a continuous specification and conversely, to any nearest 
neighbour potential one can define a specification such that 
~(q) = ~(U); cf,/24/ ), Corollary 7 may be reformulated in terms 
of specified random fields: 

Corollary 8. Let S =I 0,1}, and let p(i) € il\.(q(i) ) ; it;; I, where 
the q(f) 's are specifications determined by nearest neighbour 
potentials. Then for any y= {y 1 ) 1 € I ~ r there exists a specifi-
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cation q such that ~(q)n}{(p(i),y1 ,1) I=~. In particular, Theo
rem 5 is true. 

8. HETEROPHASE RANDOM FIELDS AND GIBBS PROPERTY 
T . 

Let V ~ d, and let q, ~ {0,11 be such that N(c/J) uaN(c/J) c V (see 
(7.2), (7.3)). If P is a !.farkov field, we can define a nea
rest neighbour potential U corresponding to P by 

- T -P{c/J~ l0,1}: cP =c/Jl v 
U(c/J)=log Y • c/J~I0,11, (8.I) 

- T -P I q, c;;; I 0,11 : cbv = lv I 

where £ (t) = 0. Consequently, Theorem 6 may be reformulated as 
follows: 

Theorem 9. Letl~1>:it;;I}cP{I0,1}) be a set of Gibbs measures, 
p(i)~~(U(i)), where u<1> is a nearest neiehbour potential for 
each it;; I. Let X be a I 0,1}-valued random field constructed 
via (3.9), where dist (X(i))=p(i) for each i c;;; I, and let Z sa
tisfy the assumptions of Theorem 6. Then there exists a nea~ 
rest neighbour potential U such that dist (X) c;;; ~ (U) (we shall 
write also X € ~(U)). 

Note that if T = Z, the random fields X (i) in Theorem 9 are 
stationary, and Z satisfies the conditions (3.I5) and (3. 16), 
t-h<>n "'"' """ :><:<:<>rt- t-h<> <>Vl<:f"Pnf'P of:> nPill"P<:t nPiPhhonr notpn-

tial U such that 

1 (U) n m(l 0,1 }) n }( (X(i)• y
1 

, I) f ~ (8. 2) 

for any y=(y 1 ) 1 ~ 1 c;;;r. As mentioned above, a reasonable desc
ription of macroscopic observability provides the concept of 
regularity (cf. (6.6)). However, we shall deal only with the 
weaker property of X having a trivial tail (i.e., (6.5) is true 
for P=dist(X)). Indeed, if Xc;;; ~(U), then the equivalences stated 
in Section 6 share their validity due to the above mentioned 
relations between specified random fields and Gibbs fields(this 
is shown in/3/ for a large class of potentials including ours). 
Trivial tail enables us to avoid imposing too strong conditions 
on Z. We shall need only the following one. Let..\= dist(Z) and, 
for any VeT , ..\v=dist((Zt; t ~ V)). The field Z is said to be 
mixing if for any V , W t;; (1 , t/1 € IV and If ~I W , 

liml..\ (t/Je\&)-..\v(t/1)..\w(J)I=O, (8.3) 
t -+oc (V-t) U W 

where V+t=IU+t: u€ VI (cf. (7.II)). The next assertion is 
valid for an arbitrary countable discrete state spaceS. 

9 



Lennna 10. Let I p(i): i,:;; I I c P (S) be a set of regular measures, 
let dist(Xli))=P(i) ,i€ I. Let X be constructed via (3.9),where 
Z is a stationary mixing random field, stochastically indepen
dent of the setiX(i):i~II. ThenX has a trivial tail (i.e., 
(6.5) is true for P~dist(X)). 

Proof. (6.5) is a consequence of the fact that the a -fields 
S1 and(ST)

00
(cf. (6.4)) are independent under P, and this in 

turn follows from the following mixing property: for any f.d. 
sets E.E~ ST, 

lim I P ( T(S) E E) - P ( r (S) E) P (E ) I = 0. 
t-+oo t t 

(8 .4) 

We shall prove (8.4). To this end fix two f.d. sets, say 

E = I t/J ~ s T : ¢ {; c I. E = I c;; (,:; s T : ¢ E c I. 
v w 

where V , W € Cl, C c sV and Cc S w. Let A"' dtst( Z) and let v denote 
the channel introduced in the proof of Theorem I (cf. (3.11)
(3. 13) and note that the fact that v is input historyless and 
nonanticipatory without and stationary assumption on the x<t>' s, 
being a more consequence of the independence assumption (3.8)). 
Then 

P(E)=Jl[(X,;t~V) ~C]=P{lTxi¢~ST: ¢ ~CI1= 
v 

(I/! ( t)) 
= f ~,.(l.-¢reST:¢ reC},\(dt/1) .. I ,\vCI/J )I'[(X, v ;tt;;,V)~C]. 

IT 'I' V 1/J. leiV V 
v 

By expressing P(r~S) (E)) and P(E) in the same manner we see that 
the difference in (8.4) can be written as follows: 

(1/J(u)) (i/i (u)) -
I I I'((XI' ; u€V+t)~C. (X ; u~eW) ieClx 
1/J r;;, IV I' . 
J, ~;; lw 

- {I/! (u)) 
x,\(V t) w (1/1 • 1/1)- I I "{(X" ; u'"V+t) '"C]. ,\ (1/J)}x 

+ U 1/JI;;IV V+t 

xI I "{(x<ili<u>>.,u ~ W) ~ C] ,\ (~) Jl. 
"'~~ " w 

By changing the basic probability space if necessary we may 
suppose that the set IP(t>:t'"II is jointly regular. From this 
and (8.3) we see that the latter difference approaches zero as 
C-+oo, 

Lemma 10 allows us to strengthen Theorem 9 in order to get 
the desired property of macroscopic observability for hetero
phase random fields: 

10 

Theorem II. Let IP(i) :ie II, IX 0 ):i ·;,II , Z and X be as in 
Theorem 9. Suppose in addition that Z is mixing and p(i);;Exp,'f(u<i1 
for any i ~I. Then there exists a nearest neighbour potential U 
such that 

P = dist(X) E Ext,1(U). (8.5) 

In particular, for any y= (y 1 ) 1 ~ 1 
;:; 1 there exists a nearest 

neighbour potential U such that 

Ext ~(U) () H(P <1
.\ , I) f, ~ . (8.6) 

Similarly to the concepts of joint stationarity (cf. (3.5), 
(3.6)) and of joint weak mixing (cf. (3.5), (3.17)) we can de
fine also the concept of joint mixing. Then we have the following 
result: 

Lennna 12. Let I X (i): i ~ II c m (S) be a jointly mixing set, and 
let Z be an I -valued random field independent of the set 
tx<i):i~II. Let X bedefinedvia (3.9). If Z is ergodic(weak 
mixing, mixing] then X is ergodic [mixing, weak mixing]. 

Proof. By repeating the arguments of 111
, from the fact that 

IX(i): i r.;I I is jointly mixing it follows that the channel v 
/- c ,_, 1 1 ' ,.., 1 .... '\ ' .! - - • - ., • • . . • . 1 - .. 
,.....,.._. \-'•' s J' \-'• '-'1 J .4.0:1 a ~LLV115.1.J LU.LA.1.U1:) bL.d.LJ..UUd.LJ •'--l1C1.11Ht:J..• 

Using I, Theorem, p.929 we get the claim. 

Remark 5. Lennna 12 in a very transparent form illustrates 
the difference between "heterophase mixtures" and the usual 
mixtures 

(i) 
P = I y1 P 

~~I 
(8. 7) 

Since P(i) ~ ~ (S). we have from (5. I) that 

P[ U R(P<1>)]=1, 
1 € I 

(8.8) 

where R(p(i))=R(¢) (cf. (4.3)) for¢€R with P¢=p(i>,i~l. Con
sequently, the average <f>p cannot be calculated as an ergodic 
(Cesaro) average, for it depends on the choice of ¢ in sets 
R(P(i) ). Since the averages<f> depend on the particular confi
guration observed, mixtures (S.7) cannot describe macroscopi
cally observable systems. On the other hand, heterophase mixtures 
can possess, in principle, arbitrarily good ergodic properties. 
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I WyflH rn--:] 
reTepoclla3Hbie cnyqailHbie IIOJifl. 
¢H3H'!eCKOe 060CHOBaHHe, MapKOBCKOe CBOHCTBO 
H OIIHCaHHe paBHOBeCHfl 

E5-85-648 

flOCJie rrpeACTaBJieHHfl KOpOTKOPO 0630pa cPH3H'!eCKHX 3aKJiro
qeHHH 0 CBOHCTBaX reTepoclla3Hb~ CHCTeM H3y'IaeTCfl MapKOBCKOe 
CBOHCTBO COCTaBHhlX CJiy'!aHHb~ IIOJieH H ycTaHOBJieHa B03MO~HOCTh 
OIIHCaHHfl paBHOBeCHfl /rH66COBCKoro/ 3THX CHCTeM. 

Pa6oTa BbiilOJIHeHa B na6opaTOPHH TeopeTH'IeCKOH cPH3HKH mum: 

npenpHHT 06~eAHHeHHOrO HHCTHTYTa RAePHHX HccneAOBaHHA. lly6Ha 1985 

[S~j~Il 
Heterophase Random Fields. 
Physical Background, Markov Property, 
and Equilibrium Description 

ES-85-648 

After presenting a brief summary of physical conclusions 
about the nature of heterophase systems the Markov property 
of composite random fields and of heterophase random fields 
is studied, and the possibility of equilibrium (Gibbsian) 
description of such systems is established. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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