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1. INTRODUCTION

The information transmission theorem for block codes(cf.“/,
Thm.7.2.6) asserts that a source can be transmitted over
a channel of capacity C > R(D) in such a way that the channel
output process reproduces the original process with fidelity
D, provided the block length is sufficiently large and, on
the other hand, if C < R(D), then fidelity D 1is not achievable
whatever the block length will be. Here, R(-) stands for the
rate~distortion function of the source.

The main problem addressed in this paper is a dual form
of the information transmission theorem. That is, we are gi-
ven a source [A, pl, having the distortion-rate function (DRF)
relative to some distortion measure, and a chanmnel [B, v, Cl
with capacity C. Then we ask which are the connections between
the optimum performance theoretically attainable using encoder-
decoder pairs (@, §); é: A®L.B™, $: C®. A™ and the capa—
city C. We are interested in the case when ¢, ¢ are statio-
nary (finite or infinite) codes. Denoting the corresponding
OPTA by &, the result we seek for is 8* - D(C). This result
was previously obtained by Gray/®/ for B-sources and noiseless
channels, by Gray and Ornstein 3/ for ergodic sources and disc-
rete memoryless channels, and by Gray, Ornstein, and Dobru-
shin ’¥ for B-sources and totally ergodic g -continuous chan-
nels. We extend it to arbitrary ergodic sources and ergodic
weakly continuous channels. The proof makes use of the sliding-
block coding theorem with a fidelity criterion which was obtai-
ned in’% using somewhat complex arguments. In the finite alpha-
bet case and for B-sources it is possible to replace it by
a strong formlso/f Sinai”s theorem (a slight generalization of
Theorem 1 in ). Its formulation and a simple direct proof
will be given in the next section.

2, STRONG SINAI"s THEOREM

Let A, A be finite sets, and suppose that p :(A UA)x(AUA).
+[0,~] is a finite-valued metric on A UA. Let

Pu= maxip(a’, a”):a’, a”” €A UA }.

A process is defined t&,b&e@ bilatéfal-w ence X ={X.}"
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of random variables defined on some common probability space
(2, ¥, P), say), and taking values in a common finite set (cal-
led the state space of X ). If the state space of X is A
then, by regarding X as a mapping from ( to A™, the measu-
rable space of all bilateral sequences from A, we let dist(X)
denote the induced probability measure on A™. If dist(X)= ",
then we shall write [A, u] or [A, u, X] for the corresponding
source /7’ A process X or, a source [A, pl, is said to be sta-
tionary (ergodic) if dist(X) or, p, is invariant (ergodic) with
respect to the shift T on A% (we shall use T for the shift
in any space of the form C°% the state space C being always
clear from the context). Slmllar comments apgly to pair pro-
cesses (X, Y),triple processes (X, Y, Z), etc.,

If X is a process with state space A, Y a process with
state space A let X vY denote the set of all jointly inva-
riant measures on (AxA)™ having dist(X) and dist(Y) as margi-
nals. If the pair process (X, Y)is ergodic then we define the
p-distance between X and Y as p(X, Y) = inf Epp(Xq, Xq)

s pEX VY
(see (12) "in’%/. more on P-distance see in’?/ ). In particular,
if p is a metric, than so is P.

A process X with a finite state space (a source [A, p] with
a finite alphabet A ) is said to be a B-process (a B-source)
if it admits an isomorphic representation in the form of a bi-
lateral sequence of independent, identically distributed(i.i.d.)
random variables (cf., e.g., /101177 ),

Theorem 1 (Strong Sinai’s Theorem). Let A, A and p be
specified as above, Let X be a stationary, ergodic, and ape-
riodic (meaning that P[X = x] =0, x ¢ A™ ) process with state
space A, and let Y be a B-process with state space A such
that their entropies satisfy h(X)> h(Y). Then for any y> 0
there is a stationary code T : A*. A®such that :

(i) TX =Y, and

(i1) Eyp X, (FX) <P K, Y) + y; p = dist(X): o
Recall from that a measurable mapping f : A" > A” is said to
be a stationary (or, infinite) code if ToT=ToT, A statio-
nary coue f is said to be a sliding-block (or, f1n1te) code
if there exists a pos1t1veN1nteger N and a mapping f : A2N+1,

» A such that (Tx)g = f(x_ N X € A”, The window length N will
be sometimes indicated by wr1t1ng f(mlnstead of f.

Assertion (i) is the usual form of Sinai” s theorem: each
ergodic aperiodic finite state process X has Bernoulli factors
with entropy H for any 0 <H < h(X)/10 7/ The expectation in (ii)
is wusually denoted by p(T) (or, Pulf) if p = dist (X)) ) — it is
the average distortion wﬁen r is used to code X,

The special case when Y is an i.i.d. process is Theorem 1
in 0/ The proof from’®/ easily extends to our case, however, it

2

is based on a rather complex construction from”?5”. Here we shall
give a simple direct proof based on the following lemma:

Lemma 2. Let (X,Y) be a stationary and ergodic pair process
with X and Y each having a finite state space such that X
is aperiodic and h(X) 2> h(Y). Then there is a sequence YN of
processes having the same state space as Y for which

(i) each Y(N) is a finite coding of X;
(1i) (x, Y(N) }» (X, Y) in distribution; and
(1i1) h@™)onw) as N4 w.
This is a special case of Lemma 1 in’3/ (cf. also/m/) As is
shown in Sect.IV of 3/, Lemma 2 follows easily from the Shannon-
McMillan theorem using a standard construction of good: sliding-
block codes from good block codes (see’/!3.7.11/ ).

Proof of Theorem 1. By redefining the underlying probablhty
space, if necessary, we can and do assume that (X, Y) is jointly
stationary and ergodic. By Lemma 2 we find a sequence YN) of -
sliding-block codings of X such that

(a) ¥, Y(N)) » (X, Y)in distribution,
®) r@™) . nw).

Since Y is a B-process, it is finitely determined
sequently, (a) and (b) yield

= N
i .o
where d is Ornstein’s d-dlstance ; d-distance is the spe-
cial case of p-distance when the role of p is played by the
Hamming distance d,. Since p is a finite-valued metric, for
any b, b”cA, p(b’, b")<pMdH(b b~). Hence also p(Y(N), Y) <
< Py d(Y(N) .Y)so that (c) implies

@ "™ vy.o.

Using (d) we may pick a good initial coding of X. Take some
€¢>0 and pick a sequence €1 s €950+ Of positive numbers such
that X¢; <e. By (d), choose some stationary coding Z of X

/
1011/ oo

/10/

for which p(Z, Y)<e¢;. Since €< 3¢;, by taking ¢ <y/3 we can ~

find (from the definition of P) a process ¥ having the same
state( space as Y, such that (X, Y) is jointly ergodlc, dist(¥) =
= dist(Y),

(e) E,.p(Yp, Zg)<¢;, and
() E u P X, ¥o) <P X, Y) + y/3.

Cons1der the pair process ((X, Z), Y) Since Y is again a B-pro-
cess, using the property of fuutelv determined we find a sta-
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tlonary coding z(M of X such that ((X Z) zM) is as close
in distribution to (X, Z), ¥), and" 1 (ZY) so close to h(¥) that

—_—

E, P&y, 29 <, @D, ) <.

(In fact, finitely determined implies the latter inequalities

" with dy and 4 in place of P and P, but we can pass to p and i

p as above from (c) to (d)). By making use of this argument

repeatedly we find a sequence Z (2) Suaat stationary |

codings of X such that %
= 1)

e e

(h) E p(z(l—l)z(l)) <‘

Since we know by constructlon that also

i=1) (i)

Lo

izmﬂaﬂ(z(, 7 )_zprob[zo‘ Va3 o
there exists a.s. limit, Z, of the sequence Z(i). By (g) and
(h) we see that
(j) P&, Y)=0 (in particular, . dist(Z) = dist(Y));
(k) E,p (2, 2 < Te < /3.
Since € < y/3, from (k), (£f), and (e) we get
E#p(XO, Zy < E#p (Xo, Yo) + E”'p(YO, Zo) +
(1

+ B p(Zg, Z) <P X, V) + /3 + ¢+ y/3<pX, ) + y.

It remains to show that Z is a stationary coding of X too. To
see this, let T} denote the stationary code with rd X -7
Deflne the distance

lf(l) (1-— 1) | -P ob[(f(’)X ) £t 1-1)x )0] Prob[Z(l-'l);é Z(1) 1

4/

As shown in the space of all stationary codes f from A”Y

to A” is camplete relative to that metric so that [T —f|y. 0 Y

for some . Since 5 is an a. «Se limit of ZU f(‘)X it follows
that 2 =T X. By (k) and (1), f has the desired properties.

We have proved actually a little bit more in the course of 9

passing from (d) till the end of the proof:
Corollary 3. Let the hypotheses of Theorem 1 prevail, Sup-

pose there is a stationary coding Z of X such that p(Z, Y)<e.
Then there is a stationary coding Z of X for which

4
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(i) dist(Z) = Dist(Y), and
(ii) E P(Z 0) <iel,

'1‘h1s form of Sinai”s theorem (with dy replac;.ngsp and the rela-
tive d -distance replacing d ) was obtained in’®/.In case of

B -processes, Theorem 1 makes it possible to get a different
expression of the DRF in the spirit of the ''topological" ap-
proach to source coding with a fidelity criterion”®:18/, _

Corollary 4. Let A, A and p be specified as at the be-
ginning of this section. Let X be a B -process with the state
space A. Then for any R €[0, h(X)] , D(R) = inf{p(X, Y): h(Y) < R,

Y is a B-process}, where D(.) is the DRF of the process X,

Proof. This follows from the following chain of equalities:

(a) g =
D(R) - inf{’px(f): h(fX) < R} .(-2)

() - - =
= inf{px(f) h(fX) <R, X {5 a B—proceSS}('i)

L) inf{p(X, Y):h(Y) <R, Y 1is a B—process}.

Equation (a) is but of the process definitions of the DRF (va-
1id, by/ \ for any ergodic process X ). Equahty (b) is tri-
v1a1 for, 1f X is a B-process then so is fX for any statio-
11/ Equality (c) was proved in e in case when
fX and Y were restricted to i.i.d. processes. Using our Theo-
rem 1 instead, of Thm.1’®/ we can repeat the quoted prodf word
by word; and thereby get (c).

In particular, we get the following strengthening of the
(stationary) source coding theorem for B -processes:

Corollary 5. Let A, A , P, and X be as in the preceding
corollary. Let 0 <R < h(X). Then for any ¢ >0 there exists.
a B- ~process Y with the state space A and a stationary code

f: A" 5 A" gsuch that
(i) fX=Y,and
(ii) py(f) <D(R) + e.
Proof. Given R and ¢ >0, by Corollary 4 find a B-process Y
with h(Y)< R such that i '
(a) p(X, Y) < D(R) + /2.

Since h(Y) < R < h(X), we may apply Theorem 1 (with y =¢/2) in’
order to find a stationary code f such that (i) is true and °



(b) py(D) <p(X, Y) + /2,

Assertion (ii) follows from (a) and (b).

3. THE INFORMATION TRANSMISSION THEOREM .

Throughout this section we are given an ergodic source
[A, ¢, U] and a finite alphabet channel [B, v, C]such that either
(a) AuB is finite and p is a pseudo-metrit¢ distortion measure
(i.e., satisfies the triangle inequality),
or,

(b) AuB is a complete separable metric space under a metric p
and there exists a reference letter ag € A for which

E#'p (UO, ag) < .

Recall that a channel [B, v, Clis a measurable family v () 3

x € B®) of probability measures on C*, We suppose that v is
stationary, i.e., vq,(TF) = v, (F) ; x € B™, F CcC”(by writing
inclusions like F C C*”we shall automatically assume F is mea-
sutable). A channel [B, v, Clis said to be ergodic if for any
stationary and ergodic input source [B, A] the joint input-output
source [BxC, Av]l is also stationary and ergodic, where

Aw(ExF)=[v(F)Adx); ECB™, F CC".
E

Recall from/!®that [B, v, C] is weakly continuous if for any

sequence of stationary and ergodic input sources [B, A1) such
that A" weakly converges to a stationary and ergodic source
[B, Al, the measures Ay weakly converge to Av,

Given [A, pl and (B, v, Cl,a quadruple (U, X, Y, V) is said
to be a stationary (infinite or finite) hookup of the given
source and channel, if U has the state space A, the state space
of V is contained in A , X has the state space B, Y has
the state space C, and if (U, X, Y, V) forms a Markov chain in
the sense that there exist stationary (infinite or finite) codes
$: AL B, §: C”5A” such that dist(U) = ¢, X =¢U, dist(X, Y) =
= (¥ Yy and V=9Y (note that ¢ is well-defined also for
continuous alphabet A).

Let C(v) denote the Shannon (= information rate) capacity
of [B,v, Cl1 (cf., e.g.,/m/). Thus, C(v) = sup I(X, Y), where
the supremum is over all stationary and ergodic processes X
with the state space B, Y is the output process of v given X
at the inimt, and I(X, Y) 1is the average mutual information
&gl ler
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Theorem 6 (Information Transmission Theorem). Let A, B,C
and p be given as specified above. Let [A u]l be a stationary
and ergodic source with the DRF D(.). Let [B, v, C] be an ergo-
dic and weakly continuous channel with the Shannon capacity
C(v). Given stationary codes ¢: A*>B”, and $: C™>A%, let
us denote by (U, X,Y, V) the corresponding hookup. Then

inf E_p(U,, Vy)= DIC()].
@5 "

Proof of the negative part. Since (U, X, Y, V) forms a Mar-
kov ch7in, (U, V)< I(X, Y) by the information processing theo-
rem/w.Next, IX, Y) < C(V), by definition. Using the process
definition of the DRF il

E#p(uo', Vo) 2 inf E p Uy, Vo = D{C(v)1,

where the infimum is over all stationary and ergodic joint

distributions p of (U, V) under which dist(U) = p¢ and Ip(U, V)< Cw),
Before turning to the proof of the positive part observe the

following., If & : A” > B” is an infinite code, where B is

a finite set, and if [A, g, U] is a stationary source, than for

any ¢ > 0 we can find a finite approximation 3™ to ¢ in the

sense that Prob[(FU)o# (¢ ®U)gl < ¢ (see Thm.3.1 of /2/), Since

igu, 3™0) <Pl 4 £ (4 MUy,

= (N S
and since ¢ U, qb( )U each have the finite state space B', as
in the proof _og)Theorem 1 we get from the above inequalities
that p(sU, $U) <p

€L
Thus, we get the fo‘s.lowing result:
Corollary 7. Let the hypotheses of Theorem 6 prevail. Then,
if
= (N} 7 -~ (M)  ~(N)
pB™, 4™y = E,p (U, 97 (37U,

we have the formula

-, =(N) = (M
W o See )

oF (M
(N, M) (¢(N). ‘l’( ))

Yy =DIC()].

Corollary 7 thus represents a generalization of Theorem 6.1
in 72/ and of Theorem 2 in’3/, the sliding-block information trans-
mission theorems known up to now.

The idea of the proof of the positive part is motivated by
the proof of Gray ’2/ for the case of a noiseless channel. 01.1e
first uses the sliding-block source coding theorem with a fi-
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delity criterion’/% in order to achieve the goal of entropy comp-
ression to a level under the Shannon capacity of [B, v, Cl. As i
shown in 5/, proof of Theorem 2, this can be done using a finite
reproduction alphabet A say, Since a finite coding of an er-
godic source is again ergodic, we_arrive at the situation of
having a finite alphabet source [A i, U] such that h(U) < C(v)
(care must be taken of the case h(U) = C(v) ). This makes it })os-
sible to use the zero—error transmission theorem of Kieffer
in order to achieve the goal of transmission of the compressed
process U over the channel. Since this second step is perfect-
1y noiseless, all the distortion comes from the first step,which
is easy to see giving the optimum distortion D[05V

First let us recall two useful concepts from /47 A source !
[A,p] (A finite!) is said to be zero-error transmlss1b1e over
a channel [B, v, C] if there exists a stationary hookup (U, X, Y,V)
(see Sect.2) for which ProblUg # Vol = A source [B,A]lis said
to be v -invulnerable (in symbols, A € I(v); we shall use also
the notation X CI(v) if 'A € I(v), where A = dist(X)), _ if there
is a Markov chain (X,Y,V) and a stationary code £ : C® , B®
such that X , V each have the state space B, Y _has the
state space C, dist(X) = A , dist(X, Y) = Av,and V = £Y satis-
fies Prob[Xy # Vol = :

As shown in’*/, a source [A, plis zero—error transmissible
over [B, v, Cc] if and only if it is isomorphic to a wv-invulne-
rable source [B, Al

Proof of the positive part. Since I(v) necessarily contains
processes X with h(X) < C(v), but not those for which h(X)=C@),
we have to work with rates below capacity. Since D(.) is conti-
nuous’Y, for any ¢> 0 there is a 8> 0 (we may assume & < ¢/4)
so that D(C(ug 8) <DIC(¥)] + ¢/4. Take R = C(v) - 8 <C()By
Theorem 2 of we find a finite set A CA and a sliding-block
code f™M: A%, A% such that
(a) he™u) <R
() p(f ™) <D®) + ¢/4 < DIC(W)] + €/2.

Let W= fMY. Then h(U) <C®), and U is an ergodic process, so
that U is zero-error transmissible over [B, », Cl,Find [B, Al €
"€1(») and a stationary invertible code [ A, B™ such that_
fU-X 2 dist(X) = A, Since A CI(v), we find a statlonary code f
C”»> B® such that

(c¢) Prob{X, # (fY)o

\

where dist(X, Y)=Av. Since { 1s an isomorphism, it follows from
X =f[f ®y)] that TNy - r-1x, Hence

@ Probl(F M), # (F71x),) = 0.
8

Now put d=fof®™ , §=1"lof, and let V denote the corres-
ponding decoded process. Since f is an isomorphism, all the
distortion in U comes from T, Hence

(N :
(@ Ep, G%))) - E, ? (Uy ($0)g)
and this, together with (b), shows that

(£) p(#) <DIC(M] + ¢/2 <DIC()] + e.

Since V= ¢V = F“I(E Y),and since t-! is an isomorphism, we get

B, p( ™)y, V9 = B (@ M), (T1ET) =

- B, p( T V0D)y, (EY)g = E,pKy, (EV)g) <o ProblX o # (ZY)y).

Using (c) we get

(g) E p«?<N>U) V) =
Let p($, ¥)=E (9 (1.
?g)

Then (e) i ( , and the triangle inequality together :
vield p(&, ¢) <D[C(u)] + ¢. Since ¢ has been arbitrary, the proof
is complete.

iIf [A, u, U] is a B-source with a finite alphabet A, then
we may refer to Corollary 5 instead of the source codlng theo~-
rem of’%/. This gives (b) and a strengthenlng of (a) in the above
proof to the effect that not only (a) is true but we may find
a B-process X and a stationary code f : AL B™ such that IU_
=X.In conclusion, observe that the positive part of Theorem 6
can be formulated, with the aid of Corollary 5, as follows?

Corollary 8. Let [A, p, Ulbe a stationary, ergodic, and ape-
riodic source, where A is finite, Let B, p and the channel
[B,v,C] be specified as in Theorem 6. If h(U)>C(v) then for
any e> 0 there ex1sts a B-process X € I(v) and a stationary
code T : A” 5 B” such that

(i) ?U:X, and
(ii) p () <DIC()] +e.

Thus, if h(U) < C(), then U 1s isomorphic with a process
X €1(v), while if n(@U) > C(v), then U has a y-—invulnerable
factor which is a B-process and the corresponding factor homo-
morphism gives distortion as close to the optimal one as we
please.



ACKNOWLEDGEMENT

The above simple proof of Theorem 1 was suggested to the
author by John Kieffer,

REFERENCES
1. Berger T. Rate Distortion Theory. Prentice Hall, Englewood
Cliffs, 1971,
2, Gray R.M. IEEE trans.Inform.Theory, 1975 IT-2}, p.357.
3. Gray R.M,, Ornstein D.S. IEEE Trans. Inform.Theory,,l976,

., IT-22, p.682,

4, Gray R.M., Ornstein D.S., DobrlshlngA Ann,Probab., 1980,
8, p.639. :

5. Gray R.M., Neuhoff D.L., Ornstein D.S. Ann.Probab., 1975,
3, p.478. o -

6. Sujan 5. Problems of Control and Inform.Theory, 1983,
12, p.419.

7. Sujan S, Kybernetika, 1983, 19, supplement, 58 pp.

8. Kieffer J.C. Ann,Probab., 1984, 12,-p,204,

9. Gray R.M., Neuhoff D.L., Shields P.C. Ann.Probab., 1975,

3 pl3i5. ; .

10. Ornstein D.S. Ergodic Theory, Randomness, and Dynamical
Systems. Yale Univ.Press, New Haven, Conn., 1974,

11, Shields P.C. The Theory of Bernoulli Shifts. Univ.Chicago
Press, Chicago, 1973.

12, Kieffer J.C. IEEE Trans.Inform.Theory, 1981, IT-27, p.565.

13. Kieffer J.C. Ann.Probab., 1980, 8, p.942,

14, Gray R.M., Neuhoff D.L,, Omura J.K. IEEE Trans.Inform.
‘Theory, 1975, IT-21, p.524.

15. Neuhoff D.L., Gray R.M., Davisson L.D. IEEE Trans. Inform.
Theory, 1975, IT-21, p.511.

16. Gray R.M., Ornstein D.S. IEEE Trans., Inform.Theory, 1979,
IT-25, p.292.

17. Gallager R.G. Informatlon Theory and Re11ab1e Communi-
cation. J.Wiley, New York, 1968,

18. Kieffer J.C. Z.Wahrsch. verw.Geb., 1981, 56, p.113.

Received by Publishing Department
on November 22, 1984,

10

i

B 06beauHEHHOM MHCTUTYTE AAEPHLIX MCCNEROBaHMIK Hauan
BuixoanTb cBopHuk "Hpamxue coobyenua OHAH", B Hem
6yayT NOMewaTbCA CTaTbu, cCOoAepKaliue OpUrMHaNbLHbLE HayuHbe,
HayUHO-TEXHUUECKHEe, MeTOAMYECKME M NpuKNagHeie pe3ynbTaTh,
Tpebyoune cpouHon nybBnuxaumu. Byayum uacTei ''Coobuermit
oUAK"', ctatbu, Bowepwue B cOOpPHUK, WUMEIOT, KaK M Apyrue
nsgaHun OMAK, cTaTyc oduumanbHex NyGnukayui .

C6opHuk "Kpatkue coobuenHun OUAU' 6ypeT Buxonﬁrb
perynapHo,

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and js intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods.

Accelerators.

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches,

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status -
of official publications.

JINR Rapid Commnications will be issued regularly.
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year of publication
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- abbreviated name of the Institute (JINR) and publication
index,

location of publisher (Dubna),
year of publication,
page number.

For example:

Kolpakov I.F. In: XI Intern. Symposium
on Nuclear Electronics, JINR,D13-84-53,
Dubna, 1984, p.26.
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