0GBEANHBHHbI
MHCTHTYT
AACPHBIX
MCCABAOBANMA

AyGHa

E5-84-701

A.Dvureéenskij, G.A()goskov

NUMERICAL ASPECTS CONCERNING o
A CLASS OF m-SEMIRECURRENT EVENTS

AND THEIR APPLICATION
TO COUNTER THEORY

Submitted to "Aplikace Matematiky"

1984



In some problems of the mathematical theory of particle coun-
ters/45.18/  film or filmless measurements of track ionization
in high energy physics’/2:8.7/, queueing theory’2/, random walks,
etc., a class of semirecurrent and m-semirecurrent events ap-
pears. These classes have interesting properties and here we
study the numerical estimate of probabilistic formulae corres-
ponding to integer-valued random variables denoting the first
occurrence of the experiments at the h th trial, and their asymp-
totically exponential properties. We present very precise and
computationally convenient formulae.The application of m-semi-
recurrent events to counter theory with prolonging dead time
is studied in more detail, and an illustrative numerical example
is given.

1. PRELIMINARY RESULTS

‘We suppose that during the kth experiment, k= 1,2,..., an
event, , either may occur or not. The occurrence ofk the event
at the nth trial, n=1,2,..., will be denoted by A; and its
non-occurrence by A:. The events {All‘l: nk >11 are said to be
semirecurrent if for any k >1 and ij with 1< <i<.<i,n3l,
we have

k+t k+1

! Kk k k ! o 9
P(Aix'“A‘n “‘10) = P(A|1-10 '"A‘n-

). (1.1)

e

Denote by Ve % k >1 an integer-valued random variable ‘saying
that the event A* occurs in the kth_experiment for the first
time and put PX- PG, =n) = P(AY ...A%_,A%).

Using (1.1) we may prove that

Pk - pak),
! ! (1.2)

k+§

iy n> 2.

K ok Tl k
PX- pat) - 151 PSP

Let us define for any k>1 and |z[<1 U,(2) = ZP(A:)zn,where
i n=0
P(A:) =1 and Pk (2) = 2 P:z“. Due to (1.2), we have P (z) =
n=1
=& k n
n§1 P(An)(l - Pk+n z)ez".
t % PR ‘ 1
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An interesting case is obtained when there is an integer m
so that P (z) = Pm+1(z) = Then semirecurrent events are
said to be m-semirecurrent, In this paper we shall concen-
trate ourselves mainly on this class of semirecurrent events.

Remark 1.1, It is clear that if !A ns DKk > are m-semi-
recurrent events, then {Bk nk >1}, where B“ A‘”’1 k>,
-are (m-l)-semirecurrent.

If m=1, then (1.1) and (1.2) do not depend on the super-
scripts, The M-semirecurrent events are recurrent (for the de-
finition of the recurrent events see, for example, /9.10/) iff
m= 1, In this case (1.2) reduces to the known formula/9,10/ .
for the recurrent events

B

]

P4, ),

i n -1 ‘ (1.3)
P =P(A)— 2 P(A)P j’n>2'

n

where P =Pl= Pg- - P(A ) = P(AL)=P(a2)= for each n. It
is evident t%at semlrecurrent events {Ak: n.k > 1l are m-semi-
recurrent iff {BE: n,k>1}, where BX- A'“'“’"l n,k>1, are re-

" current events,.

If m= 2, then (1.1) has the following form: for any k = 1,2

and i I with

1 g.io <iy<.e<ig, n>1,

k Kk S (1.4)
PMAY ...Ain_IA ) = pa? 0 AT L)
Therefore for (1.2) we conclude that
= PAY),
(1.5)

kPl 2 BAP . o2,

for any k=1 2 ThlS class of semirecurrent events is also
known in 11terature as the recurrent events with delay /10,117

Some basic properties of the semirecurrent and m -semirecur-
rent events are studied in more detail in/8/.

Without ambiguity we shall write {Ak. n>1, k=1,..,m} for
m-semirecurrent events {Ak n,k >13 We say that for m-semi-
recurrent events {A}:n> kel the case of periodicity
holds, if there is g 1nteger t>1 such that PAD >0 if n=

=t, 2t ... In this case P(A" p) =0 whenever n# jt, The greatest
integer t>1 with this property is called the period. In the
opp051te case {AQY_, is called non-periodic. The sequence
{A ooy, for k= 1,..., m is said to be certaln or uncertain
according to whether 21 P¥-1 or El pk ot

2

2, APPROXIMATIVE FORMULAE

In the present paper we shall ‘deal with m -semlrecurrent
events iAk tn>1,k=1,..,m} with

(i) PASPAT) S L Pt noa
(ii) P(Ak) > P(Ak) > cony k = 1,'.-, in »

1
(i) PAL J=PA), 631, k=l w1, # n>8

@1

Here we derive approx1mat1ve formulae for [PX b k=1,
This result will be applied in Part 3 to the mod1f1ed counter

"with prolonging dead time,

Define for any k= 1,..., m
& e k ,n+1
ak(z) = n=2,0 a z S et : (2.2)

where a - P(A )-P(Ak 2)in>0 (P(A") =1), and
'ﬁk(z) = Z—ak(Z). ‘Zl <1, ; , (2-3)

We suppose that p>0, where p= nmP(Am) Then {A B is cer-

n=l

tain and, consequently, due to /8/ Th.4.1 , each {A } 1 k=l m-1,
is so. According to/8/ Th.4.2, p= hmP(Ak) for any 'k = 1,...,m

It is clear that ¢ (1)=p, k= l,..., m, and from the evi-
dent equality U (z)-1=¢k(z)/(1-z). k=1 000, m, |zl<l;
we conclude :

m—k-1
Pk(z)=(¢k(z>+ (3 P00 g @) ey @), (g4

k=1,.,m,

We recall that here the sum over the empty set is defined as O.
The next result generalizes the analogous one from’2/.

B

Theorem 2.1, Suppose that for m-semirecurrent events with
(2,1) we have ; g

(i) p>0,

(ii) the equation a(2) = has a solution., Then for any

k= l,40e0,m

‘pk -n-1 k
P'=b B8 B 11, 821, (2.5)
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w =1 o f
- 1 d ! _ 1 al, .
o hnEm ol B B e Ol [
bo=B-1, b_;=¢_ (@), if m>2, : :

. =1
boy =V B+ I P 'BIB-1-y, (B, for 2<igm-l,if m33,
and |r¥| <C (a1 - ~-P(A})))"(the constants C, >0 and q >0 do not
depend on n), .

Proof. If P(A])=1, then P(AT) =1 for any n and a_(z) =
which contradlcts w1th (ii), so that P(A“5 <1. According to the
Cauchy formula, -(2.4) entails

P, (2) dz 1"

Fk(Z)dz
SR fgjat (mzeg, @) 20

where F (z) k= 1,..., m denotes the numerator of the right-
hand s1§e in (2.4). Since :

Pk<=-—1—-
n 2ni h“_l g0+l

o0

1-:Z+§[! (z) =1~z 2= a“;z“=1-—a @, (2.6)

n=
then its value for z = 1 is p>0. The coefficients for a (z)
are positive, therefore, due to (ii), there is a pos1t1ve root
of the equation a (z) =1. Denote by 8 this minimal one. It is
clear that 1-z+¢ n® has no zeros in the circle jz|< 8. If
there is 0<00<2n such that a (Bei )=l then this can hap-
pen only if cosfyn =1 for all n> 1 for which an 1# 0. There-
fore a (z) is a power series in 2z' for some integer t>1, and,
consequently, 30_0 which is impossible. So, we have shown
that B8 is the unique zero of 1-z+¢_ (2) in the circle |2 <8B.
It is clear that it is simple, because a B)>0.

Denote by R> B the radius of a circle in that (2.6) has the

un1que zero z=8. From (iii) of (2.1) we conclude aksan_m+k e
w.+ a3, n>m-k, Hence F (z2) has no singularities in the
c1rc1e lzl <R. Denote : %
F\, (2) dz F. (8) ' : 4
rﬁ 211;1 $ n+l 2 s n+l:+P§' (2.7)
[s]=R (1~2+ ¢ (2))z (B -1)B

The 1ntegra1 on the left-hand side of (2.7) can be estimated
by the maximum modulus [rkl < C R-", From (2.6) we have that

1 - PQAY 1)) <1, therefore theré is ¢> 0 such that R=1/q(1-P(A" )
and the estimate of the remainder is established.
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Putting B,=1(1-¢7(8) and b, =F.(B) we may obtain (2.5)
from (2.7). From (2.5) we see that the convergence radius for
the power series for Py(z) is at least B, hence (2.4) implies
b >0.

To establish the explicit expressions for 8 and ﬁ , respec-
tively, we consider a function w=z - ¥ m(2) that 1n a con-
form way transforms some neighbourhood of the point w= 1 to
some neighbourhood of the point z= 8. Therefore w=w(z) has an
inverse function 2z=z(w).It is clear that 8=z(1) and g =z’(1).
Using the Lagrange expansion formula/18/we obtain the formulae
for 8 and B;. i Q.E.D.

Remark 2.2. The root of the equation ay(z) =1 may be eva—
luated more effectively using the Newton approximation method.
In fact, it suffices to take into account the form of (2.6).
Then for B, we have Bl ~1/a’ (,3)

As will be shown in Example 3.4, formulae (2.5) give very
precise estimate of Pi‘l even for small n. The remainder terms,
r.» are, for sufficiently large n, very small with respect to
the main factors. Therefore from (2.5) we obtain very precise
and computationally convenient formulae Pk= b B B"“"l, k=1,
Laemn

Corollary 2.1.1., Let t>1 be an 1nteger and let {ak 0>,
k=1,...,m} be m-semirecirrent events with P(A ) = whenever
nis not a multiple of t, k = 1,...,m. Suppose (f 1) holds when-
ever N is a multiple of t and

(i) 1imP@A™) >0,
n nt

(ii) the equation & (z) “+1=1
. has a solution.”
Then for each k= l,. .., m - nt =b B, g where B, B, and

b, are evaluated from Theorem 2,1, replac1ng (lrk(z) by

z (PAN)- P(A,,m))

: % wmk) P(Ak

n+1 .
2 m_H))z siki= L m ‘

,n>1, k= l,..., m, we obtaip the
Q.E.D.

Proof. Def1n1ng Ak
case described in Theoreth 154

3. APPLICATION TO COUNTERS

An important class of semirecurrent events is obtained if
we consider a modified counter with prolonging dead time.

Suppose that particles arrive at the counter at moments 0 =
=71, <ry<.. according to a recurrent process with the common
dlstrlbutlon function F(t) = P(’I < t), where T, =rp q1~-7,,02>1,
are interarrival times. Any arriving particle generates an im-

S



pulse of a random length (may be constant, too). Due to inertia
of the counting device, it is possible that all particles will
not be registered., The time during that the device is unable
to record is called the dead time. A counter with prolonging
dead time is one in which dead time is produced after registra-
tion of all impulses of emitted particles. This counter has
been studied in 712-18.5/ For modified counter with prolonging
dead time we suppose that any registered particle determines
an impulse of a random length with a distribution function, in
general, different from the distribution function of a non-re-
gistered particle. Since in the present paper we shall study
exclusively counters with prologning dead time, we shall call
such counters simply counters.,

Letthlnzl be a sequence of impulse lengths, so that, it
is a sequence of non—negative independent random variables, in-
dependent of {T;}}7.1, with distribution functions

H () = P(x, <t), Ho(®) =Plx  <t), n22. (3.1)

This counter will be denoted by the triple (F,H;,Hy). If H =
= Hg, then we obtain a non-modified counter.

Putting
A ={xk STt b Te i 00 Xyid <'Tk+1+ e+ Ty ngs e

(3.2)

X

Rin~1" Tk+n-1}’ el k=1,'2’

we defined semirecurrent events with delay. The random variable

v, may be interpreted as the number of particles arriving at
the modified counter (F,H;,H,) during the dead time. Similarly,
v, denotes the same for the counter (F, Hy, Hy ).

It is clear that if for distribution functlons of the lengths
of impulses we suppose the existence of an integer m> 2 such-
that

H (®) =Pl <9, k=1,.,m~1, Hm(t)=P(xk<t), k>m,

then (3.2) defines m-semirecurrent events. Hence all results
of this part may be easily modified for any m. We recall that
the last above case is a particular one of the semirecurrent
events studied 1n“/ and the same processes may appear in queue-
ing systems with 1nf1n1te1y many servers’2/.

It may be eas1lz checked that if H 102 H ® GHg®2...2H (1)
for any t, then {A :n>1, k=12 (,...,m)l fu1f11 (2.1.

Theorem 3.1, Suppose a modified counter (F H, Hy) satisfies:
(i) H(®) > He()  for any t;

L a—

L

*

(ii) [Hg(t)dF(t) >0
(iii) sup{u>0 f e
Then Theorem 2.1 holds.

dHo(t) <ool= oo

Proof. According to /1/ from (ii) we conclude that p>0. In
order to prove that the equatlon ag(z) =1 has a solution, it
suffices to show that for any ;>0 we have

0< ﬁ Ply. g2 T +...+Tn+2)<M(e“X2 )(M(e-ﬂ2 ))‘“rl

bt T
The convergence radius, R, of the series n=20 aznzrvl is R >1/Me" ®>

>1.If p+o,then R=w,and the condition (ii) of Theorem 2.l is
fulfilled. : Q.E.D.

For example, if (1)H (t) is the distribution function of
a positive constant random variable; (ii) dﬂg(t) =aexp(=bt®)adt, t>0,
for some a>0, b>0, c¢> 2; then the condition (iii) of Theo-
rem 3.1 is satisfied.

We recall that if F(t) =1 —-e-At | t>0, and

D= [tdHyt) <=, (3.3)
5 S :
then, due to/17/

pP= e’AD. (3'4)

Theorem 3.2. Let (F.Hl,Hg) be a modified counter, where
F(t) =1 —e"'\‘ t>0. Let ut =suplp>0: [ e Mt dHy (t) <=} and Hy (V) >
o

2H,(t) for any ¢. If u*>0 and 1/p+ <D, then Theorem 2.l holds.
(Here we put 1/ew =0 if p* =0,

Proof. If p* ==, then the assertion follows from Theorem 3.1.
Let now put <. Choose 0<j<p*, Then from our assumptions it
follows that there is a ¢ >1 such that 1-Hy(t) <ce ™, t20.

It is easy to check that

0<a? <Py, p2 Tyt n+lof(1"H2(t1+"'+tn+1))

Tn+2) =A

n+1

exp(—-h(t‘ar... t yde, w.dt < cA /A + ) 5

n+1)

.Hence the convergence radius, R, of the series X anzz n ig

n



Rz 1+u/A, so that R21+ u%/A. Using the following simple
chain of inequalities, holding for any x>0,

erslax, i) >ess (i)l ") >1:

ko
we may show that (1+p /A)(1+e-'\/u )>1.

It is clear that
for any €>1 s

AL+ept/NQ + e")‘/ﬂ+ Y> 1 . (3.5)

so that, due to the cont1nu1ty, (3.5) holds for some 0 <e€g<l,
too. Then for 2 =1l+¢€qp */A <R we have, according to (3.4),

o S .2,n s e + Celaph
>z0n§0anzo> zcnéo a2 (1+eou /A1 -e )i

+
i M-aME 5o
Hence the equation ag(z) =1 has a solution. Q.E.D.

-

Corollary 3.,2.1, If in Theorem 3 is the Gamma distribu-
tion, espec1a11y, -if H o =1- et t>?b for some x>0, then
Theorem 3.2 is true.

The next theorem was proved in’3/:
Theorem 3.3. Let (i) F be a distribution function of some
constant a >0 ; (ii) 0« Hg(na) < H (na), n >1; (iii) Ftdﬂz(t) < oo,

Moreover, if Hy(na) <1 for any n>1, then let (iv)
lim (1- By@2)) /(1 ~Hy(@ + 1)8)) =R@ >1; ) £ (-Hy(@+1)a)
i .= ¢
0 H, (9)R"@ >1.
i=1

Then Theorem 2,1 holds.

For example, if H, is the Gamma distribution, or the geomet-—
ric one, then the conditions of Theorem 3.3 are fulfilled,

Example 3.4. In Table | we give a numerical example of the
appllcatlon of Theorem 2.1 to the counter (F,H,H), where F -
is the distribution function of the constant equaled to 1, and

2
H() =11 = ezt t >0. Here the parameters B and B, are eva-
luated by Remark 2.2: B = 2.515773, B,= 2.338680.

8

Tab?,e
% - By b1/"’1/"\-n-1 B Fn . 2 /3 1[5-n-1
1 1 6.3212 -01 5.6010 -01 | 6 | 5.5578 -03 | 5.5578 -03
2 | 2.2097 -01 2.2263 -01 | 7 | 2.2092 -03 | 2.2092 -03
3 | B.8531 -02 8.8500 -02 | 8 | 8.7814--04 | 8.7814 -04
4 | 3.5175 -02 3.5176 <02 | 9 | 3.4905 -04 | 3.4905 -04
5 | 1.3982 -02 1.3982 02 |10 | 1.3875 -04 | 1.3875 -04

From Table we may see that the formula (2.5) yields a very
precise estimate for P, even for small n.
e

4. ASYMPTOTIC PROPERTIES

We shall continue the study of the properties of m-semi-
recurrent events, In this part we show that under some condi-
tions v, , k = 1,..., m, is asymptotically exponential when
P~ 0.

So, we suppose that m-semirecurrent events {Al:l': n>1, k=
= l,..., m} satisfy the condition (2.1). We introduce, for any
k =

l,...,m a function
¢ok(z)=1-'§a§z“. z] <1, : (4.1)
n=0
where a P(Ak) P(Ak+1). n> 0,
It is obv1ous that for (2.3) we have
!/'k(z) = quk(z), lz] <1, ' (4.2)

and if p>0, then ¢ 1) =

For the generatxng functlon, by (z) ,we may give the following
probabilistic interpretation. Let p>0. For any k=1,...,m
define the integer-valued random variable, .fk, such that

k =
P({;‘k =n) =a ,n>0, P¢,==)=p. (4.3)
Then (4.1) and (4.2) entail that
' &
¢, (@) =1-Mz = I, <)), [z] <1, (4.4)

where I(C) denotes the indicator function of a measurable set C.

9



If we put, for any k= 1,..., m,

az = P(n<§k < "°)9 n 20, ‘ak(z) = néoaizn' 'Zl <1’ Fk(z) = M(szl(§k< “))'

= S , : (4.5)
then (1-2)Q,(z) = P(§k< ) - Pk(Z) 5 and

P =9,q). . (4.6)

Therefore from (4.5) and (4.6) we have that

S .k ky .
51 na _nzl(P(An) p). 4.7)

Lemma 4.1. Let the m-semirecurrent events {Ak n>1, k=1,...,m}
fulfil (2.1) and let p>0. Then

(i) 1) = 5 (PA ). p)
k n=1 n
(i1) 1${M] <= |¢s (O] <= iff, ete., HE$ D] <o UM <,

where M = M( (v ~1). (4.8)
In th1s case

m—k=-1

=My, ) =($; (1) ~4- 1)+ 1+ 2 P (¢ M -¢: . Q/p. (4.9)

k+j

Proof. (4.8) follows from the above note and (4.7). Hence
if |¢{(1)] < =, then = > 61| > Io] 2D > . 2187 (). ;

Let now [¢° (1)} < =. Then, for any n>m, we have PA,) <
<PAL.. . which implies that (1] < . Theorem 5. 3 in 78/
and (4.8) prove the equivalence of [ () < » -and M <. Using
(4.2) and taking the derivative of (2m4) we may eas11y check
(4.9). Q.E.D.

Varying the parameter p «(0,1] we may obtaln, in general,
different functions ¢ (2), k=1,...,m; Taking into account
this dependence on p we shall write ¢,(2) = pk(Z) Analogically
we write P(A ) = P(A ).

Theorem 4,2, Let the m —semirecurrent events lA n>1, k=
= l,..., m} satisfy (2.1) and let pe(0,1] vary so that (i)
|¢ (1)|<oo; (ii) lxgl+¢ (1) =0, Then for any k= 1,.,.,., m

p»
hm P(a (p)u >t)= e~t, t>0, where a,=8,0) = 1/M(v
-0t

Proof Us1ng (4.9) and conditions (1) and (ii) we may show
that lim B () =0, lim ak(p)/p =1.
p-o* psot

10

From (2.4) we conclude that

—sak Vk

B, (e

= ¢k+j (e

—8a
ek

-9

k+j

~-8a
+ € e

First of all, it is clear that lim (1-e
p-0*

(e—ﬂﬁ

) =I[e

L -

m—k-1

+ 2

Mty

-—Bﬂ.k

—sakj

Pte " 4,6

¢t F e e TFL

Next we show that

lim 95 e
p- ot

=8 (D)

Yp =1

J

—-ak

EVe @ toiia o

~Bay me—k-1

=1

-8a
k
+ 0 ¢m(e

)/ $, (e

-8a

Y/ &y (e

k 83

"‘S&k

Pj e (& (e

kl-

"!ak)

“!ak)

—sa, (p)

m ) =

+

)/p=s.

(4.10)

for any k,j = l,..., m. We note that for any fixed p¢€ (0,1]
Using that and the

¢k(z) is nondecreasing for each 0 <z<1.

elementary 1nequa11ty e >1-x,x> 0

P =, (1)

Lo

a;(p)

we obtain

) < ¢pk(1 - 8a J(p)) .

Due to the inequality (1-~x)" >1-nx,1n>0, |x|<1,
for sufficiently small p>0,

we have,

$pl-52, @) =1 - s -2, " af <p + 52,0 2 na k-

Hence

n=0

=P -sa,(Peé;, ).

n

Lo @ 1P /<1 e /0850,

so that (4.10) holds.
Using this fact we have

lim by ) /g, (7D -1

for each

i, ]

= l,..., m.

11



Therefore

lim P (e akyk Y =1/(1 +8), S.ZO,
p-»O

and the theorem is completely proved. i Q.E.D.

Remark 4.3. The condition (ii) in Theorem 4 2 is equlvalent
to the following two conditions lim P(A1 ™m)=0, lim ¢ Q=0
p-o” pag
Indeed, it suffices to take 1nto account the 1neciuallt1es
P(AD) <PADR__.,).n>m, and PA})>P@L)> ...> PaL).

Example 4.4. Define the recurrent events with delay. Let
Ne< My be given and 0 <PySPp<.. <Py <1, Pn +1 =1,0<pfxg

* * * £
_<_p25...§pm0<1, pmo+1 =1. We put
r * *
Pl pn_lpn. if 1<n<n0,
1 * * g
PlA.) -4 Do, it n+l<n<mg,
t3 K
L Py Pmo, if mg<n,
[ * % i
. Py .7 if lgngmo,
,P(An) = 4 i
£ * :
L P ... pm, if ma<n.

For this case Theorem 4,2 holds.

In the rest of this part we apply Theorem 4,2 to the modi-
fied counter with prolonging dead time. Similarly as in Part 3
we confine ourselves to a counter (F,H,,H,).

Theorem 4.5, Let (F,Hy, Hy) be a counter with (i) F(t) =

e, 150 050): D (i) Hi(9 > H.(O for any ti (iii) D -

of tzdﬂg(t) < (iv) H2(0+) =0. Then Theorem 4.2 holds when-
1

ever Ao, ‘

]

Proof. We shall examine conditions of Theorem 4.2 and Re-
mark 4.3. It is easy to check that

0o . oo t __.
Pa) =r TH () e™at, PAZ)=A"1/nt [ ([ Hy ax)® e at, n31,
0 (4] (4]

(4.11)
12

\ o y
Po(z) = I-Aafexp(-v\ [ (1~ zHy(w)) du) (I—Hg(Y)), dy, lz|<1. (4.12)

Using (3. 4) or d1rect1y (4,12) when z =1 e have that p = ™D ;
where D is from (3.3). Since Dg<e,then f y(1-Ha()) dy <
and the integral

o0 y
f(1-Hy(5) exp(-) [ (1~ 2Hy(w) du) { Hz(u) du dy
0 0 (1]

converges uniformly in z ¢€[0,1]. Therefore we may take the de-
rivative of (4.12) with respect to 2= 1, and obtain

00 oa y
g (2) = =A° S A-H0) e [~ 2Hy () du) [ Hy(w dudy .

We have to show that lm ¢g(1) =0.

~» 00

Let A>0 be arbitrary. Denote

A i =3 y !
10,8 =% [ 0 -H,) exp(-A [ (1 —Hy ) du) [ Hyw)dudy,
0 0 0
IO A) =6, ) -1Q, 4.

A
It is obvious that I_(\, A) <A®exp(r [ (1-H ) du)D,
)
Because of D<w, for an arbitrary €>0, there is Agle, A)>0
so that I,(A, A) <¢/4 whenever A>Ag(e,A). A
Using the per-partes integration method, we conclude

Il()\, A) = Ia(Ay A) + 14(A9 A) + Is(xy A) ]

where -
A A
Is(h, A) =-Aexp(A [(1-Hy(w)du) of H, (u) du ,
0
; . '
IO, A) = expch f (1~ Hy@) dw) .
I (X A) =Xfexp(—)k ]y(l - H (u))du)dy 1.

(1]
It is clear that IIS(X Ml < AA exp(-) f (1-H (u)) du) . Hence there -
is Agle, A) >0 so that Ila()t A)|<e3 ° whenever A>Agle, A).
Similarly there is Ayle, A) >0 so that A, A)| < 4 when A >

> A (e,A).
The condition Hy (0*') =0 entalls that for any ¢;>0 there
is Ale ) thh lee, <1 ~Hy(w) < whenever 0< u <A(v.r ). There-
fore
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—€1)y
N e R N el
0 0
and

Y : ~AA(eq)
L A(‘1)_<15(A’ A) <(-e ‘1 )/(1-‘,‘1)-1 <e/1-e)).

Using the inequality ‘1/(1"1)< 261 which holds for 0< ¢;<1/2,

~AA(e 1)

we get |Ia()t, A)| < max(e 2%;). Now, for a given ¢;> 0, we

may choose A' (e 1)>0 so that e-'AA(El) < 2¢; whenever A>Agle,).
From this restrlctlon we may choose ¢4 and A so that ¢; =¢/8
and A=A(¢/8). Hence if A > 2<max (Ajle,Ale/B))),then |pg(L)]| < €.

Using (4. ll) we see that, according to Remark 4.3, the proof
of Theorem is finished. A J Q.E.D.

REFERENCES

1. AdpaHacrena JI.I'., Mnxaﬁnoaa»H.B. H3B.AH CCCP, Tek.KkH6epHe—
Tuka, 1978, c.88-96. ]

2. OBypeuenckuit A., OcockoB I'.A. OWIH, P5-82-631, [ly6ua, 1982.

3. IsypeueHckuii A., Ocockos I'.A. OMiH, P5-83-873, [Oy6ua, 1983,

4. Dvurelenskij A., Ososkov G.A. J.Appl.Prob., 1984, 22,
No.3. :

5. Dvurelenskij A., Ososkov G.A. Applikace mat., 1984, 29,
No.3.

6. Dvurelenskij A., Kuljukina L.A., Ososkov G.A. J.Appl.Prob.,
1984, 21, p.201-206. .

7. Dvureéensklj A, J.Appl.Prob., 1984, 21,, p.207-212

8, Dvuredenskij A, JINR, E5-84-686, Dubna, 1984,

9. Feller W, Amer.Math.Soc., 1949,'67, p.98-119,

10, ®ennep B. BBemeHHe B TeopHH BepOATHOCTEl H ee TIPHIIOXEHHS .
"Mup", M., 1967, Tom 1.

11, Lindvall T. Z.Wahr.verw.Geb., 1979, 48, p.57~70.

12, Pollaczek F. C.R.Acad.Sci.Paris., 1954, 238, p.322-324.

13, Pyke R. Ann.,Math.Stat., 1958, 29, p.737-754,

14, Smith W.L. J.Roy.Stat.Soc., 1958, B20, p.243-284,

15. Takacs L. Teor.Veroj., i Prim., 1956, 1, p.90-102,

16. Takacs L, Combinatorial Methods in the Theory of Stochas-
tic Processes. J.Wiley, N Y., 1967,

17. Takacs L. RAIRO Recher. Oper., 1980, 14, p.109-113.

Received by Publishing Department
on October 31,1984,

14

B 06veaMHEHHOM MHCTHUTYTE AAEPHHX MCCNefoBaHWi Hauan
BuxoauTh cOopHuk "Hpamxue coobyenus OHAH", B Hem
GyAyT noMewaTbCA CTaTbu, COAEpMalMe OPUIrMHANbHHE HayuHue,
HayUHO-TEeXHUUEeCKHue, MeToaMuUecKMe U NpUKNaaHse pe3ynbTaThl,
TpeGyoumne cpouHon nybnuxkauymu. Byayum uacTten ''CoobueHun
OUAK'', cTaTebu, Bowegume B cOOpHUK, MMEOT, KaK w Apyrue

-uapaHua OUAU, cTaTtyc odmumanbHux nybnukauwi .

C6opHuk "KpaTkue cooﬁmeuun OUAKU'' GyneT BLIXORUTDL
perynapHo,

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
ecations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atomic nuclei.
Theoretical physics.

Experimental techniques and methods. \
Accelerators,

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection 1ike all other publications of
the Joint Institute for Nuclear Research have the status .
of official publications.

JINR Rapid Communications will be issued reguiarly.
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COMMUNICATIONS, JINR RAPID COMMUNICATIONS, PREPRINTS,AND
- PROCEEDINGS OF THE CONFERENCES PUBLISHED BY THE JOINT INST|TUTE
FOR NUCLEAR RESEARCH HAVE THE STATUS OF OFFICIAL PUBLICATIONS.

JINR Communication and Preprint references should cohtain:

- names and initials of authors,

- abbreviated name of the Instltute (JINR) and publication
index,

location of publisher (Dubna),
year of publication
page number (if necessary).

For example:

1. Pervushin V,N. et al. JINR, P2—84-649
Dubna, 1984,

References to concrete articles, included into the Pro-
ceedings, should contain

- names and initials of authors,
- title of Proceedings, introduced by word '"In;"

- abbreviated name of the Institute (JINR) and publlcatlon
index,

location of publisher (Dubna),
year of publication,
page number.

For example:

Kolpakov I.F. Iny XI Intern. Symposium
on Nuclear Electronics, JINR,D13- 84—53
Dubna, 1984, p.?26.

Savin I.A., Smirnov G.I. In: JINR Rapid
Communications, N2-84,Dubna,1984,p.3




