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A.0. INTRODUCTION

Let us denote byu, a free field Gaussian measure, i.e.,
a Gaussian measure on the space {S(R%,3} with mean O and cova-
riance Sp(x-y) = (-A +m§)"1 x9), where - A standards for
‘the Laplace operator. The measure space {S’(R¢),S} consists of
a space of tempered distributions and its Borel o —algebra ZX.
As is well known it is a standard measure space, therefore all
conventional tools of the probability theory apply to this case.

Let us assume that {U)(¢)} forms on additive functional of
the field g such that {expU,(¢)} is then a multiplicative .
functiohal. For a bounded, regular set ACRd, let us define a new
measure on the space {S‘(R9Y, X}

HpWS) = Z3 exp(Up (BN pgdd), Zp= [ poldplexU,(d). (A1)
s’'®Y
Let us denote by %(A) local o -algebras and by E,{-|Z(A) % con-
ditional expectation values of the given measure and a local
o ~algebra 2(A). The Gibbsian approach to the Euclidean Field
Theory may be formulatied then as a problem of a detailed des-
cription of the set gt({UAi) consisting of all probability
measures p defined on {8’(RY),3} and such that for all bounded,
regular sets ACRY the following relations hold:

uoE#A=u- 4 ’ , (DLR)  (A.2)
For a given iUAi the elements of the set gt({U ) will be cal-
led tempered Gibbs measures corresponding to tﬁe given interac-
tions Up. With the minimal technical assumptions made on {Up}
it follows that one can apply general results from the theory
" of inverse limits of measure spaces ’2/ to establish several
properties of the set Q‘({UAI) like nonemptiness, integral rep-—.
resentations on the Dynkin-Martin boundaries Jgt([UAU, etc.

A Gibbs measure p € §'IUy) will be called the regular (res-
pectively, completely regular) Gibbs measure corresponding to
the interactions U, iff:

3t v [e@8)E <clif]? ' -(A.3)
cCR+ tcsrY
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2
(resp. 3 : V 2ju(d¢)é¢(-f) < eCllfdly

CGR, ES(RD) (A.4))

By Q: ({UA D (resp. Q:r({UAl)) we denote the set of regular (resp.,
completely regular) Gibbs measures from §° {uph.

From the papers 34/ it is well known that in the case of
1 6 G'({UAD the following formulas for the conditional expecta-
tion values hold: for p —almost every 176G S’(Rd):

B, IF@) ZA N0 =B,  (F@IZAIW = [ s]@ FG+ TV, (a.5)

oA '
where ‘Pn' is a (unique) solution of the following Dirichlet
problem:

A + m?) \pg/\(x) -0 for xcIntA

S (A.6)
‘PgA x) = n(x) for X C dA
By uK(dq&) we denoted the conditioned (by 7 ) measure:
wTap) - @™ ewm, ¥ ) @e), © @
A, . 3
Zy= [y @) e Uy B+ ¥ T, (.8)

3 ’

where qu is the free field Gaussian measure with the Dirichlét
boundary condition imposed on JA. In (A.6) we have to assume
that A is C! -piecewise.

Full set Q:UUA}) can be obtained by taking -convex combina-
tions of the limits like gl =a;—A1imduK. In the process of con-

¥ . TR '
trolling these limits some informatign about the behaviour of
YR is needed.

In the formulated below sequence of estimates, by {A ] we
will alwhys mean a sequence of bounded regular subsets of R
with ¢! -piecewise boundaries. A,"R? means that the sequence
A, is monotonic and tends to R? by inclusion.

Let p be any probabilistic regular (or completely regular)
measure on the space S/ (R?). By {,L we shall understand the sen-—
tence: '"for pu-~almost np'. n '

. /
Estimate (1 )/4’

Let AnCR2 and,let {Yn} be another sequence as above and
such thatV:Y, CAnand lim dist (Y, , 3An)=oo. Then, there exists
n-+o
such that

2 . ~

n
a subsequence (n°) C(n)

_r

T

1 5,\n., %dlat(Yn, ,éAn,) .
v ‘v lim (swp (¥, (&]e )=0. (A.9)
1 a<mg n’sro00 xQYn,

Estimate (2)/%/

Let ¢ be any fixed Cl—piecewise curve and let C, be any
sequence of piecewise C! curves in R? which tends to infinity
in the sefhse that dist(0, C ) v as n-e Then for any sequence
{A,} of bounded sets in RE such that A, C RZ_ (C.,UC_) and dist

~Uq
(A, Cp)» = n-w there exists a subsequence (n’%C(H) such
that
13
a :
m Edlst(/\ +C_ ) C, UC . c ’
v v lim (e "y sup |q:n° ") ‘qu(")’=°- (A.10)

7 @<mg n'=oo xGAn'

Estimate (3)

Let ¢ be completely regular measure on 13'(R2). 3. Then for
any bounded ACR? and a unit cube ACR? there exist finite for
# —almost g constants C (1,A) such that for all B<Inl+1/2 the

following, estimate holds:

(A.11) |

Fefe tax < (M1 kM wx axt B
AT o A
where

KaA (x,x) = (A + mg )‘1 (x,x) — (-AaA + mg)"1 (x,x) for x & JA.

If 4 is regular measure then the estimate (A.11) holds with n =2,
In the case when g is regular and A is such that € =

= dist(A, JA) >0, there exists a function C(y, A, e} finite for

almost every 7 and such that . - .

F1Ivedt @ 1Pm ax < ok, 8, ol £ Ak e (kP e anfia.i2)
A A A '

for any B« 1.

Estimate (4) 8/

Let , be regular measure on {8"(R?), X} and {A,} a sequence
as above. Then for any ¢ > O there exists a subsequence (n’) C(n)
and functions D(n,0) and E(y, ¢ 8) finite for p-almost everyn
and such that: '
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dA, - .
[ ¥, " @[Fd& <D o, |1,

oA \ (A-13)
where: '
d4A = {x  IntA|dist(x,0A) <11},
' A (A.14)
S IvY, "t ®I%ax < E, €, 8)|aA 1T, '
g A - '
where " ‘

i

1 :
dg A, =lxcIntA] 0<8gdist(x, A ) < 11.

All these estimates completed with the reverse. martingale theo-
rem are one of the fundamental mathematical tools used in the
following. .

Let us recall also what the problem of the global Markov
property is. It is well known ’®/ that in (almost) all scalar
two—dimensional models the following property holds. Let A be
any bounded with Cl-piecewise boundary dA subset of RZ. Then
for two observables F(¢) , G(¢) locallized, respectively, in
A and” A® we have '
E, F(@GH|Z@M) = E , {F($)]ZOAIE, (G |Z@A)] (A.15)
for any g G-Q:(HLMLThis is the so-called local Markov property
of the' field p. Whenever (A.15) holds for one-connected and
unbounded A then the corresponding field p is called globally
Markov. For the importance of verification of these properties
'in the field theory we refer to/7.10/

/

Conventional strategy of verifying the global Markov pro-
perty is the following one. Let I' be an arbitrary C* —piecewise
curve 'CR® which divides R? exactly into two sets Q,and Q_.
Then. the global Markov property for p will be verified if 'we
prove that for, almost every 7 the measure

W7 = 1m @) e (¢ +¥ 1 Nul ) (A.16)
A A 7 0

R ) ATRZ ¥

is a pure Gibbs measure corresponding to the interaction

I,y ar’
UA (¢)=UA(/¢ +‘I’n ).

4

4
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A1. EXPONENTIAL INTERACTIONS IN d=2
These models correspond to the choice .

Upld) = -2 [ @) [:e®® (max, (A.17)
A
where z > 0, and d» is some positive finite and bounded measure
supported-inside interval (-2y7, 2y 7). Fundamental existence
theorems have been established in papers./8/  According to the
conventional wisdom it is expected that this class of models
does not. exhibit any kind of phase transitions. This suggestion
has founded the following mathematical formulation.

Theorem A.1.79/

For any 2>0, dA as above there exists exactly one complete-
ly regular Gibbs measure p,, ( =ipfinite volume half-Dirichlet
state) corresponding to the interacticns (A.17). This unique
completely regular Gibbs measure has global Markov property.

Sketch, of the proof:

Let I' be C! —piecewise curve in R? as ‘in the introduction.

It is not hard to prove that the conditioned measure

dAul
. a

s @)= ap T enea fa@ e ime 108 g Phag)

: A (A.18)
fullfills the F-K-G correlation inequalities. This with the es-
timate:

I'n

pp o D@ i) <p@®; () (A.19)
which follows easily by the application of the Ginibre duplica-
te argument then yields the uniform in A and 7 exponential de-
cay of the measure up 7.

The rest of the proof then applies reverse martingale theo-
rem to reduce the control of some thermodynamic limits by pas-—
sing to the subséquences for which estimate’l/ and estimate /2’
hold. For more details we refer to the papers/g/.

A.2. SINE-GORDON-LIKE MODELS®'?’

These models corresponds to the choice

U€ (¢) = z [ dr(a) [ : cosag :(x)dx, (A.20)
A A €

N .



where z cR! ,d\ is some bounded with bounded support p051t1ve
measure of the real line, ¢>€~¢*f , where f ¢ C7 (R ), >0

and suppf, is-of the (Small) size €. These models do not find
room strictly the situation described in the introduction becau-.
se of nonlocality of the interactions. However, it is not a se-
rious obstacle (see 11/ ). Basing on the analysis of the Kirkwood-
Salsbur% equatlons the follow1ng theorem has been proved in the
paper

)
\

‘

Theorem A.2.1. /117

Assume that |z| < C"1 exp(—2a 2 S (0)+1), where

¢
~afB s, (x)
C, =sup [ |e °
a

-1|dA(B)dx, a 4 = supilal|a c suppdr}.

Then there exists a unique regular Gibbs measure u; cor-
responding to the interactions (A.20). This unique regular
Gibbs measure las global (almost)-Markov property.

Proof of this theorem is based entirely on the analysis of
the Kirkwood-Salsburg equations which can be easily written
for the conditioned correlation functions

N ia,
pAe ((X) ) =z" qu (d¢)H te ‘¢‘.(xi).‘ . (a.21)

€ i=1

From the detailed analysis of the Kirkwood—SalsEurg operatotr

it follows that' almost surely: ’
lim ’ e (®),) = (x) ),
Ak Ae 0o ,€ n
where
~ n ia; ¢
o (X)) = 2" ru;<d¢>> Il : e L)) (A.22)

and u; denotes the infinite volume limit of &u

In the two-dimensional situation it is possj%le to pass to
the 'local 11m1t ¢=0. Basic construction of these models with
restrictions suppd)x C (-2V7, 2y7m) is contained in the papers/m/
The most simplifying feature of these models is a ‘priori bound
on the effect of the condltlonlng in the interaction:

~ B . 2 N

é %— KaA (x,x)
sup | cOSe‘P
7€ supp i X

6

((ml<e (£.23)

This unifom bound is sufficient to prove uniform in the boun-
dary data convergence of the high-temperature cluster expansion.
This uniform convergence yields the following result.

Theorem A.2.2.

Let d =2, ¢ =0. -

’

Y@ = glla=a)+8la v} e <2V (for simplicity)

Then for sufficiently small |z| there exists a unique regu-
lar Gibbs measure u_ corresponding to the interaction (A.20).
ThiS‘un‘ique regular Gibbs measure has global Markov property.

Recent investigations of the author significantly improved
the uniqueness statements of these two theorems.

Theorem A.2.3.

v

Assume that zy > O is a regular point of the infinite volume
free energy correspondirig to the models (A.20). Then the set of
regular Gibbs measures corresponding to the interactions (A.20)
which have translationally invariant first moment consists of
exactly one element.

Main steps of the proof. v

The f’ollowing correlation inequalities of the Ginibre-type
are valid in the models (A 2(;)

Let us denote by < > e’ expectation value 'wirth respect
to the tensor product measure I‘A ¢ (do) © u (@)

Take u & G;(ULD and n< suppu. arbltrary. ‘Then for any z>0;
neN the following inequality holds:

n
0< <Il (¢ cosa; b, 1(xy) -~ I :cosa, 7 :(x;)) x
i=1 i=1 ©n.) (A.24)
x exp(t & [ g(x) :cosag, (%) :cosaqs : (%).dx )> e,
where 6€R and 0<ge¢ S(Rz)

The second useful correlation 1nequa11ty is the f0110w1ng
one. For any choice of the ‘numbers 6, ¢ [0 2r),i=1,2,...,n any
u G.QY(IU €1  and 5 € suppu we have:

n n n n=0
<‘H1 ZCOS(ai¢(Xi) +6i)'>l\ € < <i_Ill.c05ai¢(xi).>A,€ s (A.25)

i= ; =
Correlation inequality (A.24) leads to the following inductive
statement. -Take u & Q:(lU,f\D and n& suppu. If

Ne

0 < fue(dqs):cos(zqs (X)) = lim [u
o0 € A,€

(d4): cosag _:(x) (A.26)
A+ rd '

1


http:poss�.bl

then for any n>1:

li H K tx) =

ATu;xd f uA (d¢) cosa (b 1 (x (. 27)
= lim qu (d¢) II icosa ¢ :(xi) .

ATR

Equalities (A.27) combined with the correlation inequality
(A.25) yields, then

ai¢€:(xi)
(A.28)

i
() = nmqu€<d¢) il e
Arrd

ia . ¢
lim qu (d¢) H ce 1€
A+ g

assuming that (A.26) holds. Thus, the proof has been reduced to
statement (A.26).

Lemma A.2.

Let p GQ ([U ) and take n & suppp

Define:
0
1 UA@N’?i\ Ay
@ =-— (e (de). (A.29)
|A]
Assume that At R% in the sense of van Hove and that dA ar(e7
Te 1 —0) )
p1ecew1se. Then lim pA(z) exists and is equal to 1m PA (Z ,

A+rd Atr®
i.e., "half-Dirichlet infinite volume pressure.

Proof of the Lemma A.2.1 is based on the estimates like E3)
and E4) from the introduction. The proof of Theorem A.2,3 is
then completed using some -well known properties of the convex
functions.

In' the two-dimensional case we have used the so-called :cosa¢g’
botnd in the form of [106], This yields (technical) restriction

la| < ——?

1
1— o

gn the size of a:

A.3. IS THERE A FIRST ORDER PHASE TRANSITION IN THE
IWO-DIMENSIONAL SCALAR YURAWA THEORY?
it is well known that the two—dimensional pseudosgalar Yukawa
. model exhibits phase tranpsition of the first order /12

~
-

8 \ ' o~

N

]:.ndecisﬁe suggesstions were adressed in the literature towards
the case of scalar Yukawa model 718/,

Let ug ‘denote by EY(‘i’ @) Lagranglan of the two-dimensional
Yukawa models. To the Lagrangian ey (‘P,¢) let us add. the Schwin-

ger term £5¢) and the Thirring term g2 T(¥). Then the c¢harge-
" less, sector of the theory described by the total lagrangian

% ted in/1%/
.. and analyticity for small A and # proven in/14/

' of u‘Xi”’fi’(a@, a)

LYTS (g, )= &Y (¢, ¥) + ES(¢)+ g2TW) can be described purely

in the boson language. The chargeless sector of the Y-T-S theory
can be described fully in the Euclidean region by the following
formal measure on {8°(R2),3} @ 2

p (AP, dp) = exp(A [ {cos(e® + 6) : (x) $(x)dx) x ~ \
] (A.30)
x exp(u [:cose®:(x)dx) ;.Lo(d(b) 8 u (d¢), Y

where A is the Yukawa coupling constant, g is the bare fermionic
1
= 47 ——,
1+g/m
is the free field 'Gaussian measure with the mass mr0 =

‘mass, €=
uo(dd))

= e ¥(1+g/m))where “€%is the Schwinger coupling constant. ,
The .case 6=0 corresponds to the scalar Yukawa interaction
and the case # = O to the pseudoscalar interaction.
Various constructions of the measure yu (d®,ds)

where g is the Thirring coupling constant,

were presen-
From the Coleman-(Frdhlich-Seiler) theorem
it follows that
u (4D, dp) really describes chargeless sector of Y-T-$ theory
whenever g> 0. .

Let us denote by Q (A k) the set of refular Gibbs measures
on [§ (RB)] @2 correspondlng to the interactions contained in N
the definition (A.30). The followxng result about coex1stence

"of phase(Q) has been proved in

14/
Theorema A.3. /14

Let =0,€e2>0, g >0, |
Let +§tT (Au,) be a sebset of Q ()\ #y) obtained as limits

with u> 0, 75 2 0 which have translational-

ly invariant first moment. Assume that the half-Dirichlet in-—

finite volume pressure p2-O- (A, u) is differentiable at p= Bg-
Then for any g G*‘th’ (" m ) and f GS(R'?) we have

2

ety i)y LHO. (g 1(ty)

o0

u(e e (2

), <~ (A.31)

/

where , H.O. is the infinite volume half-Dirichlet state cor-
responding to (A.30). ,




The proof of this theorem is,similar to that of Theorem A.2.3. Corollary ‘A.4
With the assumptions made on u and 5, the correlation inequali-

ties of type (A.14), (A.15) hold. These 9orre1ation inequalities Let p,n and ® be as in theorem A. :
reducg the proof to the statement aPout independence ?f. the \ Then 1imé‘x(d¢) exist and do not depepd on n¢c @.
infinite-volume pressure of the typical boundary conditions . AR
n=n, ®n,. . 7 However, the %et ® seems to be not of a measure 1.
More prespectively seems dn application of the Theorem A.4.1.
‘ _ to the :¢* -like theories where the Lee-Yang thegqrem works.
A.4. SOME REMARKS ABOUT P(¢), MODEL , ‘ .
The choice of UA(¢) ==A r : ?(d))(x) dgx> A >0 and where P REFERENCES
is a polynomial bounded from below corresponds to the so-colled . ‘ .
F(¢)y theories. In contrast with the models considered above 1.Simon B. The ?(¢)2 (Egclidean Quantum) Field Theory. -
the phase diagram of the P(¢), theories might have a fairly Princeton: Princeton University Press, 1974; Glimm J.,
complicated structure 718/ Adaptation of .the elements of the , . Jaffe A, "anntum Physics. A Functional Integral Point of
Pirogov-Sinai theory to extract some information about phase- . View" - Springer-Verlag, New-York, Heidelberg, Berlin, 1982;
diagrams of the F(4)y theories is possible. Preston G. "Random Field", Lecture Notes in Mathematics. -
However, from the point of view of the program sketched in N 534, Springer Verlag: Berlin, Heidelberg, New-York, 1976.
the Introduction the results obtained are more than poor. We 2. Winkler G. "Inverse Limits. of Simplices and Application
note here the following applications of the Estimates 3 and 4 ) in Stochastics". - Hab-PHD-University of Minich, 1983 and
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lenepax P. E5-85-108
Ypasuenus [P B eBKIMAOBOH KBAHTOBOH TeOPHH NOJA

H CTATHCTHYECKOP MexaHHke. EBKIHMOOBA TEODHUHA IONsS

[an 0630p HepaBHHMX PE3YJILTATOB, IIOJYYEHHBX B PHOBGCOBCKOM
NOAXO5LE B JABYMEPDHOH €BKMHAOBOH KBAaHTOBOH TeOPHM nonsi. Pac-
CMATpHBAaETCs MNPHMEHEHHEe KODPelIALHOHHLIX HEpABEHCTB K aHAJIHUSY
ypasHenu#t [JIP.

PaGora BoimojiHeHa B JlaGopaTopuH TeopeTHuecKoH ¢usuxn OHAH.
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Statistical Mechanics. Euclidean Fied Theory

Present status of the Gibbsian approach to the Euclidean
{scalar) field theory is outlined. Main effort is made at the
application of the correlation inequalities in the analysis
of the D~L-R equations.
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