

Объединенныの ИНСТИТУт адерных исследований
 дубна

E5-85-158

A.Dvurečenskij

THE BUSY AND IDLE PERIODS JOINT
DISTRIBUTION
OF A DISCRETE MODIFIED GI/GI/c QUEUE

Submitted to "Journal
of Applied Probability"

o. INTRODUCTION

In the last years the use in practice of discrete queueing systems with finitely or infinitely many servers has increasing tendency. The discrete systems are used as mathematical models of, for example, mass servicing machines, electronic machines, transport problems, automated filmless blob-length measurements in track chambers in high-energy physics ${ }^{1 /}$, particle counters, etc.

Borovkov ${ }^{12,3 /}$ studied some limit properties for the case of queue with finitely and infinitely many servers.

For a modified queue we suppose that the service times of all customers serving during any busy period are independent random variables with not necessarily identical distribution functions. Modified M/GI/1 queue has been investigated by Yeo ${ }^{/ 4 /}$ and Welch ${ }^{\prime 5 /}$ modified GI/M/1 and GI/GI/1 queues by Pakes ${ }^{16,71}$ and GI/M/1 by Shanthikumar ${ }^{8 /}$ Modified GI/GI/ has been studied by Dvurečenskij, Ososkov ${ }^{/ 9 /}$ on the particle counter language.

The joint distribution of the busy and idleperiods for the GI/M/1 queue has been derived by Kalashnikov ${ }^{10}$. For the discrete modified counter with prolonging dead time the joint distribution of the dead time and idle period was done by Dvurečenskij, Ososkov

In the present note we derive the busy and idle periods joint distribution for the discrete modified queue GI/GI/c, for $1 \leq \mathrm{c}<\infty$. First of all we shall concentrate ourselves on the discrete modified GI/GI/1 queue, then we shall continue with the general case of GI/GI/c, for any $2 \leq c<\infty$. We note that the presented formulae are computationally convenient for the practical use, and they may be used for the discrete modified GI/GI/ ∞ queue, too.

1. DISCRETE MODIFIED GI/GI/1 QQUEUE

We suppose that the queueing system with c servers, $1 \leq \mathrm{c}<\infty$, is idle before the service process and the customers arrive at the queue at moments $0=\tau_{1}<\tau_{2}<\ldots$. Let $\chi_{k}, k \geqslant 1$, be the service time of the k th customer in the busy period, and let $T_{k}, k \geq 1$, be the interarrival time between the arrivals of the k th and $k+$ bst customers. Theypusy period, B^{c}, is the
time period when at least one customer is served. The idle period, $I{ }^{c}$, is the time period when no customer is served. The sum, $C^{c}=B^{c}+I^{c}$, of the busy period and following idle period is said to be a cycle. For the modified queue we suppose that any busy period is produced by the sequence of the service times, $\left\{x_{k}\right\}_{k=1}^{\infty}$, and by the interarrival times, $\left\{T_{k}\right\}_{k=\{ }^{\infty}\left\{x_{k}\right\}_{k=1}^{\infty}$ are
 with the distribution laws
$h_{k}(n)=P\left(X_{k}=n h\right), n \geq 1, k \geq 1$,
where $\sum_{n=1}^{\infty} h_{k}(n)=1, k \geq 1$. The sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ is independent of the sequence $\left\{T_{k}\right\}_{k=1}^{\infty}$, where $T_{k}, k \geq 1$, are assumed to be positive discrete random variables with the same step $h>0$ and with the distribution laws
$f_{k}(n)=P\left(T_{k}=n h\right), \quad n \geq 1, \quad k \geq 1$,
where $\sum_{n=1}^{\infty} f_{k}(n)=1, k \geq 1$. Any successive busy period is resumed with ininitial conditions, independently of the previous busy periods. This discrete modified queue will be denoted by $2^{\mathrm{c}}=$ $=\left(f_{1}, f_{2}, \ldots ; h_{1}, h_{2}, \ldots\right)$.

For a given queue $2^{c}=\left(f_{1}, f_{2}, \ldots ; h_{1}, h_{2}, \ldots\right)$ is convenient to consider a sequence of discrete queues, $\left\{2_{k}^{c}\right\}_{k=1}^{\infty}$, where $2_{k}^{c}=$ $=\left(f_{k}, f_{k+1}, \ldots ; h_{k}, h_{k+1}, \ldots\right)$. Suppose that the first busy period of any queue 2_{k}^{c} is produced by sequences $\left\{X_{n}^{k}\right\}^{\infty}=1$ and $\left\{T_{n}^{k}\right\}^{\infty}$, where $x_{n}^{k}=x_{k+n-1}, T_{n}^{k}=T_{k+n-1}$, when for $2_{k}^{d}{ }_{k}^{c}$ we define ${ }^{n}{ }^{\prime}$ the corresponding busy period, ${ }^{k}+{ }_{k}^{n}{ }^{n}$, idle period, ${ }^{k} I_{k}^{c}$, and the cycle, $\mathrm{C}_{\mathrm{k}}^{\mathrm{c}}$, respectively. For simplicity we put $\mathrm{h}=1$.

Our main aim is to determine the joint distribution, $W_{k}^{c}(n, m)=$ $=P\left(B_{k}^{c}=n, I_{k_{c}}^{c}=m\right), n, m \geq 1$, of the busy period, B_{k}^{c}, and the idle period, ${\underset{\mathrm{I}}{\mathrm{k}}}_{\mathrm{c}}^{\mathrm{k}}$, of the discrete modified queue $2_{k}^{\mathrm{c}},{ }^{\mathrm{k}} 1 \leq \mathrm{c}<\infty$, for any $k>1$.

First of all we begin with the discrete modified GI/GI/s queue $2_{k}^{1}, k \geq 1$.

It is evident that
$W_{k}^{1}(n, m)=\sum_{j=1}^{n} \bar{\Sigma}^{1} \sum_{t=1}^{j} h_{k}(j) f_{k}(t) A_{k}^{1}(n, m ; j, t)+h_{k}(n) f_{k}(n+m)$,
where

$$
\begin{equation*}
\mathrm{n}, \mathrm{~m} \geq 1, \tag{1.3}
\end{equation*}
$$

$A_{k}^{1}(n, m ; j, t)=P\left(B_{k}^{1}=n, I_{k}^{1}=m \mid X_{1}^{k}=j, T_{1}^{k}=t\right), \quad 1 \leq t \leq j<n .(1.4)$
So we have
$W_{k}^{1}(1, m)=h_{k}(1) f_{k}(1+m)$.

For any $\mathrm{n} \geq 2$ and $1 \leq \mathrm{t} \leq \mathrm{j} \leq \mathrm{n}-1$ we have

$$
\begin{equation*}
A_{k}^{1}(n, m ; j, t)=\sum_{r=1}^{j-t+1} B_{k}^{1}(n, m ; r ; j, t), \tag{1.6}
\end{equation*}
$$

where $B_{k}^{1}(n, m, r ; j, t)$ is the probability that $B_{k}^{1}=n, I_{k}^{1}=m$ when $X_{1}^{k}=j, T_{1}^{k}=t$, and from the service times of the second and following it service times, r cycles with the sum of all busy periods equal to $n+m-t$, without the service time of the first
customer, are created. $\left.{ }^{1}=m\right\}$ depends only on $\left\{X_{k}, \ldots, X_{k+n-1},{ }^{\prime}\right.$ event $\left\{B_{k}^{1}=n, I_{k}=m\right\}$ T_{k}, \ldots, T_{k+n-1}. Therefore
$B_{k}^{1}(n, m, r ; j t)=\Sigma W_{s_{1}}^{1}\left(n_{1}, m_{1}\right) \ldots W_{s}^{1}\left(n_{r}, m_{r}\right)$,
where $\mathrm{s}_{1}=\mathrm{k}+1, \mathrm{~s}_{2}=\mathrm{s}_{1}+\mathrm{n}_{1}, \ldots, \mathrm{~s}_{\mathrm{r}}=\mathrm{s}_{\mathrm{r}-1}+\mathrm{n}_{\mathrm{r}-1}$ and the summation is taken over all integers $n_{1}, m_{1}, \ldots, n_{r} \geq 1, m_{r} \geq m$, with $n_{1}+\cdots+n_{r}=n-j, m_{1}+\cdots+m_{r}=n+j-t$.

This proves the following theorem:
Theorem 1. The joint distribution of the busy and idle periods of the discrete modified GI/GI/1 queue $2 \frac{1}{\mathrm{k}}=\left(\mathrm{f}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}+1}, \ldots\right.$ $h_{k i}, h_{k+1}, \ldots$), $k \geq 1$, is given by the formula (1.3), where $A_{k}^{k}(n, m ; j, t)$ is calculated from (1.6) and (1.7).

To determine $W_{k}^{c}(n, m), k>1$, for $c \geq 2$, we need to have the following two distributions: $\mathrm{V}_{\mathrm{k}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{t}\right)$ and $\mathrm{U}_{\mathrm{k}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{Z}, \mathrm{t}\right)$. Let $V_{k}\left(n_{1}, n_{2}, t\right), n_{1} \geq 1, n_{2} \geq 0, t \geq 1$ be the probability that at the queue 21 a customer arrives at the moment t and from the service times of all customers, have been arrived before the moment min (n_{1}, t), the busy period of the total length $n_{1}+n_{2}$ is created such that the busy period formed without the service time of the last customer participating in the creation of the above busy period would be less than n_{1}. This probability is evaluated in formulae (1.8)-(1.15).

It is clear that if $n_{1}=n, n_{2}=0, t=n+m$, then $V_{k}(n, 0, n+m)=$ $=W_{k}^{1}(n, m)$.

So we have
$V_{k}\left(1, n_{2}, t\right)=h_{k}\left(1+n_{2}\right) f_{k}(t), t \geq 1$,
$\mathrm{V}_{\mathrm{k}}\left(2, \mathrm{n}_{2}, 1\right)=\mathrm{h}_{\mathrm{k}}\left(2+\mathrm{n}_{2}\right) \mathrm{f}_{\mathrm{k}}(\mathrm{t}),=\mathrm{V}_{\mathrm{k}}\left(1,1+\mathrm{n}_{2}, 1\right)$.
If $1 \leq t \leq n_{1}-1, n_{2} \geq 2$, then
$\mathrm{V}_{\mathrm{k}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{t}\right)=\mathrm{V}_{\mathrm{k}}\left(\mathrm{t}, \mathrm{n}_{1}+\mathrm{n}_{2}-\mathrm{t}, \mathrm{t}\right)$.

Now let $t \geq n_{1}$. Then
$V_{k}\left(n_{1}, n_{2}, t\right)=\sum_{j=1}^{n_{1}} V_{k}\left(n_{1}, j, n_{2}, t\right)$,
where $V_{k}\left(n_{1}, j, n_{0}, t\right)$ is the joint probability of the event described in the formulation of $V_{k}\left(n_{1}, n_{2}, t\right)$ and $\left\{\right.$ either $x_{1}^{k}=j$, if $\mathrm{j}<\mathrm{n}_{1}$, or $x_{1}^{\mathrm{k}}=\mathrm{n}_{1}+\mathrm{n}_{2}$, if $\left.\mathrm{j}=\mathrm{n}_{2}\right\}$.

Hence, if $1 \leq j \leq n_{1}-1$, then
$V_{k}\left(n_{1}, j, n_{2}, t\right)=h_{k}(j) \sum_{i=1}^{j} f_{k}(i) V A_{k}\left(n_{1}, j, n_{2}, t, i\right)$,
where
$V A_{k}\left(n_{1}, j, n_{2}, t, i\right)=\sum_{r=1}^{j-i+1} V B_{k}\left(n_{1}, j, n_{2}, t, i, r\right)$
and $\mathrm{VB}_{\mathrm{s}}\left(\mathrm{n}_{1}, \mathrm{j}, \mathrm{n}_{2}, \mathrm{t}, \mathrm{i}, \mathrm{r}\right)$ has the similar sense as $\mathrm{B}_{\mathrm{k}}^{1}\left(\mathrm{n}_{1}, \mathrm{~m} ; \mathrm{j}, \mathrm{t}, \mathrm{r}\right)$.

Therefore

$V B_{k}\left(n_{1}, j, n_{2}, t, i, r\right)=\Sigma W_{s_{1}}^{1}\left(j_{1}, k_{1}\right) \ldots W_{s_{r-1}}^{1}\left(j_{r-1}, k_{r-1}\right) x$
$\times \mathrm{V}_{\mathrm{s}_{\mathrm{r}}}\left(\mathrm{j}_{\mathrm{r}}, \mathrm{n}_{2}, \mathrm{t}-\mathrm{i}-\mathrm{j}_{1}-\mathrm{k}_{1}-\ldots-\mathrm{j}_{\mathrm{r}-1}-\mathrm{k}_{\mathrm{r}-1}\right)$.
Here $s_{1}=k+1, s_{2}=s_{1}+j_{1}, \ldots, s_{r}=s_{r-1}+j_{r-1}$, and the summation runs over integers $j_{1}, k_{1}, \ldots, j_{r-1}^{r-1}, k_{r-1}^{r-1}, j_{r} \geq 1$ with $j_{1}+\ldots+j_{r}=n_{1}-j$.

For $\mathrm{j}=\mathrm{n}_{1}$ we have
$V_{k}\left(n_{1}, n_{1}, n_{z} t\right)=h_{k}\left(n_{1}+n_{2}\right) f_{k}(t)$.
The following expression has great importance in its application to the modified GI/GI/c queue, when $c \geq 2$.

Let $U_{k}\left(n_{1}, n_{2}, z, t\right), n_{1} \geq 1, n_{2} \geq 0, z \geq 0,1 \leq t \leq z+n_{1}$, be the probability that at the queue $2_{k}=\left(f_{k}, f_{k+1}, \ldots ; h_{k}, h_{k+1}, \ldots\right)$, $k \geq 1$, a customer arrives at the moment t and from the service times of all customers, having arrived before the moment $\min \left(z+n_{1}, t\right)$ and which are served after the moment z, the busy period of the total length $n_{1}+n_{2}$ is created such that the busy period formed without the service time of the last customer participating in the creation of the above busy period would be less that n_{1}. This probability is calculated in formulae (1.16)-(1.20).

It is clear that

$$
\begin{equation*}
\mathrm{U}_{\mathrm{k}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, 0, \mathrm{t}\right)=\mathrm{V}_{\mathrm{k}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{t}\right) \tag{1.16}
\end{equation*}
$$

$$
\begin{align*}
& \text { The definition of } V_{k} \text { yields } \\
& U_{k}\left(1, n_{2}, z, t\right)=h_{k}\left(1+n_{2}\right) f_{k}^{(t)} \tag{1.17}
\end{align*}
$$

and
$U_{k}\left(n_{1}, n_{2}, z, t\right)=\sum_{j=1}^{n} \Lambda_{k} U_{k}\left(n_{1}, j, n_{2}, t\right)$,
where $U_{k}\left(n_{1}, j, n_{2}, t\right)$ is the joint probability of the event described in the formulation of $V_{k}\left(n_{1}, n_{9}, t\right)$ and either $X_{1}^{k}=j$, if $j<n_{1} \wedge t$, or $x_{1}^{k}=n_{1}+n_{2}$, if $\left.j=n_{1} \wedge t\right\}$. Here $x \wedge y \equiv \min (x, y)$.

Hence, if $\mathrm{j}<\mathrm{n}_{1} \wedge \mathrm{t}$, then
$U_{k}\left(n_{1}, j, n_{2}, z, t\right)=h_{k}(j) \sum_{i=1}^{(z+j)} \widehat{\Sigma}^{(t-1)} f_{k}(i) U_{k+1}\left(n_{1}-j, n_{2}, z-i+j, t-i\right),(1,19)$
and if $j=n_{1} \wedge t$, then

$$
\begin{equation*}
U_{k}\left(n_{1}, n_{1} \wedge t, n_{2}, z, t\right)=h_{k}\left(n_{1}+n_{2}\right) f_{k}(t) . \tag{1.20}
\end{equation*}
$$

2. DISCRETE MODIFIED MULTISERVER GI/GI/c OUEUE

In this section we derive the joint distribution of the busy period and idle period, $W_{k}^{c}(n, m), n, m \geq 1$, of the discrete modified queue $2_{k}^{c}=\left(f_{k}, f_{k+1}, \ldots ; h_{k}, h_{k+1}, \ldots\right), k \geq 1$, for any $\mathrm{c} \geq 2$, assuming the knowledge of the corresponding formulae for all queues $2_{\mathrm{k}}^{\mathrm{s}}$, where $1 \leq \mathrm{s}<\mathrm{c}, \mathrm{k} \geq 1$.

Let $n, m \geq 1$ be given integers. For any $1 \leq i \leq n \wedge c$, let integers t_{1}, \ldots, t_{i} with $t_{1}+\cdots+t_{i}<n$ be given. Put
$\mathrm{J}_{1}=\mathrm{n}, \mathrm{J}_{2}=\mathrm{J}_{1}-\mathrm{t}_{1}, \ldots, \mathrm{~J}_{\mathrm{i}}=\mathrm{J}_{\mathrm{i}-1}-\mathrm{t}_{\mathrm{i}-1}$
and, for any $1 \leq j_{1} \leq \mathrm{J}_{1}, \ldots, 1 \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{J}_{\mathrm{i}}$, define
$a_{1}=j_{1}, a_{s+1}=\max \left(a_{s}-t_{s}, j_{s+1}\right)$ for $1 \leq s \leq i$.
To any t_{i} assign t_{i}^{*} via
$\mathrm{t}_{\mathrm{i}}^{*}=\mathrm{J}_{\mathrm{i}}+\mathrm{m}$, if $\mathrm{t}_{\mathrm{i}}=\mathrm{J}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}$,
Let us introduce functions $A_{k}^{e}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)$ for $1 \leq \mathrm{j}_{\mathrm{s}} \leq \mathrm{J}_{\mathrm{s}}, 1 \leq \mathrm{t}_{\mathrm{s}} \leq \mathrm{a}_{\mathrm{s}}$, when $1 \leq \mathrm{s} \leq \mathrm{i}$, via
$A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)=P\left(B_{k}^{c}=n, \quad I_{k}^{c}=m \mid X_{1}^{k}=j_{1}\right.$,
$\left.\mathrm{T}_{1}^{\mathrm{k}}=\mathrm{t}_{1}, \ldots, \quad x_{\mathrm{i}}^{\mathrm{k}}=\mathrm{j}_{\mathrm{i}}, \quad \mathrm{T}_{\mathrm{i}}^{\mathrm{k}}=\mathrm{t}_{\mathrm{i}}^{*}\right)$.

It is clear that if $t_{i}{ }^{*}=J_{i}+m$, then
$A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)=1$
and if $t_{i}^{*}<J_{i}+m$ and $i<n \wedge c$, then
$A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)={\underset{j}{i+1}}_{j_{i+1}=1}^{\sum_{i+1}}{ }_{i}^{a_{i+1}}=1 \quad h_{k+i}\left(j_{i+1}\right) f_{k+i}\left(t_{i+1}^{*}\right) \times$
$\times A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i+1}, t{ }_{i+1}\right)$.

Therefore we have

$W_{k}^{c}(n, m)=\sum_{j_{1}=1}^{J_{1}} \sum_{t_{1}=1}^{a} h_{k}\left(j_{1}\right) f_{k}\left(t{ }_{1}^{*}\right) A_{k}^{c}\left(n, m ; j_{1}, t_{1}\right)$.
We note that the above considerations may be carried for $2{ }_{\mathrm{k}}^{1}$ too. In this case we obtain (1.3) and (1.4).

In order to determine $W_{k}^{c}(n, m) i t$ is sufficient to determine $A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t r_{i}\right)$ for any $i \leq n \wedge c$. Therefore in the sequel we investigate the properties of (2.1) and calculate them. The investigation will be divided into ten steps.
(i) First of all we assume that $1 \leq i \leq n \leq c$.

It is clear that

$$
\left.\begin{array}{l}
A_{k}^{c}(1, m ; 1,1)=1 \\
W_{k}^{c}(1, m)=h_{k}(1) f_{k}(1+m) . \\
A_{k}^{c}(2, m ; 1,1)=W_{k+1}^{c}(1, m), \tag{2.6}\\
A_{k}^{c}(2, m ; 2,1)=W_{k+1}^{c}(1, m) \\
A_{k}^{c}(2, m ; 2,2)=1 .
\end{array}\right\}
$$

By recurrence we have, for $3 \leq n \leq c$,
$A_{k}^{c}(n, m ; 1,1)=W_{k+1}^{c}(n-1, m)$,
and for $2 \leq j \leq n-1,1 \leq t \leq j$, we obtain
$A_{k}^{c}(n, m ; j, t)=\sum_{t=1}^{\left[\frac{j-t+2}{2}\right]} B_{k}^{c}(n, m, r ; j, t)$.

Here $B_{k_{k}^{c}}^{c}(n, m ; j, t) \quad$ is the probability that $B_{k}^{c}=n, I_{k}^{c}=m$,
when $\chi_{1}^{k}=j, T_{1}^{k}=t$, and from the service times of the second when $\chi_{1}^{k}=j, T_{1}^{k}=t$, and from the service times of the second and following it customers, r cycles, with the total length of the first $r-1$ cycles and the r th busy period equal to $n-t$, without the service time of the first customer, are created. Therefore
$B_{k}^{c}(n, m, r ; j, t)=\Sigma W_{s_{1}}^{c}\left(n_{1}, m_{1}\right) \ldots W_{s_{r}}^{c}\left(n_{r}, m_{r}\right)$,
where $s_{1}=k+1, s_{2}=s_{1}+n_{1}, \ldots, s_{r}=s_{r-1}+n_{r-1}$, and the summation is taken over integers $n_{1}, m_{1}, \ldots, n_{r-1}, m_{r-1} \geq 1$, $n_{r} \geq n-j, m_{r}=m$ with $n_{1}+m_{1}+\ldots+n_{r}=n-t$

If $j=n$, then
$A_{k}^{c}(n, m ; n, n)=1$.
For $1 \leq t \leq n-1$ we have
$A_{k}^{c}(n, m ; n, t)=\sum_{r=1}^{\left[\frac{n-t+1}{2}\right]} B_{k}^{c}(n, m, r ; n, t)$
and
$B_{k}^{c}(n, m, r ; n, t)=\Sigma W_{s}^{c-1}\left(n_{1}, m_{1}\right) \ldots W_{s_{r}}^{c-1}\left(n_{r}, m_{r}\right)$,
where $s_{1}=k+1, s_{2}=s_{1}+n_{1}, \ldots, s_{r}=s_{r-1}+n_{r-1}$, and the sum-
mation runs over integers $n_{1}, m_{1}, \ldots, m_{r}, n_{r}, m \geqslant 1, m>m$ mation runs over integers $n_{1}, m_{1}, \ldots, m_{r-1}, n_{r}, m_{r} \geq 1, m_{r} \geq m$, with $n_{1}+m_{1}+\cdots+n_{r}+m_{r}=n-t$.
(ii) Now we suppose that $2 \leq \mathrm{i} \leq \mathrm{n} \leq \mathrm{c}$.

Put $\mathrm{t}_{0}=0$ and $\theta_{\mathrm{s}}=\mathrm{t}_{0}+\cdots+\mathrm{t}_{\mathrm{s}-1}, 1 \leq \mathrm{s} \leq \mathrm{i}+1$. Denote by s_{0} an arbitrary index, $1 \leq s_{0} \leq i$, such that $\theta_{s_{0}}+j_{s_{0}} \geq$
$\geq \theta_{s}+j_{s}, 1 \leq s \leq i$. Then $\geq s_{s}+j_{s}, 1 \leq s \leq 1$. Then
$A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)=A_{k}^{c}\left(n, m ; \theta_{s_{0}}+j_{s_{0}}, \theta_{i+1}\right)$.
In the following we shall suppose that $1 \leq i \leq c<n$ and $\mathrm{t}_{\mathrm{i}}^{*}<\mathrm{J}_{\mathrm{i}}+\mathrm{m}$.
($\mathrm{ii} i$) Assume there is $t_{q} \geq 1,2 \leq q \leq i$, with $j_{1}, \ldots, j_{q} \geq 2$. Then
$A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)=A_{k}^{c}\left(n-1, m ; j_{1}-1, t_{1}, \ldots, j_{q-1}-1\right.$,
$\left.\mathrm{t}_{\mathrm{q}-1}{ }^{1} \mathrm{j}_{\mathrm{q}}-1, \mathrm{t}_{\mathrm{q}}-1, \mathrm{j}_{\mathrm{q}+\mathrm{p}} \mathrm{t}_{\mathrm{q}+1}, \ldots, \mathrm{j}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$.
(iv) If, for some $u, 2 \leq u \leq i$, there is $v, 1 \leq v \leq u$, such that $j_{v} \leq t_{v}+\cdots+t_{u}$, then
$A_{k}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{i}, t_{i}\right)=A_{k+1}^{c}\left(n, m ; j_{1}, t_{1}, \ldots, j_{v-1}, t_{v-1}+\right.$
$\left.+t_{v}, j_{v+1}, t_{v+1}, \ldots, j_{i}, t_{i}\right)$.
(v) Taking into account the third and fourth steps we see that in the following considerations it suffices to assume $\mathrm{t}_{1}=\mathrm{t}_{2}=\ldots=\mathrm{t}_{\mathrm{i}}=1$ and $\theta_{\mathrm{s}}+\mathrm{t}_{\mathrm{s}}>\theta_{\mathrm{i}+1}, \mathrm{l} \leq \mathrm{s} \leq \mathrm{i}$. Moreover, from (2.3) we conclude that we may restrict ourselves to the case $\mathrm{i}=\mathrm{c}$.

Suppose that $\theta_{\mathrm{s}}+\mathrm{j}_{\mathrm{s}}<\mathrm{J}_{\mathrm{s}}, \mathrm{s}=1, \ldots, \mathrm{c}$. Denote by s_{1} an arbitrary index of such customer whose service is finished fistly, that is, $\theta_{\mathrm{s}_{1}}+\mathrm{j}_{\mathrm{s}_{1}} \leq \theta_{\mathrm{s}}+j_{\mathrm{s}}, 1 \leq \mathrm{s} \leq \mathrm{i}$, and let s_{2} be another index (if there is any) for which the corresponding customer is finished firstly after the moment $\theta_{s_{1}}+j_{s_{1}}$.
(vi) Let at least one customer service be finished before another, that is, there is $q, 1 \leq q \leq c$, with $\theta_{q}+j_{q}<\theta_{s}+j_{s}$ for some $\mathrm{s}, \mathrm{l} \leq \mathrm{s} \leq \mathrm{c}$. Denote by $Z=s_{1}-1+j_{s_{2}}-c, \quad N_{1}=s_{2}-s_{1}+j_{s_{2}}-j_{s_{1}}, \quad N_{2}=n+1-s_{2}-j_{s_{2}}$.
Then
$A_{k}^{c}\left(n, m ; j_{1}, 1, \ldots, j_{c}, 1\right)=\sum_{n_{1}=1}^{N_{1}} \sum_{n_{2}=0}^{N_{2}} \sum_{z=1}^{Z} \sum_{t=1}^{s+n_{1}} U_{k+c}\left(n_{1}, n_{2}, z, t\right) \times$
$\times A_{k+1}^{c}\left(n-1, m ; j_{1}-1,1, \ldots j_{c-1}^{-1}, 1, j_{c}-1, t\right)$.
(vii) Let now $\theta_{1}+j_{1}=\ldots=\theta_{e}+j_{c}$. Putting $Z=j_{1}-c$, $\mathrm{N}_{1}=\mathrm{n}-\mathrm{j}_{1}$, we have
$A_{k}^{c}\left(n, m ; j_{1}, 1, \ldots, j_{c}, 1\right)=\sum_{n=1}^{N_{1}} \sum_{z=1}^{Z} \sum_{t=1}^{Z} U_{k+e}\left(n_{1}, 0, z, t\right) \times$
$\times A_{k+1}^{c}\left(n-1, m ; j_{1}-1,1, \ldots, j_{c-1}-1,1, j_{e}-1, t\right)$.
(viii) Let us suppose that $j_{1}=n, \theta_{s}+j_{s}<J_{s}, s=2, \ldots, c$. Then
$A_{k}^{c}\left(n, m ; n, 1, j_{2}, 1, \ldots, j_{c}, 1\right)=$ $\left[\frac{n+1-J}{2}\right]$
where $J=\max \left(j_{2}, j_{3}+1, \ldots, j_{c}-c-1\right)$, and $B_{k}^{c-1}\left(n, m, r ; j_{2}, 1, \ldots\right.$, $\left.j_{c}, 1\right)$ have analogous sense to that explained just after (2.8). Hence
$B_{k}^{c-1}\left(n, m, r ; j_{2}, 1, \ldots, j_{c}, 1\right)=\Sigma A_{s_{1}}^{c-1}\left(n_{1}, m_{1} ; j_{2}, 1, \ldots\right.$,
$\left.j_{c}, 1\right) w_{s_{2}}^{c-1}\left(n_{2}, m_{2}\right) \ldots w_{s_{r}}^{c-1}\left(n_{r}, m_{r}\right)$.
Here $s_{1}=k+1, s_{2}=s_{1}+n_{1}, \ldots, s_{r}=s_{r-1}+n_{r-1}$. The summation is taken over integers $n_{1} \geq \mathrm{J}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{r}} \geq 1, \mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{r}-1} \geq 1$,
$\left.\mathrm{m}_{\mathrm{r}} \geq \mathrm{im}\right)$ Let us consider the case when there is q such that ${\underset{\mathrm{s}}{\mathrm{s}}}^{\theta_{\text {Then }}} \mathrm{j}_{\mathrm{s}}=\mathrm{J}_{\mathrm{s}}, \mathrm{l} \leq \mathrm{s} \leq \mathrm{q}, \mathrm{q} \geq 2$, and $\theta_{\mathrm{s}}+\mathrm{j}_{\mathrm{s}}<\mathrm{J}_{\mathrm{s}}, \mathrm{q}<\mathrm{s} \leq \mathrm{c}$. Then
$A_{k}^{c}\left(n, m ; n, 1, n-1,1, \ldots, n-q+1,1, j_{q+1}, 1, \ldots, j_{c}, 1\right)=$
$=A_{k+q-1}^{c-q+1}\left(n-q+1, m ; n-q+1,1, j_{q+1}, 1, \ldots, j_{c}, 1\right)$.
(x) Finally, we suppose that
$\mathrm{j}_{1}=\mathrm{n}, \mathrm{j}_{2}<\mathrm{n}-1, \ldots, \mathrm{j}_{\mathrm{u}}<\mathrm{n}-\mathrm{u}+1, \mathrm{j}_{\mathrm{u}+1}=\mathrm{n}-\mathrm{u}$,
for some $2 \leq u<c$. Then
$A_{k}^{c}\left(n, m ; n, 1, j_{2}, 1, \ldots, j_{u}, 1, n-u, 1, j_{u+2}, 1, \ldots, j_{c}, 1\right)=$
$=A_{k}^{c}\left(n, m ; n, 1, n-1, j_{2}-1,1, \ldots, j_{u}, 1, j_{u+Z} 1, \ldots, j_{c}, 1\right)$.
Combining all the above ten steps we may obtain all possible cases of (2.1), and this proves the main result:

Theorem 2. The joint distribution of the busy and successive idle periods of the discrete modified multiserver queue, $2 \begin{gathered}c \\ k\end{gathered}=$ $=\left(f_{k}, f_{k+1}, \ldots ; h_{k}, h_{k+1}, \ldots\right), k \geq 1$, for any $2 \leq c<\infty$, is given by (2.2), (2.3) and the formulae from (2.5) through (2.21).

Remark 1. It is evident that for the discrete modified queueing system with infinitely many servers, $2_{k}^{\infty}=\left(f_{k}, f_{k}+1, \ldots\right.$; $\left.h_{k}, h_{k+1}, \ldots\right), k \geq 1$, the joint distribution, $W_{k}^{\infty}(n, m)$ of the busy period, B_{k}^{∞}, and the successive idle period, I_{k}^{∞}, is given
$W_{k}^{\infty}(n, m)=W_{k}^{n}(n, m), \quad n, m \geq 1, \quad k \geq 1$.

Remark 2. The distribution law of the cycle $C_{k}^{c}, P_{k}^{c}(i)=$
$=\overline{\mathrm{P}\left(\mathrm{C}_{\mathrm{k}}^{\mathrm{c}}=\mathrm{i}\right)}, \mathrm{i} \geq 2, \mathrm{k} \geq 1, \mathrm{c}=1,2, \ldots, \infty$, is given by
$P_{k}^{c}(i)=\sum_{\substack{n+m=1 \\ n=m}} W_{k}^{c}(n, m)$.
$\mathrm{n}, \mathrm{m} \geq 1$
REFERENCES

1. Dvurečenskij A. et a1. J.App1.Prob., 1984, 21, p.201-206.
2. Borovkov A.A. Teorija veroj. i prim., 1963, 8, p.251-263.
3. Borovkov A.A. Stochastic Processes in Queueing Theory (In Russian). "Nauka", Moscow, 1972.
4. Yeo G.F. J.Austral.Math. Soc., 1962, 3, p.491-502.
5. Welch P.D. Oper.res., 1964, 12, p.736-752.
6. Pakes A.G. Ann.Inst.Statist. Math., 1972, 24, p.589-597.
7. Pakes A.G. J.Appl. Prob., 1973, 10, p. 192-197.
8. Shanthikumar J.G. Opsearch, 1982, 19, p. 148-159.
9. Dvurečenskij A., Ososkov G.A. J.Appl.Prob., 1985, 22, No.3; JINR, E5-83-882, Dubna, 1983.
10. Kalashnikov V.V. Izv.AN SSSR, Tekh.kiber., 1971, No.6, p. 106-109.
11. Dvurečenskij A., Ososkov G.A. JINR, E5-84-823, Dubna, 1984.

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index \quad Subject
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

COMMUNICATIONS, JINR RAPID COMMUNICATIONS, PREPRINTS, AND PROCEEDINGS OF THE CONFERENCES PUBLISHED BY THE JOINT INSTITUTE FOR NUCLEAR RESEARCH HAVE THE STATUS OF OFFICIAL PUBLICATIONS.

JINR Communication and Preprint references should contain:

- names and initials of authors,
- abbreviated name of the Institute (JINR) and publication index,
- location of publisher (Dubna),
- year of publication
- page number (if necessary).

For example:

1. Pervrishin V.N. et al. JINR, P2-84-649, Dubna, 1984.

References to concrete articles, included into the Proceedings, should contain

- names and initials of authors,
- title of Proceedings,introduced by word "In:"
- abbreviated name of the Institute (JINR) and publication index,
- location of publisher (Dubna),
- year of publication.
- page number.

For example:

Kolpakov I.F. In; XI Intern. Symposivm on Nuclear Electronics, JINR, D13-84-53, Dubna, 1984, p. 26.

Savin I.A., Smirnov G.I. In: JINR Rapid Communications, N2-84, Dubna, 1984, P. 3.

Двуреченский А.
Совместное распределение периодов занятости
массового обслуживания GI/GI/c
Измерение ионизации треков в стримерных камерах в фияике высоких энергий ставит задачу определения длины дискретизованного трека. Эту фияическую проблему можно успетно решать в рамках теории дискретных систем массового обспуживания с конечным или бесконечным числом обслуживающих каналов. В настоящей заметке определяется совместное распределение периодов занятости и простоя для дискретной модифицированной системы GI/GI/с для каждого $1 \leq \mathrm{c} \leq \infty$.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Divurečenskij A.

The Busy and Idle Periods Joint Distribution of a Discrete Modified GI/GI/c Queue

For a discrete modified GI/GI/c queue, $1 \leq c<\infty$, where the service times of all customers served during any busy periods are independent random variables with not necessarily identical distribution functions, the joint distribution of the busy period and the successive idle period is derived. The presented formulae are convenient for practical use.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1985

