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INTRODUCTION 

In t hi,s paper we consí.der inverse probl ems Ln a very' wide 
sense as problems of reconstructing the inner state of a physi­
cal object based on its outer (observable) properties. Problems 
of both deterministic and stochastic nature falI within that 
setup, and w'e shall focus ourselves upon the statistical ones. 

At the heart of our exposition there is the notion of a (pa­
rametric) regression experimento Thus, the relations b~tween 
the inner staty and the observable properties are supposed to 
be of known analytic form, but depending on an unknown parame­
ter vector (which is supposed on its own to characterize the 
state of the object considered). In this way, the inverse prob­
lem rnay be reformulated either as estimation of the unknown 
"true" parameter vector (estimation aposteriori) or, as optimum 
experimental 'design (estimation apriori). 

Since inverse problems in experimental physics are quite 
frequently ill-posed 111 one cannot expect r easonabl e results 
without introducing so~eh~w prior information. Prior informa­
tion can concern the IDodel of experiment itself (e.g., intro­
duction of some prior probab,ility distribution ou the set of 
estimated pa r amet e r s ) as well. as the estimates t hemse Lvea (e .. g., 
assignation of weights to the components of the parameter vec­
tor, employment of 10ss functions, etc.). 

Choosing the· basic model, intro~ucing the prior information, 
determining the cri teria of "quality" of solutions we can re­
duce the inverse problem to an ?ssociated estimation problem. 
In this paper we~attempt to give a brief account of fínite-di­
mensional linear theory /2.3/. We note that finite-dimensional 
models are the. most common statistical models, but they can 
arise also when aiming at calculable results within generai 
infinite-dimensional theory (e.g., linear estimation ahd regu­

/ 4/ ) . larization problems in Banach spaces 
Now, the basic problem can be describéd as that of solving 

a linear system Ax== y, where y is the vector of observed va­
lues (= experimental data). The following featur~s are met ty­
pically in realistic problems: 
(a)	 rhe di.mens Lons of ~. and y are different, and A does no t 

have full rank (= the problem is ill-pos~d), 

(b)	 measure~ent errors when observing different. components of 
yare statistically dependent, and 
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,(c) the joint distribution of the error vector i~ unkno.wn. 
While· (c) and 'pa r t Ly (b ) exclude met.hod s like maxi.mum likeli ­
hood , (a) makes the prob Lem unso LvabLe in a unique manner, For­
tunately, we can açhieve uniqueness provided some ra~her natu­
r al cons t raí.nt s will be imposed. ' ­

'-­

I~ BASle FEATURES OF LINEAR SYSTEMS 

A d . . f -.+ k.	 (-+ -+In a l I cons i.c era t i.ons , ~ x E:R i s a row vector x = x 1.. k ' 

say) , then x~ Ç·Rk is the co r r e spond í.ng column vect o r <X ~=' Xk Ü. 
If Á n is a matr í,x , then Á'~,~ is Lt s. t r anspo se . Dimensions · ro 
of ve~tors ando matrices will 'b'e written occasionally to make 
the formulae more transparent. Let 

'" 
A== AM N (N ~. M) , R(A) = r ~ N (l • 1) 

r 

(here R(A) stands for the rank of A ). Consider the linear 

" system 
j 

... -+ 

AM,Nx~l =Y~l·	 (1.2)
""' .\ 

The s y s t ém (1.2) s called consistent f there exists a t- leastí	 í 

one its solution i. Necessary and sufficient conditions for 
consistency can be expressed in terms of g-i~verses to A. The 
class (1- of a l l, ' g -inverses. to A «(1-# 0 for any matrix A) con­
sis~s o f al l matrices G = GN•M such 'that 

AGA = A.	 o .» 
Then (1·.2) is tonsistent if and only if there exists a matrix 
A- E{1- such t'hat 

-+
AA-; y = y	 ( 1.4) 

(and in this case (l.4) is valid for al.L A-ç (1-). Noite that 
~ when R(A) =. N (full r ank ) , it is easy to find an element À- r;; (1-: 

Namely, take 

A- = (A'A) -1 A'.	 ( 1.5) 

Then A-A = 'N,N,wher::e 1 is the diagonal unit matrix. In the ge­
neral case, the solutions to (1.2) fqrm a parametric family 
(A- r;;.(f - a fixed element): 

IA -.y-+ + (1- A- A); :'z ç R NL	 ( 1.6) 

2 

:,~ 

\ lf R(A) = N then 1- A- A = Õ. Con sequently , up to the cho í.ca o f 
•	 'Ã- E'(1- there is a uní.que solution A- y"" of (1.2). Thus, 'A'Á- f~ 

=A; =y, i.e., any system of full rank is consistent. , 
The basic role will. be played by the linear space m/(C} span­

:, 'ned hy the co Lumns of C. .Lf C = A' then t he fo Ll.owjrig obvious
 
criterion takes p~ace: ;
 

p c m(A') <=> ~ L: A'L =p. (1. 7) 

2. UNIVERSAL LINEAR MODEL 

Le t nl,M be a random perturbation of the right-hand side 
of (1.2): 

-+, -+, -+ ....
AM~N x N, l =. YM.l + nM, 1·	 . (2.1) 

::; -+ -+ -+";t(	 .):; ~ Let Y =.y + n . If En =...:,u E = e~ectat~on "1then. Ey~·='Ax'. If l; 
En" O then rr =·E rr + li, where E n=·O. Then Y = AX"T"·rt • Consequently, 
we may. suppose t.ha t the per t u rb ed .system assumes on the form --+ 

EY~,l	 \
-~Á M• N ~~,1' } 

(2.2) 
= O •En~,l M,l 

In orde~ the problem be f~lly determined it is necessary to 
define the. correlation structure of the perturbation. We shall 
consider our problem under the following assuspbions (we sup_·

I • ~ 

pose throughout that the correlation matrix R Y== Rn does not 
depend on· x): 

(I) Rt,M = a 
2 V~i,M	 (2.3) 

where o 2 and Vare known, 

RY = L S a .2 V. i(11)	 (2.4)M,M i= 1 i M,M 

2 iwhere a: ,Vare known,
1	 2

(111) the c~se (I) with a unknown, 
(IV) the case (111) with a; unknown, 1 .~. f s s ,
 

The models (I) and (111) will be denoted as
 

-+ -+ 2<V]
[ s , Ax, a ,	 (2.5,) 

and the models (11) and (IV) as
 
:; -+ S 2 i]


[ y, Ax, 2. i = 1 a i V ,	 (2.6) 

'h 
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and called a universal· linear model(3! (sometimes it is called 
a generalized' Gauss-Harkov model). Note that the 'existence of 

. V':"1 (o f (V i )-1 ). is not required, t he model allows for corre­
lated and arbitrarily distributed measurement errors, and 
rurthermore, the model inclpdes also linear constraints on i. 
To see this, suppose the constraints are given in the form 
Ri= ê. Let us put ~ *==.(~, ~)' ,.Â*=(A,·R) < .In case (2.3) we 
get 

2a 2V* == j)2(~y*) ==. ( V O a , 
. Õ Ô 

~ . 
and thus the extended model reads [y*,A*x, a 2V*](c f . (2.5». 

Essentially~ we shall seek for efficient estimates i. This. 
leads naturálly to the requirem~nt of unbiased estimates, for 
which 

E j = x. (2.7) 

In conclusion of this section observe t he fo l l.owí.ng , Lf V 
is ~ singular maErix, then we arrive at natural constraints 
upon the vector y these constraints are necessary to verify 
in order to excIude obvious errors in model formulation/ 3 / . In 
more detail, Le t; us;consider t he ~model (2.5) '" Let a :2e ~ vec­
-t.o r s_uch tJ1at a'A= O and a'V =0. Thén E(a'y) = a'Ax= 'o --)and 
E(a'y)2 = O (§ince this latter e3pectation í.nvoLves a'V=O ). 
Hence Prob[a'y = Ô] == ·l,i.e., « L y with probability one , But 
since a..L.A and ai..V, we see that y. <;:..jR(AiV),í.e., pur sys­
tem is consistent wi~h probability one . 

..,I • 

3. SOLUTI~ IN CASE (1) 

First of alI we describe general results for the case (I). 
In the subsequent section we shall present several methods of 
reguIarizatíon of the estimation problem with 'A being of non­
full rank. 

Recall/ 2,3! that within the universal model a functional 
,fei) =.p'i: a" --) R 1 (p E-'Rn)is unb í.asedLy estimable if and only 
if p E m(A') (cf , (1.7». If P(;·m (A') then the 
sed estimat~ of p'x is of the form 

-
L';

~ 

= [·(A'r p]';' , 

and its 'general.Lzed variance is determined by 

S;2(L';) == a2 L 'VL. 

4 

(Linear) tmb i a-r 

(3. 1) 

(3.2) 

a vector z is -defined by 

Il i 11 == CZ'NZ)1/2. 
N 

We let .(1 ~(N) denoté the c Las.s of áll g-inverses to A 
minimal N -se~inorm. By definition, 'GN,M ç.·a:(N) if 
(Le., Gç (t ') and 

--) lh7 » --) --) --) ~ --) --) --)(yy ç, JII(A (\;Jx: Ax= y) (Gy) 'NGy < x ' Nx. 

Then :D 2(L,~) will be minimal if we take as (A') in (3. 1) 
rix 

'.' \ (A')- = (A');(V) 

Let N be 'á. pe s í t í.ve serai.de f í.n i te mat r i x , The N -seminorm of 

(3 . 3 ) 

having 
A = AGA 

(3.4 ) 

the mat­

(3.5) 

A transparent geometrical explanation of the choice (3.5) can 
be given in case when ';i is a positive definite matrix. We in­
troduce another class, éf-ÚM') , of g-inverses as follows: G~a;( )
• --) N N (. M 
~f for alI y Ç-R and alI x ç.·R 

~) -+ 4 ~ 
(3.6)IIAGAy -ylIM < IIAx -Y\I M • 

For a po s í.t í.ve definite matrix V we have !2,3!
 

\ - , ­
(3.7)[((1') m(V)] = éf]f'(v-1) • 

Cons·equently, 

....1' ....." T 2 (I: y) = a2 IILII~ (c f. (3. 3 ) ) . (3.8) 

Formula (3.8) is in a complete ~greement with the formula for 
the volume of rnjnimal ellipsoid of concentration for efficient 
estimates i~ regular models / 2 , 3/ . Consequently, the estimates of 
the type ((3.1), (3.5).) \olÍll be called efficient, too. 'I'hus , 
in case (I) an efficient linear estimate of f(x) =.p'x cP E:m(A.') 
assumes on the form 
.I:> t.--) ,~
 

f (x) = p' [ (A ')-m( V)] Y. {3 ~ $)
 

As.. the mat r i x in (3.9) we may take,e.g.,(V+AA')-A[A'(V +AA')-A]-, 
where C- designates an arbitrary element of the class 'e~ 

Preceding considera~ions allow for a straightforward gene­
ralization. Let Pi E·m-(j):'), 1 ::S i :S r, and let P = (p , ..., p )'. 
Then an efficient estimate of the vector Px is of the ford 
~ ~ 
P x = P[ (A '):( V) l: Y • • (3. 10) 

5. 



í 

., 

At the first gl ance it may s e em 'ther e is a Large amb gu í t yí 

1n the choice_of an efficient estimate. Rowever, it 'is pos­
sible to prQve that an efficierit es~imate is uuique ~ith pro­
bability one. This important result implies, in particular~ 

that the estimates (3.9) and (3.10) do not depend on the par­
t i.cul.ar choice of the mat r í x '(A ')~(v) Ç«(j')~ V). This cr~-
cial fact was the fundanent or the tbeory 9i pa~allel compu­
t a t i.on s in linear statistical theory /31.. 

Of course, baving obtained the estimates (3.9) and (3. lO) 
v:re are not yet done. In order one can assign to these estimates 
statistical reliability it turns out 'necessary to determine 
their statisticàl properties. Following the r,eneral philosophy 
of linear statistical methods we restrict ourselves to proper­
ties of the first and second orders. In case of e?timate (3."10) 
we have 

RP-;' =	 o 2 [P [ A:') - ] "V(A") - ]P<: (T 2 P ll A"( V + AA ") - A] - .:.. II P ', (3. I I ) 
, m(V) m(V) 

This formula can be pmployed for two purposes. First o f alI,' 
it makes possible to determine confidence domains for the es­
timate (3.10). At the same time, it is possible to use it fo.r 
testing the correct~ess of numerical computations. I~deed. we 
may take some matrix (A"):(V) and dete~mine a 2[ CA ~m(V)] "V(A ")r:c vr 
Then wê may compare the result with a'2 {[ A "(V +AA ')- A] --/L 

4. TRE PROBLEM OF ILL-POSEDNESS 

\ . Suppose for a moment that A is of f uLl.. rank: R(A)'= N. Then
 
the' unit vectors P '= ÇO, •• ,0, 1,0, ... ,0) ç;.m(À'), arrd, conse­


i 
quently, the matrix P=' satisfies the conditions under which 
we were able to ge t the estimate (3. la). Sínce Px= X, we ge t 
ari efficient estimate of t-he vector x Lt s eLf i 

-
~ ] -+ 
X	 = [(A ..r (V) ~ Y • (4 • I)"	 m 

Nevertheless, even when V is invertible, we can meet serious 
difficulties when calculating the estimate (4.1); For the sake 
of simplicity let V=, (noncorrelated errors). Then the esti ­, .	 '. .	 mat10n problem reduces to that one of solv1ng the system of 
~ormal equations: 

A"Ai =A"§~. (4.2) 

, 
~s iSrweli-kn~wn, under our hypotheses the solution of (4.2), 
x = (A"Ay:1A 'y, minimizes the forpl 

~ .. 
-+	 -+ -+ -+ -:-\

<I> (u.) = (y - Au)" ,(y - Ali) •	 (4-.3) 

6 

11"	 , 

" 

" 

'~h>' 
1"1" 

~l'i
'I,,!': 

However, if the ma~rix A~A is not well-conditioned then the 
2:'expectation E II,x -: x11 = a 2 L i~ 1À~1 OÀ1, ... , À k 1 is the spect­

~Qm of A'A) can assume ~n very lar~e values. Consequently, even 
.nhe e f f i.c í ent estimate.x will be the best in t he sense of mini­

r ,	 mizing the quadratic form (4.3) within the class of alI linear 
unbiased est~mates, it witl result in a bad estimate of x 
(thus, it will be unacceptable also from the statistical point 
of view, in addition to known nurneriaal problems with calcu7 . 
lating inverses of such'baq behaved matrices).

(,m· That is'why it appears reasonable not to dwell on unbiased 
estimates and employ an estimate, for whica 

<I>(;) =	 <l>M1N +c(c>O), } 

(4.4)-+:;	 ~ 2 -+ ~ 2 
Ellt(y) - x II < E Ilx -:x 11' • 

(\' 

Following/5 / we get a one-parameter family of ridge e~timates 
~. 

,·1
(".	 ~ -+ --':1 '-:::. 
l'	 x (k ) = (A"A + k I) A"y, k > O. ('4.5)­

't 
W•.	 l Analogous co~siderations yield the class of contracting esti ­
I~" ~ates 

!l~ 
'.~ -1 -1::";.
\ \ x ( k ) = (1 + k) (A 'A ) A' Y J k »: O. . (4.6)


I',	 I 
'ft / Modifying Ti~honov~s regularization method/ 1/ to .finite--ai­'r 

mensional spaces we can define the re~ularized so+ution to the 
problem of determining'x as a vector i(k) that minimi~es the 

I" 

'v·	 fURctional 
I _,I	 . 
-+ -+ -+ 2 -+ -+ 2
 

w~ <I>k(x) = IIAx- y I1 + k II x - x*11 , (4.7)
 

/: 
~ . 
,1'	 where i* is an arbitrary "centering" vector (expressing the 

prior information about x), and k is the regu1arization P9-r a­
m~ter/1,7/.If the norms· in (4.7) are the usual Euclidean ones, 
we get 

I	 -:'(I)() . -1 .;' ..... -+ 
I	 • X k = (A "A + k I) .(A' y + kx *) • 

I _ t 

,. .	 -...... -+ 2 -+ -+ 
'. and the choice x*= Ô -Le ad s to the class (4,.5). If Ilxll =x'A"Ax,~ 
~J tben we get the class 

.1 ~	
~ 

~	 ;(11) (k ) ~ (k + 1)-·1 (A'A)-I A'y + k Ck + 1)-1,,*. 

1 Agai n, when i*= O,we get (4.6). However, an application of re-
-, 

~\, Igu1.arization met~ods in more general. s í.cua t i.on s (such as within.., 
~"I /. the universal linear 'I)lo_d_~~.1-) í-s by far not so simple and trans­
~; pa,rent /6,7/. Cons equent Iy , it appears more advan t ageous to em­
il 7
 

,..
 
" 



.' 'ló
I ~', )~ " lil ij, 

:1 h 

"'\' 'I.~ • _,..!lo 

',(	 " 

<I'. 
ploy the above developed algebraic approach. To 'this end, con­ Q~= (f - A [(À ')~(V)]" i) "Y - (; - A-[ (A') m(V) l' ;} x2sider 'the mode I [~, Ax, a V ] with p~'m (A'), The' bias o f a li ­

near estimate (/y for f(~) = p"* is de f í.ned to be the function (5. 1)
}

. x [R(Y, AJ - R(A)J -1 = S -1 v' Y- -~) 
" 

iH (~) : =- IE (L' 0- pI i I = I(A 'L - ;)'~ I .	 (4.8) where s = R(V, A) - R(A),P	 f...,.	 f 

-+ ~::;Since the vector i i8 unknown, the concrete value b~G) for a gi ­ N,:~A.x --y (5.2)
 
ven estimate L'i hardly can say something about itsPquality. f
 I 

If it is possible to introduce pri~r information with the aid j t' '{s' t he vector of 'correction's, and i is an e s t í mat e o f the rol­

of some metric (i.e., of some posi!ive definite matrix' U~then )bwin.g form:
 
it will be reasonable to chooseL/yso that the vector lA'L-- p
 
will have minimal U-seminorm (cf. (3.3») .. Such an estimate À! ="A [(A ")~( V)] 'Y~' ; p.3)
I, 

r'Iwill be denoted by L ó; and called U-minimally biased. Hence 
The, méaning of the estimate Xcan be explained with the help


L6i= p'[(A1 U u) ] /Y+ (4.9) of a generalization of leastRquares method. An M-LSE of ~ is,
 
by definition, any ~olution i of ge6eralized normal equations
 " and	 I (cf. (4~2) . 

m 
2 

::; '2 L 112	 '" ...
'~ ! (Lóy) = a II O V (4. lO)	 (510 4)'f~A "MÁ; == A 'M Y. 

I I' ....
Since , '1'[ y-1 exists and if i is the 'usual least squares estimate
 

'ELSE) of i, t hen pJ is an effici~Tlt estimate of the vector Px
 
a 21lLo1\ç== a 2 p'[ (A') f(U)] '\'(A') ttin p', 'f~l~ any matrix P with 'm(p') C m(A'). If'y-1 does not ex.i ar v t hen
 

. t he latter assertion will remain true prov i.ded. we take x to
 
, '1 ~ ..tbe ~xpression (4.10) depends upon the ~hoice of the matrix be a' tv + A 'A)- -LSE of x , From the uniqueness t heo rem for
 

(A') riU)" The most reasonable choice is that of t1}.e be s t esti ­ e'f f í.c í.errt estiinates and 'from (3.10) it follows t ha t:
 
mate within the class (4.9], i.e., the choose ~oy, where Lo= -,.. I "
 

= (A')i"(U)p and ('\I GE«(1")JJlJ) ,llGpllv ~ \IL o pll V • -e. [( ')- ],::; a.e. " (5.-5 )
 p. 'Xl ~ P ;.. m( V) Y
We refer the reader to ~/ for further results in this di­

I
 

rection and restrict ourselve~ to the remark that one of' these _ 4,qd' t h i s justifies the formula (5 ~ 3)., The pr ac t i.caI, s i.gní.f í.cance.
 
rbest estimates is of the form p'{(V + AUA') - AU[ AUA' .(V +AUA ')-ÀU] 'Y~ Qf (~.5) comes from the fact that LSE's caq be usually calcu­

'.~'i!ted much jnor e easily (ev g , ;: V-1 .....LSE .i s vbut; t he least squares
 
bJe:thod Jn its c l as s i.ca I fo rm) . 'However , until now we do not
 

5.	 EQUIVALENCE THEORY A1ID CASE (111) know anything about a su t ab l.e choice of the 'rnat r í-x M in (5.4).
 
,'" 

í
 

?,uçh an information ~ives us the following assertion'un equi- . 
This section is devoted to the following three problems: 

I.;va~..ence o f (A) f:nd (.8), wher e ~ .. 

unbiased estimation of the unknown parameter a~ (A) the system (5.4) has a solution and f or any p, E m{A') the ' 
- the possibilitY,of simpler calculat'ions of estimates (3.9) vector p'x is an efficient estimate o f f (i) ~ p,'i, and 

, and (3/10), and . 
(5.6)- the possibility of simultaneous efficient estimation of ~:

~B) M ~ (V + AUA') . + K,
 

a functional of the parameter vectQr x ànd unbiased esti~ ,
 
2• 

h R (~ 'MA) =R (A"),	 (5.7)mation of'the unit variance a ' !1:These seemingly ~ather different questions can be answered in
 
a unified manner within the frame of equivalence theory, ~he '1:' where U and K .are arb í trary matrices such that
 

"
fundaments of which ~ere created already by Gau~s/8/. First re­

catl/3/ the explicit expression for an unbiased estimate ;,2 m(v, A) = 'Jl.(V + AU"A') = m(V + AUA"), ~, (5.8)
 

in case (111):'
 
VK' A =.0, A'~A =0/9

/.	 (5.9) 

8 9 



Differertt choices of K and U yield different c40ices of M, 
however, the obtained estimates coincide with ptobability one. 
This is again impõrtant from the point of view of nume~ic~l 

calculati'ons. 
Since -i.n case (111) a, 2 is unknown , there appears the prob­

2Lem of jointly éstimating p'x and a , In other wo rd s , we ask 
under which conditions upon the matrix M (cf. (5.6)) the ex­. , 
press~on . 

~.2 = t~ _A i) 'M ( 1- A i) /[R (V, A) - R (A)] (5. lO) 

2will be an unb i aaed es t i.ma t e of a· ? In order to answer this
 
one can again formulate the corresponding variant of equiva­

lence theorem /9/, Nevertheless,. the concrete choice of M is
 
still open. Let us briefly describe one unexpected method for
 
calculation of joint estimat~s - the Pandora box method/2 ,3 /
 

Th; ! pan::r)a bO(X ;ethodAiS)d~fined by 

"" -+ , (5. 11 ) 
( C3 -C 4 A" O 

Surprisingly enough, the matrices Ci contain ~ll information
 
needed for solution of our problem. In fact, for any functio­

nal f(i) = p'x ,Cp Em (A')) the estimates
 

p' C2Y,. -+ 
p' C 3Y 

~ 
(5. 12) 

are .efficient, 
2-+ :::; 2-+ :; -+'-+

:D (p , C2y ) = :r (p' C 3 y) = a,2p ' C4P , (5. 13) 

/and
1__ 

..... 2 -+ -+, 
a' = y'CIY/Tr(VC~ (5. 14) 

2is ad unbiased estimate of the unit variance a , 

, 
, 6. SOLUTION IN CASES (11) ANl), (rV) 

In order to get estimat~s of'functionals p'x and vectors
P; in cases (11) ancl (IV) one can employ the same methods as
In ~neireced~ng seçtions.,T~e estimationlprob~em.for the vec­
tor (ai> ...• as) (cf ~... (2 ._~)) 1.S not completely solved , 

A quadratic fo~m:y'MJtis said to be an invariant unbiased
 
estimate with minimài norm (following Rao, such estimates got
 
t he acronym r-UNQUE) of a l.í.near functional f(a'~ , ••• , a~2) .=
 
10 { .
 

,I , 

\~ 

i :~tP .a·~, if IA is a symmetric lmatrix. and the following con­
• • 1 1 •• . 

~fil.,t~ons' are sat,:tstl.. ed ;
 
'- 1nvariance, i.e.l~ .
 

~ ~ N":) ~ (~ ;;\" (:; ;;1\( \:f,a G-R ) s' My = y + ,Aa) My + Aa} f (6.1) 

,,- únb-ia sednes s , i.e., 
.' . 2 :; - 8 2 
(\if (I: E (O, 00). 1:5; i~ s ) E (y' My) = L Pi ai ' .(6.2) 

, 1 .i= 1 

- minimum of the norm, i.e., 

IIU 'MU - ~112 == Trt(U 'MU - ~) (U"MU.- ti) '1. == MIN, (6.3) 

where U=(U1 , •.• ,U )' R(U~) =R(vi)=n j , Vle:~iU[7 Ç{l .... ,.sl.s .í 

.a~d ~ ~s a ~lock-diagonal matrix wíth diagonal bloc~s 
CP. i I ni ) Ini'Di' 1 ~ i ~ 5 •. 

,If. the matrix V::. V1 + .i. + VS is regular then a matrix M 
q~<isfying all requirements tormulated above can be d~termined 

.~om the relations I 

'M ==.~ [I_V-1A(A~V-1A)-A']V-1Vi'V-l x } 
1 == 1 . 

• 'X [I-A(A'V-1A)7 A'V-1 ],8. , (6.4) 
1 . 

whe re the numbers '{3. are determined from 
1 . 

. i
'I:r(MV ) = P.. 1 < i < 5.\ (6.5)

1 - ­

Unfortunately, .equat í ons (6.5) do not admí.t , in generaL, a solu­
~lon. In such' a case it is necessary to employ the structure 

"uf concrete estimation problem, and attempt to ge~ satisfactory 
r'e su l t s' using appropriate combinations of estimable functionals

'. /3/ >

.(see 'for more details and exampl es ) . 
',,' , 

7. CONCLUSION 

We did not consider the questions related to various ways 

J 
.J of calculation of g -inverses because (a) the appropriate way 

depends upon concrete structure of the matrix and (b) there is 
an extensive literature devoted to that topic/10/,Of course, 
if errors are normally distributed, we can get much stronger 
results to the effect that we can find exact distributions for 
es t i.mat es presented above /2,3/, thesedistributions being always
 
~ridependent of ~he particular cho í ce of a g -inverse.
 

In conclusion, we have seen there is a well-developed theo­
,ry which Ideals in a unified manner with finite-dim~nsional li ­
~ 11 

~ c I:." 

"" 



. ..,, 

near theory of i nverse problems. It was our intention to call 
a t tantion of people dealing with inverse problems in experi~en­
tal phys i cs . to this fac t . Of course, the linear theory of .expe­
rimental design can be deve l oped much the same way as estima­
tion theory, agai n without any assumptions concerning regularity 
of the regres s i on models. However, this exceeds the frame of 
the present paper. 
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06 06paTHbiX 3ap;atJaX 3KcnepHMeHTaJibHOII «l>H3HKH! 
KOHetJHOMepHa~ nHHeHHa~ TeOpH~ 

E5-85-50 

OnHCaHbl OCHOBbl CTa THCTHtJeCKOH TeopHH KOHetJHOMepHbiX 
nHHeHHbiX o6paTHbiX sa,o;atJ, npHtieM oco6oe BHUMaHHe y,o;en~eTc~ 

e,o;HHOMy no,o;xo,o;y K HCcne,o;oBanmo KaK peryn~pHhiX, TaK H ue­
KoppeKTHbiX sa,o;atJ. 

Pa6oTa Bhmonueua B JlapopaTopHH BhitiHcnHTenbHOI1 TexHHKH 
H aBTOMaTH3a~HH Olf51U. 

OpenpKHT Oti'be.t~J~HeKHOro HHCTHT)'T& R,QepHWX HCCJU!,QOBaHHA. ,lly6Ha 1985 

Mi.ihle K. , _ [!~ujan §., E5-85-50 

On Inverse Problems of Experimental Physics: 
Finite-Dimensional Linear Theory 

Statistical theory of finite-dimensional linear inverse 
problems is outlined, with particular emphasis on the ,uni­
fied approach of dealing with regular and ill-posed problems. 

The investigation has been performed at the Laboratory 
of Comput ing Techniques and Automation, JINR. 
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