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INTRODUCTION

In this paper we consider inverse problems in a very wide
sense as problems of recomstructing the inner state of a physi-
cal object based on its outer (observablé) properties. Problems
of both deterministic and stochastic nature fall within that
setup, and we shall focus ourselves upon the statistical ones.

At the heart of our exposition there is the notion of a (pa-
rametric) regression experiment. Thus, the relations between
the inner state and the observable properties are supposed to
be of known analytic form, but depending on an unknown parame-
ter vector (which is supposed on its own to characterize the
state of the object considered). In this way, the inverse prob-
lem may be reformulated either as estimation of the unknown
"true" parameter vector (estimation aposteriori) or, as optimum
experimental ‘design (estimation apriori).

Since inverse problems in experimental physics are quite
frequently ill—posed/‘/.oqe cannot expect reasonable results
without introducing somehow prior information. Prior informa-
tion can concern the model of experiment itself (e.g., intro-
duction of some prior probability distribution on the set of
estimated parameters) as well as the estimates themselves (e.g.,
assignation of weights to the components of the parameter vec-—
tor, employment of loss functions, etc.).

Choosing the basic model, introducing the prior information,
determining the criteria of "quality" of solutions we can re-
duce the inverse problem to an associated estimation problem.
In this paper we attempt to give a brief account of finite-di-
mensional linear theory 2.3/ We note that finite-dimensional
models are the most common statistical models, but they can
arise also when aiming at calculable results within general
infinite~-dimensional theory (e.g., linear éstimation ahd regu-
larization problems in Banach spaces’%).

Now, the basic problem can be described as that of solwving
a llnear system Ax-—y, where ¥ is the vector of observed va-
lues (= experimental data). The following features are met ty-
pically in realistic problems:

(a) the dimensions of % and y are different, and A does not
have full rank (= the problem is ill-posed),

(b) measurement errors when observing different. components of
y are statistically dependent, and
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.(c) the joint distribution of the error vector is unknown.
While (c¢) and partly (b) exclude methods like maximum likeli-

hood, (a) makes the problem unsolvable in a unique manner’. For-
tunately, we can achieve uniqueness provided some rather natu-
ral constrdints will be imposed. )
A
1. BASIC FEATURES OF LINEAR SYSTEMS
In all cons:.deratlons, if % eR® is a row vector X=x ,

say), then %’ GR* is the corref‘pondlng column vector (x’= Xy, 1).
If 2\ is a matrix, then A ,m is its transpose. Dimensions

of vectors and matrices w111 be written occasionally to make
the formulae more transparent. Let
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(N <M), RA)=rxgN (1.1)

-

AzAWN
(here R(A) stands for the rank of A ). Consider the linear
system

AuN ¥R =Yy g (1.2)
The systém (1.2) lS called consistent if there exists at. least

one its solution X. Necessary and sufficient conditions for
consistency can be expressed in terins of g-inverses to A. The

class @~ of all g-inverses to A (G7# @ for any matrix A ) con-
sisj:s of all matrices G=0Cyy such that

AGA = A, - (1.3)
Then (1.2) is consistent if and only if there extsts a matrix
A~ €~ such that

AASY = y (1.4)
(and in this case (1.4) is valid for all A < ({~). Note that

when R(A)=N (full rank), it is easy to find an element A~ € (-~

Namely, take

A==(A’A) "L A" (1.5)

Then A A = Iy, n»Where ! is the dlagonal unit matrix. In the ge-
neral case, the solutioms to (1.2) form a parametric family
{ATc @~ a fixed element):

(1.6)

ATy + (I-A A)z:Z ¢ RV},

.

"
~

If R(A) =N then I-A A= 0.
A E-(T there is a unique solution A"y of (1.2). Thus,
=AX=¢, i.e., any system of full rank is consistent,

The basic role will be played by the linear space M(C) span-—

Gonsequéntly, up to the ch01ce of
AA” y'=

‘ned by the columns of C. Jf €=A’ then the following obvious

criterion takes place: -

pCM(AY) <=> o} L:AL =p. (1.7)

2. UNIVERSAL LINEAR MODEL

Lg—:ﬁ Hl,M be a random perturbation of the right—-hand side
of (1.2):

A 2, 2, =2, )
MNXN 1= VM1 * 0y ¢ “(2.1)
3 9 o 6 . 5 >

Let y =y + n. If En (E = ex ectatlon)qthen. Ey = Ax”, Ify
ER# 0 then n=En + ﬁ where En=.0.Then Y =AZ-3. Consequently,
we may. suppose that the perturbed system assumes on the form

~

’ s !

EyM,l =AM,NXN,1' A
s 5 {2.2)

M1 T M,

In order the problem be fully determined it is necessary to
define the. correlation structure of the perturbation. We shall
consider our problem under the following assur pt~10ns (we sup-
pose throughout that the correlation matrix RY. gn does not
depend on- X ):

-

¥y 2
(D) Rym =¢ VYuu o (2.3)
where 02 and V are known,
y 2,1
(11) Rvu 21_1 CHA FRVES (2.4)
where Uiz s Vi are known, 0 .
(III) the case (I) with o unknown,
(IV) the case (III) with o2 unknown, 1<i< s,
The models (I) and (III) will be denoted as
(3. A%, o7V, (2.5)
and the models (II) and (IV) as
[y, A%, 25_, oFV], : (2.6)
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and called a universal linear model ¢3/ (sometimes it is called

generallzed Gauss—Markov model). Note that the existence of

‘1 (of (v ) ) is not required, the model allows for corre-
1ated and arbitrarily distributed measurement errors, and
furthermore, the model includes also linear constraints on x
To see this, suppoge the constralnts are given in the form
RZ=C Let us put y*= (y, ¢) , A*=(A,R)", In case (2.3) we
get

v
0

and thus the extended model reads [y*, A*Z, o2V*l(cf.(2.5)).

Essentially, we shall seek for efficient estimates %, This.
leads naturdlly to the requirement of unbiased estimates, for
which /

) o?

o2Vr_ DE(GG*) = (

[N A

E

D)

>
= X, - ’

2.7)

In conclusion of this section observe the following. If V
is a singular matrix, then we arrive at natural constraints
upon the vector y these constraints are necessary to verify
in order to exclude obvious errors in model formulation °’.In
more detail, let us"‘conSLder the model (2. 5) Let a be a vec— \
tor such t_pat a’A=0 and a’V=0. Thén h(a’y) = a’AX= 0 _and
E(a’ ) =0 (51nce this latter expectatlon involves u’V= 0).
Hence Prob[a gy - 0l-1,i.e., aly with probability one. But
since a1l A and at Y, we see that }G«Jﬁ (A;V),i.e., our sys-
tem is consistent with probability one.

3. SOLUTION IN CASE (I)

First of all we describe general results for the case (I).
In the subsequent section we shall present several methods of
regularization of the estimation problem with A being of non-
full i‘ank.
Recall”’?3/ that within the universal model a functional
;f(x) P p’x:R"> R (p €R")is unbiasedly estimable if and only
if p E?ﬂ (A (ef. (1.7)). If 3 €M (A" then the (linear) unbia-
sed estimate of p’x is of the form

~

!
<

- AT )Y,

and its ‘generalized variance is determined by

(L'y)~

3.1

L'VL. ! (3.2)

(O

Let N be a positive semidefinite matrix. The N —seminorm of
a vector z is defined by

z]] = (N2, (3.3)
N

We let &;(N) denoté the class of all g-inverses to A having

minimal N -seminorm. By definition, Gym € @—(N') if A= AGA
(1. e, 6c @7) and m
(vy € M(A) (vx : AZ=§) (63)'NGy < X’ NX. (3.4)

2 3. . . . . .
Then P"(Ly)will be minimal if we take as (A“)in {(3.1) the mat~
rix
(A7 = (A - (3.5)

A transparent geometrical explanation of the choice (3.5) can
be given in case when V 1is a positive definite matrix. We in-
troduce another class, a Q_(M)'of g—inverses as follows: G (@

if for ally SR N and all % <RV _ Eem)

—)i—; ——»ﬂ’—) 3.6)
IAGAY -y, < [|AX -3l - (
For a positive definite matrix V we have ’23/

@ 1" - G; ey .
e, wv) v 3.7
Consequently, -

2 ., )

(L'y) = PlILIE (c£.(3.3)). (3.8)

Formula (3.8) is in a complete agreement with the formula for
the volume of minimal ellipsoid of concentration for efficient
estimates in regular models/2 3/ Consequently, the estimates of
the type ((3.1), (3.5)) will be called efficient, too. Thus,
in case (I) an efficient linear estimate of f(X)= p"’ @ & JII(A,’))
assumes on the form
/—)\ ‘)—», _ ‘3 v
1@ - p (A ] . 3.9)
As the matrix in (3.9) we may take,e.g.(V+AA ) A[A“ YV +AA")TA]™,
where C designates an arbitrary element of the class 'C7
Preceding considerations allow for a straightforward gene—
ralization. Let p; €W (A", 1<i<r, and let P=(p,, .., p,) -
Then an efficient estimate of the vector PR is of the form
73 .3
Px = PIAT ) 1y (3.10)
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At the first glance it may seem there is a large amblgulty
in the choice of an efficient estimate. However, it 'is pos-
sible to prove that an efficient estimate is uﬁique with pro—
bability one. This important result implies, in particular,
that the estimates (3.9) and (3.10) do not _depend on the par—
ticylar choice of the matrix (A”)_ (V) (@’ V- This cru-
cial fact was the fundament or the theorv oé parallel compu-
tations in linear statistical theory

Of course, having obtained the estlmates (3.9) and (3.10)

we are not yet done. In ordef one can assign to these estimates

statistical reliability it turns out necessary to determine

their statistical properties. Following the general philosophy

of linear statistical methods we restrict ourselves to propetr-
ties of the first and second orders. In case of estimate (3.°10
we have

~

This formula can be employed for two purposes. First of all,’

it makes possible to determine confidence domains for the es-
timate (3.10). At the same time, it is possible to use it for
testing the correctness of numerical computatlons. Indeed. we
may take some matrix (A*)_ V) and determine o2[(A?) (V)] V(A )m( v)*

Then wé may compare the result with oP{LA’(Y +AAY Al ~=1}.

4. THE PROBLEM OF ILL-POSEDNESS

\

- Suppose for a moment that A is of full. rank: R(A)=N. Then
the" unit vectors p "= (0, ,1,0,...,0) €¢(A”), and, conse-
quently, the matrlx P=1 satlsfles the conditions under which
we were able to get the estimate (3.10). Since Px-—x, we get
an efficient estimate of the vector X itself:

;=. [.(A'):n(v)]";' (4.1

Nevertheless, even when Y is invertible, we can meet serious
difficulties when calculating the estimate (4.1): For the sake
of simplicity let V-t (noncorrelated errors). Then the esti-
mation problem reduces to that one of solving the system of
normal equations:

A’AR =AY . 4.2
As is well—known under our hypotheses the solution of 4.2),
2 (A’A)— ’”, minimizes the form :
PR - (5 - AD” G - AD. (4.3)

6
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Howeéver, if the ma;rlx A é is not well conditioned then the
’expectatlon El{x-—xl\ =0* %, A“ (GAgy vy Ayl is the spect-
rum of A’A) can assume on very 1arge values. Consequently, even
the efficient estimate ¥ will be the best in the sense of mini-
mizifig the quadratic form (4.3) within the class of all linear
unbiased estimates, it will result in a bad estimate of X
(thus, it will be unacceptable also from the statistical point.
of view, in addition to known numerical problems with calcu~
1at1ng inverses of such bad behaved matrices).
That is why it appears reasonable not to dwell on unbiased
estimatés and employ an estimate, for which

o) - @

t

MIN +cle > 0),

-3 3 > 5 ' (4.4)
Bt -x |17 <E|x —x|°

/5/

Following we get a one-parameter family of ridge estimates

\

() = WA+ KT AY, k>0, : (4.5

3
X

! Analogous considerations yield the class of contracting esti-
mates
VRO = (LK) (AT TATY, k>0 (4.6)

{

, Modifying Tikhonov;s regularization method to finite-di-
mensional spaces we can define the regularized solution to the
problem of determining ¥ as a vector ¥(k) that minimizes the
functional

/17

1

(.., > > 2 > > 2 .
®, ()= [AZ- v+ k|1 x-x*]", .7

where x* is an arbitrary ' '‘centering' vector (expressing the
prior information about ¥ ), and k is the regularization para-
meter/17/ If the norms in (4.7) are the usual Euclidean ones,
we get

~

TOW = (AA+kD)HAT T + k09,

and the choice x*= 0 leads to the class (4.5). If H;HE ~XA’AX
then we get the class

3 -1 -—- -1,
2y s (ke D) AR AT s Rk D) R

Agaln when x*= 0 ,we get (4.6). However, an application of re-
gularlzatlon methods in more general situations (such as within,

', % the universal linear model) is by far not so simple and trans-

parent 78,1/, Consequently, it appears more advantageous to em—
7

a . ’ ¢
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ploy the above developed algebralc approach. To this end, con-
sider ‘the model (J,AX, o V] with p £M(A"). The bias of a li-
near estimate 4y for £x) = p % is defined to be the function

by® = [E(WS)~ PR =|(AL - 5)'21. (4.8)

\
Since the vector X is unknown, the concrete value hxx) for a gi-
ven estimate L’y hardly can say somethlng about itsPquality.

If it is possible to introduce prior information with the aid

of some metric (i.e., of some posiLive definite matrix: Uhthen
it will be reasonable to choosel,’ yqo that the vector (AL -p
will have minimal U- —-seminorm (cf. {3.3)). Such an estimate
will be denoted by La§ and called Y-minimally biased. Hence

~

Liy = T4 )Y 4.9)
and

2 30 - (

DULEY) = o2 |Lgll \ (4.10)

Since
o FlLo 112 =" 1A gy 1TVIAN gy, B

the expression (4.10) depends upon the choice of the matrix

(A )ﬂuJ' The most reasonable choice is that of the best esti-
mate w1th1n the class (4. 9 i.e., the choose Loy, where Lg=
= (AP and (v GE(Q )/zéw) lieo'lly 2L pily

We refer the reader to for further results in this di-
rection and restrict ourselves to the remark that one of these

best estimates is of the form p“{(V+ AUA”) AU[AUA’ (V + AUA" AUy,

o

5. EQUIVALENCE THEORY AND CASE (III)
This section is devoted to the following three pE?blems:
- unbiased estimation of the unknown parameter 7,
- the possibility of simpler calculations of estimates (3.9)

’ and (3 10), and

- the p0551b111ty of simultaneous eff1c1ent estimation of

a functional of the parameter vector X and unblased esti~

mation of 'the unit variance o?2, .
These seemingly rather different questions can be answered in
a unified manner within the frame of equivalence theory, the
fundaments of which were created already by GaUSS/SI.First‘re—
call’ the explicit expression for an unbiased estimate o ?
in case (III)¢

8
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ALAY )1 9 )Y (5 = ALY ) 1 $x

. . >, e > 5.1
x[R(V,A) -R(A)]l=s"tv v w, . .1
, where s=R(V, A) - R(A),

NiZA X -y (5.2)
is the vector of corrections, and X is an estimate of the fol-
‘loving form:

,.A,x A[(A)(V)] v . (5.3)

o i

The méaning of the estimate ¥ can be explalned with the help
of a generalization of least gsquares method. An M-LSE of X is,
by definition, any solution 2 of gefheralized normal equations
(ef. (4.2)) '

"A’'MAX =AMy . . ‘

a1

(5.4)

[ “f vi ex1sts and 1f X is the ‘usual least squares estimate
¢LSE) of x then Pz is an efficient estimate of the vector P%
for any matrix P with M(P*) CM(A). Ifv~ldoes not ex1s,t then
. the latter assertlon will remaln true provided we take % to
be a‘(Vq-A’A) -LSE of x. From the uniqueness theorem for
efficient estimates and ‘from (3.10) it follows that

- !

~
= r

< P PLAN oy 1’y a.e., (5.5)
§nd this justifies the formula (5.3). The practical. significance,
of (5.5) comes from the fact that LSE s can be usually calcu-

" Lated much more easily (e.g., V -1 _LSE is-but the least squares
tyethod in its classical fborm). However, until now we do not

know anything about a suitable choice of the 'matrix M in (5.4).
Such an information gives us the following assertion'on equi-
valence of (A) and (B), where

"'(A) the system (5.4) has a solution and for any 5 e M(A )the ¢
vector p’% is an efficient estimate of f(x) =§ ¥, and )
(B) M,=(V+AUA')—+K, : ' (5.6) -
" R(A'MA) =R (A, . - {5.7)
: where U and K ,are arbitrary matrices such that
MV, A) =MV + AU’A") = W(V+AUA’)v,7[), o ' (5.8)
VK'A=G, A’KA=03"%. , (5.9)
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Different choices of K and U yield different choices of M,
however, the obtained estimates coincide with probability one.
This is again important from the point of view of numeyical
calculations.

Since in case (III) 0.®> is unknown, there appears the prob-
lem of jointly éstimating p’% and ¢”. In other words, we ask
under which conditions upon the matrix M (cf. (5.6)) the ex-
pression .

S5 ~ADMF=ADY/[R(V,A) =R (A)] (5.10)

will be an unbiased estimate of o®7 In order to answer this
one can again formulate the corresponding variant of equlva—
lence theorem ’?. Nevertheless, the concrete choice of M is
still open. Let us briefly describe one unexpected method for
calculation of joint estimates ~ the Pandora box method’?3
The Pandora box method is defined by :

) A (5.11)
C3 “C4 A’ 0 ) 4

Surprisingly enough, the matrices Cy{ contain all information
needed for solutlon of our problem. In fact, for any functio-
nal &) = p’x,( €M (A")) the estimates

5 G, B Cay (5.12)

are efficient, !

2~ : 2 5 3, - -

@ Cyy)=2(p’Cyy) =0%p’Cp, (5.13)
and /
! = > »
5% ~§ e yrirvey (5.14)

. I o . . . .
is an unbiased estimate of the unit variance o~.

3
P
6. SOLUTION IN CASES (II) AND (IV)

" In order to get estimates of functionals p ‘X and vectors
Px in cases (II) and (IV) one can employ the same methods as
in theéprecedéng sections. The estimation/problem for the vec-
tor (01,.“, o, ) {cf. (2. .4)) is not completely solved.

A quadratlc fornx? Mj?Ls said to be an invariant unbiased
estimate with minimal norm (following Rao, such estlmates got
the acronym MINQUE) of a linear functional f(U seces O ) =

10 '

1
\

21 1Py a , 1f M is a symmetric matrix and the following con-
Pstlons are sat1sf1ed' '
- 1nvar1ance, i.e., -

(V-a &R )}’My"»—- (?4-4\5)' M(? + Aa_f)’, \ (6.1)

e unbiasedness, r.e.,‘

(j?'af € 0,=), 1<i<s) E(y My) = ES1 12, 6.2)

'~ minimum of the norm; i.e., )
HU“MYU ~Al|® = Tei(U'MU - A)(U'MU ~ A)’S = MIN, (6.3)

where U=(Uy,.., U), RWU) =R(V)=n,, VI=U U jci1,. . s},
and A is a lock dlagonal matrix w1th dlagonal blocks
Cp n,) o n - 1<ic<s.

If thelmatrlx Vavig , ;1ys is regular then a matrix M
satlsfylng all requirements formulated above can be dgtermined
from the relations !

M =121““ vla@arvTlay Aqviviy T

x [ -AM' VAT AvThg (6.4)
where the numbers B, are determined from
TEMV') =p, 1<i<s., . (6.5)

Unfortunately, equations (6.5) do not admit, in general, a solu— '
tion. In such a case it is necessary to employ the structure

"of concrete estimation problem, and attempt to get satisfactory

results using appropriate combinations of estimable functionals
(see 3/ for more details and examples).
o7 .

7. CONCLUSION

We did not consider the questions related to various ways
of calculation of g-inverses because (a) the appropriate way
depends upon concrete structure of the matrix and (b) there is
an extensive literature devoted to that toplc/1 / of course,
if errors are normally distributed, we can get much stronger
results to the effect that we can find exact distributions for
estimates presented above 2,8/ ,these distributions being always
independent of the particular choice of a g —inverse.

In conclus1on, we have seen there is a well-developed theo-
ry which deals in a unified manner with finite-dimensional li-
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