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1. Introduotion

We consider the system of ordinary differential equations with
complex variables
deo

w’ = frzw) o0/ (1.1)
de

where € ( 5 e ’ )((z,w) is a holomorphic vector—

—function in a field W  of the complex { Z,w> )-space.

The classical Cauchy theorem says that for any initial value
(25,0°) € W there exists a unique Cauchy problem solution
which 18 holomorphic at the point =, 152/ « On the theorem's
base one have developed the analytical theory of differential
equations which has achieved considerable successes, However for
applications of the analytical theory it 1s necessary to elaborate
effective methods for calculation of the coefficolents of Taylor
series of Cauchy problem solution. On the other hand, the idea of
straight calculation of coefficlents of power series 1s the effec-
tive method of approximate integration of ordinary differential

3u%310ns and nowadays causes exclte lnterest among specialists

= » The reasons of the new ascent of the classical idea are
eoonomy of computer time, posalbility to control the step and the
approximate order at every step and possibility to get analytical
expressions for qualitative imvestigation.

In this paper the universal method of expansion of Cauchy
problem solutions of system (1.1) 1s elaborated. The method has
no the known difficulty connected with calculation of partial
derivatives of high orders of function f « The method is used
elso for expansion into power series of Cauchy problem solution
of the scalar differential equation of the type

(K) Jiu
Sl (1.2)

(m} A
W = 9 (Z,LO(H 1% ,uflﬂto) , W

where is an analytical equation for Z and every derivative
WK £ % =043y v ;021 Yima B0 QC N,



The method of expansion into power series is particularly
effective in the cases when the right part of a differential equation
18 an entire function. In particular we shall consider the system
of ordinary differential equations with real variables

= f(t,x) Y \x':ii:. ' (1.3

where f(t,X)is a real vector-function being defined for mll tER
x €RM and such that there is 1ts analytioal continuation
which is an entire function in the complex (2,0 ) —space. The
expansion algorithm of the derivatives of flows generated by
system (1.3) ( or Jacobl matrices of global solutions) into power
series ig elaborated. This shows the other advantage of the expan—
sion method into power series, because the flow's derivative 1s
the most important character in the modern theory of qualitative
investigation of differential equations /11512/ .

For simplification of the text we propose that %,:0 ({,=0).
A1l the results are easily transferred for the case of an arbitra-
ry value %, (1) =« The operation of matrioes transposition will
be denoted by T .

2. Expansion of Cauchy Problem Solution into Power Serles
In general the vector-fuunction {(z,w) being holomorphio

in the field W can be presented in the neighbourhood of
every point of the field by the vector of convergent power series

oo
0 g XK
Jolz@)=fl) v :Z,i ) 3 i (B) Q... (Tz4,.,N) (2.1)
2% oL = l,.:.lln
K :li,u.,n
where
oo oo
G Ly 6 .m 1,..,0K L, . AK
5r(2) _m% {Tm = : {: / {#Es Z fr'm 2™,
= m=0

Por the initial condition ro)=co® we find the solution
in the form

S 4 S & v
~ r m 118
Prz) :(Z I e U L S C,,,z"‘j : (2.2)
m=0 =0 /

m-=0

r'em: Suppose the vector-function f(z_w) is holo-
morphio 1n the neighbourhoed of point (0w?°) € W and presented

s

by the form (2.1). Then the coefficients of expansion of Cauchy

problem solution into series (2.2) satisfy the following recurrent
eguation

r 1 (0 S S eteK \
Cmu:?n,—i(&rm +Z Z‘ frso : C:i" 'C:: )
K= 4= l,__.,n_

n (243)

e
S0+« §4+---» SK=m

sost,..,SKkeN=fo 1, .}, C=® , r=t.,n, m=o1z.

Proof, By induction on M it 18 easy to show that m-deriva-
tives of F(=) satlisfy the following recurrent equation

aRal: a0r ) s _om! _( AL, XK )wo) ($1) _ (sKk)
€ :('fr(m) ) 0'SL!. . SK! fr L/ RS
K={ «4-4,...,n
ko b

SO0+ S4+---4+8K-m

It follows (2.3). Theorem 1 is proved.
In the particular case when the vector-function 1- is independent
of B8 4 la®s, u)':f(w) y 1t can be presented by the form

o
Al of,. ., olk
fre) =a, + A 2. 4 o e PEL, . 7 (2.4)
K= w4:4,.. N
aKsq,... M
od,. .. K
where 4, , 4, €C.

Then we have

Corollary 1. Suppose the vector—funotion is independent of 2

and 1s presented by the form (2.4). Then the coefficlents of expan-

sion of Cauchy problem solution into series (2.2) satiafy the

following recurrent equation

1 oo
9
T Ty 2.

kK21 a1.4 . ,n

y‘ dxa, LT | o K
i L Cu Csx

Lo = O ]

Si+---+8K=m

’

St, .., SkeN  Cg=cb Cf:fr(“"” . m=12
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The right part of equation (1.2) being analytical in the
neighbourhood of an initial condition can be presented in the
neilghbourhood by the convergent power serles

(=]

\
Gusst a5 g S0 e,
K= 2
ik i ke e (2.5)
K = 01 ,n-1
where
N , T Al K
X4, .., %K al,. ..
qez) = 2 gL e (2)= Z a. .,
m:=0 m-o

The Cauchy problem solution of equation (1.2) is found in the
form

o

Cm= D, Cpe™ . (2.6)

m=0

Theorem 2. Suppose the function gz, . . ) )
is holomorphic in the nelghbourhood of initial condition

(_‘w(h U

coefﬂoients of expansion of Cauchy problem solution into series
(2.6) can be defined by the following recurrent equation

f = R
Cmon: L_Hm ->—-4 Z aso 4 ﬂ H (S“J) ®4454" -mmc)

(Mei). (M+n) Ksl «4-0,4,...n-4 t=1 =1
W MDJ 2.7

'K :0,1,“., n-4

S0+S81+---+8SK=m

i (4] 4 (-1
T!w" /""C"-’:m.“% r 5 (= ot L AR

C =W, , Ci =

Proof. By induction on m it is easy to prove that (mwin)-
derivatives of solution Peen can be found by the following
reourrent equation

(m+n} m) g"
(P = q (2)+

< £ SO0!sy! . sK!
K=14 o1-0,4,..,n-4

a{x D] n-4
S04+ 8{+--+ SK=m

w( ,s) € Q and presented by the form (2.5). Then the

I c (S0)__ (oi4+54) (2K +SK) -
>_‘ srem—a (@ ) @G

It follows (2.7). Theorem 2 is proved.
Lower we consider some typical examples.
Example 1. Kostitzin equation

(,0,1 = -)(4)1 +J>w,_c.!
w; = Moy~ LOgeoy -

The coefficients of Taylor series (2.2) of its Cauchy problem
solution are determined by the following

i 2
CO :(,\)1(0) ; & :(4.)2(0)

2

Cmu' ( lc"‘ fzcs(‘m s)

m-ol
(r“c:n ‘f’sz_{)cé Cfms) :

Example 2o The mathematical pendulum

2
Crn+4 i

m+1i

= 2K+41
LJ(Z): sinco :-}J(_DK g
K={ (2K+ 1!
The coefficlents of Taylor series (2.6) are defined so

CO = (o) ’ Ci (“(D)

.

. DR
Ml =~ Z L (2K+11 Cot- Csqanen)
mvmmm
K=1 §1+--+S(2K+1)=m
e OpdR, ..

Bxample 3. Second Painleve equation

cow: 2(03 + 2w

14,
G =) , Cizw[ o) y Cp= 2oy ot

4
Cmpg s ——— C >
msz = i ) i
8 (mmumz){ = 5113245331 ni’-cﬂ)
m=d42 ...

Example 4, Van der Pol equation

WY _ (¢ ¥ )W _/uzw + S)Qcosz

= (;/‘zcmw‘*f 2 ¥ Csxcszcsi G s : “m/z ) ¢
(m+t) (mans\ 51482+ S53=m
gi if m 1s even,
9™ =16 22 m 1s oaa

Cozw(o) p C,_:w‘“to) , M=03 2

]
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So the given above algorithms are highly simple and on princlp-
le they have no any difficulty in their realization., However, from
the practical point of view they are effective on the whole in the
cases when the right part of differential equatlon is the poly-—
nomigl of independent variables (examples 1,3 and 4) or enough
quisckly covergent series (example 2). In the last case the infinite
gerlies can be replaced by a polynomial, The coefficlents of poly-
nomlal can be Infinite series and they do not lead to the infinite
sum in calculation of coefflolents of the solution,

Practlical calculatlon has shown that the method of expansion
into power series has the great advantage for the rate of calcula-
tion as compared with the others at least 1n the followlng cases:
a) the linear systems with polynomials coefficlents, b) the system
with a bilinear (quadratic) right part and e) polynomlial systems
with small parameters of the nonlinear part. For such system calocu-
lation of solutions is not more complicated then calculation of the
exponential.

3« Expansion of Flow's perivative into Power Series

The right part of equation (1.3) can be analytically continued
on all the complex (2,w ) - space and its analytio continuation
is an entire function. Therefore the function j‘-({,xx) can be
also presented by the form (2.1) with the unique difference such
that the complex variable ¥ will be replaced by the real
variable t when the question 1s a resl solutilon.

For every point X on compact manifold MC R™  1ts tangent
space will be denoted by T, (M) , the derivative of a flow
¢:M— .M Yy DY 711,12/

Theorem 3, Suppose f{(,r) satlsfies the above condition and
¢, M— .M 1s a flow on compact manifold MCR"™  generated by
system (1.3), Then for every X¢M  we have the following state—
ments:

1) The motion {f,(x) passing through point X  can be
presented by the vector of series

(ﬁ(x):( X Ci\u){m, A AN S (‘:gufm) 6.0
m:=0 m=0 m:-p

which ebsolutely oonverges for all teR » where the coeffioients
are found by reourrent equation (2.3) with the initial values
el (=t .0 ;

2) Por every t€R the derivative Dcﬂ(x) Tx(M)
13: (ﬂ_ ) can be presented by the matrix of series

& mym
D%(m):zé{ . Si,

m=o .
where matrices of coefficlents d™ ( m=0,1,2, «es ) are determined
by the following recurrent equation

T}}(M),

o R a0k v sho w1
dir kel 2. Z, ?(rso Z sth(cshj 5% ©.2)
Ket atd=f.. n had,.. Kk

[

y oy

xXK=L,. 4N
S04 84+.--+8SK=m
4’ =1 (1dentity matrix),

Proof. The right part of system (1.3) is an entire function
in the complex (£2,0) space. Therefore by theorem 1 motion lﬂ(:r)
can be presented by the vector of series (3.1) which absolutely
converges in a some interval (-§,§), §>0 « Then vector of
serieas (3,1) also converges at the points +§ , because the motion
%, o is bounded. Further the condition of continuation of
motion p cx) follows that (3.1) also absolutely converges in the
interval (-6-5,5+5) for some ¢£50 , consequently in all the
real axls. Finally, direct caloulatlion of Jacobl matrix of vector

of series (3.1) at point x glves equation (3,2), Theorem 3
1s proved.

For example we consider the bilinear system

x'= Ax + Bx,x)

AcR™", B 20 = 2 g:xvrr/“ } (b’fe R) , rag...n,
V,)u:i,.,.,n
The Taylor coefficients of the motion (i) are defined by the
formula
3 ¥
cmd=7n_%(zl(m +J3(fs,fm-s))' fr(fs,cn._g):”/}; 3 et )
5 ! ,’m
Then the Taylor coefficlents of derivative _D‘{" (x)1s found by

the followlng

m+i m - Vs § U m-$ 4y .\
04 ¢ 1
G B Andic o 2 Bl e di G
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Thus the algorithm of calculation of the coefficlents of
flow's derivative 1s also simple, For example, for calculation
of 200 first coefflclents of the solutlon and the derivative of the
corresponding flow of Kostitzin equation (example 1) by EC 1060
only one minute has been spended,

In conclusion author expresses his sincere gratitude to Prof.
N,N,Govorun for permanent attention to the work and Prof. E,P.,Zhid-
kov for discussion of results.
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By Cyad MuHB E5-85-456
0 pasz/lI0KeHHH pemeHul OGHKHOBEHHbIX
OudpepeRMaibHbX YpasHeHuid B CTEncHHLIE DAs

Hawres pexyppenTible GOpMyIb NOCTENOBATENBHONO BhIUMCIIEHUS
KosbduuedTor Teisiopa pemeHuit 3amaum Kom [T O6LIKHOBEHHBIX
nubdepeHnHalIbHEX YPABHeHHH C aHamMTHYeCKOH npasoil yacTsio./laeT—
Cs Takxke pexKyppenTHan QopMylla pasJIOKeHHs B CTeleHible pPaibl
TPOM3BOHLEX TOTOKOB, MOPOXOAaEeMhlXx 3THMH YPaABHEHHIMH.

PaGora punonuena B JlaGopaTopuil BeYHMCITMTENBHOH TEXHHMKHA
U aBToMaTHsauuu OMAH.

NpenpunT O6beaMHEeHHOr0o HHCTHTYTa fAepHMX HccnepoBauu#, [yGua 1985

Vu Xuan Minh E5-85-456
On Expansion of Solutions of Ordinary
Differental Equations into Power Series

The recurrent formulae of successive calculation of Tay-—
lor coefficients of Cauchy problem solutions for ordinary
differental equations with analytical right part are obtained.
For the flows generated by the eguations the recurrent for-—
mula of expansion of their derivatives into power series is
elaborated too.

The investigation has been performed at the Laboratory
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