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. 1. INTRODUCTION ;

We suppose that during the k th experiment, k =1,2,..., the
condition AK either may be fulfilled or not. The fulfilment of
AE at the n th trial, n= 1,2,..., we denote by Ak and its
nonfulfilment by Ak . The events {An. n>1; k> i} are said to be
semirecurrent if for any integers 13 with

Lgig<ig< a<iunzl, . - (1.0)
we have 3

k kK jak 3L k+1 k+i
P(All...Ain[Aio) ~P(A11_Q...Ai _t;) (1.1)

An equivalent condition to (1.1) is
L3
k+ipt

k+1i
k k k j ()
P(A .'“A‘n)=P(A16)P»(Ail‘io)mP(Ain"i (1.2)

o n-1

whenever ij fulfil (1.0).

Denote by y , k > 1, an integer—valued random variable
saylng that the condition A¥ is fulfilled for the first time
in the kth experiment and put P: P(u =1n) =P(Ak ..Ak Al:‘)

Using (1.1) we may prove that .
-

P(A“).

, : (1.3)
Pk-P(A ) ‘,Z P(a) )Pk+,‘1 n> 2.

Let us define for k> 1 and |z} <1 U, (2) = 2 P(A )z" | where
P(A )=1, P(2)= 2 sz“. Due to (1.3) we have

Uk(z) =1+ nEOP(A")P (z)z". : (1.4)

k+n
An interesting case is obtained when there is an integer m
so that P (z) =P_ ,(z) = ..., |z| <1’ Then the semirecurrent
events are said to be m- semlrecurrent. It is clear that if
{A :n>1l, k > I} are m-semirecurrent events, m > 2, then
{Bk = A';*'l tn>1, k >1 are (m-1)-semirecurrent.
Tt i 15 then (1.1) and (1.3) do not depend on the super-—
scripts, and they are the recurrent events (for the defini-
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tion of the recurrent events see, e.g., 18, 7( ) iff m=1. In
this case (1.3) reduces into the familiar formula for the
recurrent events /6.7/

P

(= PO,

P

n

n-1
P(An) - j=21 P(Aj)Pn__j, n.>. 2.,

vhere P = Pl_p2 _ ..., P(A ) =P@Al) =P@A®) = ...
n. It is evident that semirecurrent events {A¥:n > 1, k >
are m-semirecurrent iff f-Bﬁ: n>1, k >1},where BE= pAk+m-1
are recurrent events. 5

If m= 2, then(1.1) has the following form: for any k =1,2
and integers ij with (1.0)

k k k 2 2
PAy e Ay 1A ) =Py oAy ). (1.6)
Therefore for (].3).we conclude that
P1;= P(Akl),
(1.7)

n-1
PX- p@ak) - 131 P(A)P2, ., 022 k=123,

This case of semirecurrent events is also known in literature
as recurrent events with delay/7.13/ '

Example 1.1. Let {X }2, be a sequence of independent ran-
dom variables with P(X, <0)>0 and PX,>0)>0, n 1. Put
Sk=Xy+ ... +X, w021,k 21. Then {A:n>1, k >1} are
semirecurrent events, where AE = {Sk =0}, If:l pa;ticultarly,
P(Xﬂ = —l)=pn>0’ P(Xn b -l)=]'_ﬁnn= qp >0, then

P(Agn-l) =0,

P(A,m)-_-j+ EH n pi(ji). n>l.k>1,
1h e 2n=n i =k
j,€lo,1} :

where p‘(l) =p;» P(0) =0y

In the particular we deal with a generalization of random
walk when the particle moves from any stage with not necessarily
equal probabilities, and returning to the initial stage, the
movement of the particle resumes with initial conditions.

Example 1.2. Let {T_ }{3_; be a sequence of positive inde-

pendent random variables, independent of a sequence of positive °

independent random variables {xnl“

', . Then [A¥:n > 1, k > 1}
where ust o 7 T

2 ' .

e s i ——— A

o

k ; :
AD ’=!Xk <Tk+o..+Tk+n-1' xk+1<Tk+1+."+ Tk+ll-1 p ssay

X k+n—1< T k+n-1 }’
is a sequence of semirecurrent events.
It plays an important role in the mathematical theory of
particle counters, especially, for a modified counter with pro-
longing dead time /3.2/4.14/, Here Tp denotes an interrival time

(1.8)

- between the arrivals of particles at the counter, where it

is assumed

F (D =P(T,<t), n>1, (1.9)
and x, denotes an impulse length generated by the nth particle
(may be non-proper, too) with the distribution function
H® =P(x,<t), n>1. (1.10)
Analogous questions may arise in the modified queueing sys-
tems with infinitely many servers/l/ The random variable v,
may be interpreted as the number of particles arriving at the
counter during the dead time/8/ respectively, the number of
customers served during the busy period 37 :

2. SEMERECURRENT SEQUENCES

A sequence of non~negative numbers, fu:i; n>0, k>1},is
said to be semirecurrent if, for any k > 1,

uf -1, (2.0)
. § " k) oo :
and if there is a sequence of non-negative numbers {f },_; with
Sk
2fosl, (2.1)
n=1
such that
oS ko
u =1 + Elujfn_j,nzl. (2.2)
Theorem 2.1, Let the sequences of non-negative numbers
{f: n=1 » K21, with (2.1) be given. Define re uxitently a se-
quence {vk:in>0, k 211} via vg =0, vl; = fky 21 fy v::jj,‘n?_l,k 21.
i= .

Then uk= v:, k,n > 1, that is
i 2

it ;
'y )l ok (2.3)

n n j=lj :

Proof. It sufficies to take into account the formulae (2.2),
(2.3) and use the method of mathematical induction. Q.E.D.

3
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Denote by '§ the set of all semirecurrent sequences. If
{Ak: n>1,k > 1 are semirecurrent events, then lui:n >0,
k > 1}, where

uk= PAK), n>0, k1 ' (2.4)

is, due to (1.7), the semirecurrent sequence. Indeed, it is suf-
ficient to put e ;
t5%=P%, kn>l. : €2.5)

If we denote by & the set of all semirecurrent sequences for
which there are semirecurrent events defined on an appropriate
probability space with (2.4) and (2.5), then & C 8. Therefore
in the sequel without ambiguity we shall write U, and Py,
k> 1, for the corresponding generating functions for semi-
recurrent events as well as for semirecurrent sequences.

We say that a semirecurrent sequence, {uk:n >0, kg_ll, is
m=semirecurrent if there an integerm > 1 so that P, (2) = P, (2=
=... , |z|<l, or, equivalently, U (z) = U, ,(&=... , |z] <1,
and denote by S (&) the set of all m-semirecurrent sequences
(the same for which there are m-semirecurrent events with
(2.4)). kIt is clear thal; & ,C8 ¢ ’S,m+1’ & .C6ouiy

If lus: n >0, k 21} is an m-semireccurent sequence, then
without ambiguity we shall write for it fu¥:n>0, k =1,..., ml.
Analogically we shall write {AE: n >1, k =1,...,m} for m=-se-
mirecurrent events iAl;: n > K>1f.

It is known’7/ that &,=18, , &,=§,. More precisely,
!ug}:ao is a recurrent sequence (that is, m=1) iff there are
independent integer-valued random variables.Y;, Y,, ... (may
be non-proper, too) with a common probability function it‘;! :=1 ’
such that

n.
vl P(o ¥ 4. 4Y =8, n>1; (2.6)
n e _1 i =
iff there is a sequence of recurrent events {A ,},.;Such that
ul=P@ALl) ,n > 1; iff there is a Markov chain {X;I7_, on a
cduntable state space such that “xlx= P(X = ilXo=i), n >1, for
some state i (this is a result of K.L.Chung recorded by Fel-
ler./7/). . :

Analogically, f§= ff = ..., 0>1, iff there is a sequence
of independent integer—valued random variables iy 3:=1 such
that Yo, Y, ... have the probability function ify l321, and ¥, ~

has the probability function f{f é}:-:l so that (2.5) is fulfilled
n+1 gl

and uﬁ-_— P( U 2{Y2+ v+ Y, =nl); iff there are semirecurrent
i=

events with delay, {A:,Ag!;‘ﬂ,so that ug = P(Alé) on >0k =ll2.
The problem of the existence of a Markov chain {X }7_, on
a countable state space having at’least two states, for a given

4

Auk uk«’-m< uk

recurrent sequence with delay, such that unI= PX,=i{Xy=1),
uﬁ= P(X, =ilXg=1) for all n > 1 and some pair i # j of states
is studied by Kingman/12/. He notes that he does not know an .
effective characterization of this problem.

We remark that for m-semirecurrent sequences with m >3 the
characterizations analo%ous to those in the abovg do not hold.
Indeed, let m=3 and fi=t} = 1/2, 5= 1/3, 1% = 2/3,

; 3 —
£3=1/4, 13 =3/4. Then u} = 1/2<13/24 = P(iul{Y1+...+Yi=3!).

Therefore it would be interesting to give the similar des-—
cription of W-semirecurrent sequences for M 23 via m-semi-
recurrent events as they are known in the case when m=1,2.

The sequence {\lgfﬂ >0, Kk 21} is far from being an arbit-
rary sequence of numbers between O and 1. Its behaviour is
restricted by inequalities which are consequences of (2.2) and
(2.3), or simple probabilistic argument for semirecurrent events
based on (1.2). For example, if m and n are integers, then
for any k >1

m n - m+n-= (2'7)
These are the simplest of a whole class of inequalities, which
are completely described in Theorem 2.4. We note that (2.7) was
known only for recurrent sequences /107,
First of all we prove the following two lemmas.
: . .
Lemma 2.2. Let ngz n>1, k > 1} be semirecurrent events.
If 1 gig<ig<aa<ip, n > 2, then for any k >1, sgn-1, and

je 10,1} i
j i
pellyr - fafE QX L0 AR
1y Yami il s+1 n .
J1,k $o-14k k Jsa1pitis b gkt 2.4
= PCIAf AN Ay JPC Ve, 1 a0
0 i x T .
where 'A=A and A = A.
Proof. It is evident. 0.E.D.
Lemma 2.3. For all semirecurrent sequences lul;: n > 0,’k >}

satisfying u, 2 0, k 2 1, there hold (i)

el

(i) 'u';>0, k,n
(ii)U; (1) = = implies Uj-1(1)=eo.

Proof. (i) Let there be two integers kg and n such that

k ; k 4
u,% =0. Denote Ng= mm!n:un0 =0}. From our assumption we have

n
3



. 3 7 1 k
ng >1. (2.7) implies that 0 = u:z > u"lo u;‘o"‘ “1+n° L o
which contradicts with the assumption.
(ii) (2.7) yields U, (2) 21 + ukz'u L ®, 0<2<1,k3l1. Using

this inequality we have proved the second part of the proposi-

tion. \

. Theorem 2.4. Let {uﬁznz 1, k 21} be non-negative: numbers.
For any k >1 and integers i with

151, <i.c1 : i (2.9)
write :
k+i
¢, Gyoend ) =1 -sz q:xfj + 1<,2<, ufj 1, _’;j- -t
1<jsmdy 3y <g 1 2 4 .
S s ulk ul;j”‘ o u:;ii";;l < )

159 <o <Y < 1y HeTHy

Then there are semirecurrent events {Au nx1, k> 1} with
- P(Ak) for each k,n if and only if A

Bodi G al ) <d G001 , (2.10)

for any m >1, i, ,..., i satisfying (2.9) and each k> 1.
Proof. The necessity of (2.10) we obtain from the observa-—
tion that if i satlsfy (2.9), then ¢k(11,...,i )—P(A ...A )

Conversely, suppose that (2.10) hold. For any k > 1 we have
to construct a probab111ty space ((Ik,(fk Pk) and a sequence
{Ak}“'_lc(ik such that u Pk(A )., n21. To do this we must ve-
rify the Kolmogorov cons1stence cond1t10nsl15/ Due to Lemma 2.2
and (2.8), we see that, for any m-tuple of events, we need not
verify all 2D inequalities but only two which are guaranteed
by (2.10).

hence if we construct the direct probab111ty space (Q,{d,P)=

k=1(0k’@k’Pk) ,then AK ="k (A ),where 7, :0+Q,is the kth
projection function, are semirecurrent events in questlon.

We note that the author does not know whether the semirecur-
rent sequence luk n>0,k>1} satisfy the condition (2. 10), or,
equivalently, & = §.

3. THE KALUZA SEQUENCES -

In 1928 Kaluza /8/ noticed that if the formal power series

o0
n w e . . . ot
U(z) =n§0 Uz with real coefficients satisfies the condition

6

u, =1, -un>0 u2<un 1410 2 21, 3.1
then the formal power series defined via P(z) = E .z ?=1-1/U(2)
el

has also non-negative coeff1c1ents

The sequences with (3 1), as it was shown much later on,
play an important role in the theory of infinitely divisible
sequences. We recall /9/ that a recurrent sequence {u }mao is
said to be infinitely divisible if {u,‘,}n-o is a recurrent se-
quence for each real non-negative t, It is known/11.p.439/°
that if tuplB=0is an infinitely divisible recurrent sequence,
then there is an integer h such that u,>0 iff n is a multiple
of h,and fugp}T—g is the sequence satisfying (3.1). i

In the sequel we shall study the sequences for which a con-
dition similar to (3.1) holds.

Firstly we note’ that the following proposition is true.

Proposition 3.1. (i) If iug B >0,k > 11€& ,then [u"h n>0,
k> 1}c§ for any integer h.

. (ii) If fuk:n >0, k1] and {¥X:n>0, k > 1}, then
fuk vi:n>0 k>1!

T (fii) If (k@) u>0, k >I¥GS(E>)01' any J,and if u (j) 5 u
as j »e,for eachn and k, then {uk:n>0, k >11 ¢ §(6).

(iv) 1If {uk n>0, k > 1}e§,and there is u = llm u".n?l, then
tu b~ e,

Proof. Part (i) may be proved using (1. l) For (ii) we note
that we may find two sequences of semirecurrent events,
n2i, ks 1l and B 0>,k > 1 wichuk=BAK) k- P(ﬁ,}‘).
n k>l, and assuming the 1ndependence of {Ak} oninl Hence le
--Ak Bk. n>1, k > 1} are semirecurrent events such that (11)
holds

Using (2.2) and Theorem 2.4 the parts (iii) and (iv) may be
easily proved. Q.E.D.

A sequence of real non-negative numbers, fuk a2 0, k >13i,

is said to be Kaluza's if

ki k k+1 k+1
u0=1, u u < un+1 u 7 for any k,n>1. : (3.2)

We remark that if uk>0 k<l, then from (3.2) we have u';> 0
for every k,n > 1.

Example 3.2. Let 0< H,(1) <Hy(® < ... < < Hy(1) <H @) 4eg
Put u§ =1,k 215 ula H (1) ug_ul(z)ﬂ (1) u =H (n)H (0-1)/(n-1) -
ifnz3uf-Ho(1) | of =H (n)/n if n>2~ uk —1/(n+1) for any

k>3, n>1. Then iu"‘n >O k 21} is the Kaluza sequence.

Tet lu. nly=0 be ansequence with (3.1) and let iak(k=1be a se-
quence of (i) positive numbers between O and 1; (ii) with
122,82 ...20. Then lu n 20, k>1}, where (1) uk au ;i)
uk— (ak)n u L, is the Kaluza sequence.

" The “last example is a part1cu1ar case of the follow1ng re-
sult saying that any Kaluza's sequence with uk u“’i nk i,



corresponds to some semirecurrent events of the form (1.8) for
special modified counter with prolonging dead time.

Theorem 3.3. Let !ulr‘l: n >0,k > 1}, for which (3.2) holds, be ﬁ
given. If, moreover, : 3

uk< yk+tl 51 k>1, (3.3)
n- n-1 - -

then !ug: n>0, k>11¢ 6.

Proof. First of all we conclude from (3.3) that any ug is
a real number between O and |. Now we shall construct the se-
quences of real. numbers, ipk(n)ln 1 k21, as follows.

For every kK > 1 we put pk(l) —ué‘ ‘and for eachn2>2 we recur-
rently define pkl(n) so that u"—pk n) uk+11 holds, where P(@) =
=ug/ugtiic og uk+l> 0, and Pk(n) =p (- 1) otherwise. From our
construction of p (n) using (3.3) and (3.2), we have that
0<pk(1) <pk(2) < el

Define a sequence of distribution functions, {H o , so that
H(@® =0, if t<1/2, H(® =p @ , ifn-1/2<t<n+i/2n >
Now we consider a modified counter with prolonging dead time
(see Example 1.1) for which the impulse 1engths, X+ of arriving
particles are distributed according to{H }? _ and interarrival
times, T, ,are constants equal to 1. Then for thls particular
case (1.8) has the form
B ~nf-p@p, -1}, @), mk:l, | (54
and this completes the proof of the theorem. Q E.D.

We write ‘S for the set of all infinitely divisible. semirer~
current sequences fuk:n>0, k >1} defined by the requirement
{(uk)t: n>0,k>1} is 5 belong to'$ for each real non-—negatlvet

Corrollary 3.3.1. If we denote by K the set of all Kaluza's
sequences for which (3.3) holds, then K C§,C's.

Proof. If {uk:n >0, k > 116K ,then easy checklng shows us that
{(E)t:n >0,k>1} fu1f1ls (3.2) and (3.3) for any real t> 0. The
apphcatlon of Theorem 3.3 proves the corrollary. Q.E.D.

Motived by Kingman/12/ and (ii) from Proposition 3.1, we
suggest to prove that if fuk:n >0, k> 1} is a semirecurrent se- /
quence, then so is !(nuk)t n>'b k>1} for any real t2> 1.

We must remark that the solution of this problem is unknown
even for recurrent sequences (for details see /12/), and the
author of the present note does not know the affirmative answer
even for integer-valued t in the case of the semirecurrent se-
quences.

8
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4. m/—SEMIRECURREN’I‘ SENUENCES

-In this part we shall study the properties of m-semirecur-
rent sequences in more detail.

We say that for m-semirecurrent sequence fuk: n 2_;0, k=1,
...,m} the case of periodicity holds if there is an integer
t>1 such that u} > 0 if n=t,2t,... . In this case ul= 0
whenever n#jt. The greatest integer t > | with this property
is called the period. In the opposite case luj}y_, is said
to be non-periodic. The sequegce ok, k= l,...,m is cal-
led certain or uncertain as 2 f =1 or 2 f <

It is known/?/ that the recurrent sequence tuplToo is certain

iff ¥ u M- .We note the analogous assertion does not hold,

n=1
in general for iu b aen when k=1,...,m~l(m >2). Indeed, let
s b5 et 2 1
m_Zmand ug =1, un+1_un_0 for any nzl.Thennglrn=1
tut T al-1.
p=1 1 ‘

However the next result holds:

Theorem 4.1. Let us have for m-semirecurrent sequence fu. :
n>0, k=1,..., m}

1 1 2 m
(i) Bo>uf> ..zxoel nal,
Gx) | %20 k=1,.,m, Gl
. k k+1
(iii) uog S, .n‘_>_0, k=1,.., m.
If iu:'};‘;o is the certain sequence, then
lim U (z)/UHl(z) =1 (4.2)
z 1T / :
and {un%n o 1is certain, too, k =1, ..., m~1 (m>2),
Proof (4.2) follows from the next inequality U, l(z) Ufz) <
k=1,..., m. Since lul®_ , is cer-

<l+u (Uk 1@ -1)» O0<z<l1,
tain, tlhen ujf >0. Hence from (i) of (4.1) we have un§ >0, for
any k, and Lemma 2.3 entails (4.2). Q.E.D.
We note that m-semirecurrent events with (4.1) appear in the
theory of counters 3/,
It is easily venfxable that for an arbltrary m-semirecur-
rent sequence, iuk' n>0, k =1,...,m}, there holds

= ufz!® (@ -F (2)/0-F @),

lz} <1, K=1,.., m, (4.3)



Theorem 4.2. Let {u tn >0, k=1,...,m} be an m-semirecur~
rent sequence with certaln “and non-periodic {um} . Then
m-k-1
hm u (P (1) 121

-

uf P, () /M), k=1,u,m.  (4.4)

(Here, as usuallyt‘ if M) = =, then /o = 0, that is, if
M) =, then u; -0 as n-ee)

n particular, T every {un;n-o' k=1,...,m is certain,
then lim \1k =1/Mlv ).

Proof. From”/10, A1/ we have that in our case the limit of

™ when N+« exists and is equal to 1/M(v - Using (4.3) and
tﬂe equality U_(z2) _1/(1 P,(2)) we see that u‘; umb iy, b, &
e +lf3bn,where ib !n 0 are the coeff1c1ents for the power
series

- m-k-l'k i )

L@ + jgzl uyz (Pk+j(z) -P (Z)):‘
and for them we have n-— byl <w. Let B =n§O b, “,.,==1inm“': and
B,- m,f"‘“bn {}. Then, for any n >N, .

[uE-Bu_ 1 <1068 - ) st byG R0 )l +

m 5 Lad .
10y Uy gm0 ,) e D (g —u ) [+ u 1-2;'”1 L

Let € >0 be given. Then there are sufficiently large integers

by o 00
Nand N;such that 2 i [byl <e/4, Juf-uJ <e/2qN+1}B,, yhen-
f=n+ ; :
ever n>N and n> Nl,respectively.l{ence for any n> max(ZN,Nl)lu,l:—
-Bu_| < e. It is evident that B is equal to the numerator on
the right-hand side of (4.4). Q.E.D.
Now we consider the periodic case of m-semirecurrent se-

. : t
quences,‘that is, the case when P (2) = 21 fn‘ g lz} < 1,

where t >1 is the period. From (4.3) we see that the coeffi-
cients ul:“ depend only on the coefficients of the power series
in the numerator of (4,3). Hence

t=-1

U@ =U0@ + 2@ +.. +27 U,

- po 1 t-1 pt=1
Pk(z) =P @ + 2P (2) + o + 2 P (@,
where ;
1 _ 3 ' t i g gk ot
Uk(z) = nEO e AT Pk (z) = n§.1 me Z o

10

for i = 0,1,..., t=1. Therefore

: ~k=1
0@ =0+ T3 @ () - PR@/a-P,m),
m-k~1

jal: by :

@ = 3wl lPL @/ -P @),

Usnlg the analogous method as in the proof of the last the-
orem we may prove:

Theorem 4.3.Let, for m=-semirecurrent sequences {u tn>0,
k=1,..,m}, {u®l” be certain and periodic with a period t>1
n’'n=0
Then
mut -t 3 afP® g M( ;
im v, = . (k_,_j()—l)/ v,
s e M L 1
zllmu““'i = il uj Ly )/ (vm), i=1,..,t-1.

5. RECURRENT EVENTS WITH DELAY

In this section we derive some information concerning the
asymptotic behaviour of f{u ,u2 }"" in the case of the recurrent
events (and, equ1va1ent1y, sequences) with delay. The similar
results for recurrent events only are in/8/,

For convenience we put

B j=n+1

o0 oo .
Q@ =3 ofz®, R, (2= 3 k2", [g|<1, k=13,
n=0 n=0

For certain {uk} %  k=1,2, wve put m, = z Mo My 2 LV

n=0’
Then
1-P@=01-20,@ ., m -0, =-0-DR,(® , (5.1)
and hence
’ = ot k
m = Pk (1) —Qk(l) = n§0 9 (5.2)
11



M, = P{(1) = 20{(1) = 2R, (1) = 2 %" ex (5.3)

Theorem 4.2 1mp11es that if h‘n}n—o and {u® sk are both cer—
tain, and {ualn_o is non-periodic, then hm ul —hmu

Throughout the sequel by ful bl l ove shall understand recur—
rent sequences with delay. :

Theorem 5.1. Let {uﬁl‘:_o be certain and non-periodic. Then

n§1}u§—1/m2|<w. (5.4)

Proof. The necessary condition follows from ’® Th.3/ For the
proof of sufficiency we use the equality

U,(2) - 1/mg(1-2) = Ry(2)/ myQ(2), 2] <1. (5.5)

Since {u? i is certain, then (5.4) implies that u_>0. The
power series u‘for R (z) and Qg(z) have positive coeff1c1ents,
and Qg(z) converges for z = 1. Moreover, Q (z) £ 0 for any
2| < 1. From (5.5) we have for 0<z<l.

05 Ry(®)/mp <Qp (@) ): fuZ~ 1/mg| SQM 2 lu2 ~1/m,| < .

Hence 1lim Ry(2) <=

and, consequently, M2 < oo, 0.E.D.
z-1"

Theorem 5.2. Let {u I k =1,2, be certain with finite m;

nO’

and mg,and let {ul}*_ . " be non—per10d1c Then
T lul-u?| <o, : : (5.6)
n=1 R n
s 10 ey g A
n§1(un un) =1 ml/mz. : _ (527
Proof. For the recurrent sequence with dela{ we have u:, =
=fful e toud oo oo f8 ul fRUlC Due 1o ag =95

-ql‘ n > 1, we obtain q%ul- (af - q?.)ul L e +(q2 ..q2 )u +
+ 7 - 1)u and so ul 1 e ;
2qn_11q 10. q0 |-..+q 1u-q.qn = \‘2,1'11 e+
+
L +qn.
enote by A é’he left-hand side of this equality. Hence Ag=
= Agt = .. —A1 =Ag . But Ag = qo u:le 1, and, consequently,
An are the coefficients of the power series Q (z) -Qy(z) +
+ Qp(2) Uy(2z) = 1/(1 -2).Repeating the same for lu !"" we have
Qy(z) Uy(z) = 1/(1~ 2). Hence

Q,(2) - Qy(2) = Qy(2) (Uy(z) - Uy (). o (5.8)
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To prove the proposition we have to show that the power se-—
ries for Ug(z) - U(2) =(Qy(2) - g(z))/Qg(z) has absolutely con-
vergent coefficients. Due to our assumption, 1(z) - Q,y(z) has
absolutely convergent coefficients, too. The sameis true for

(z) according to the Wiener theorem /5/ Hence (5.6) holds.
For (5.7) we may use (5.8) and (5.1). Q.E.D.

. Theorem 5.3. Let {uX}7,, k =1,2, be both certain, Sl

be non—penodlc and let m<ew.Then Mg<e iff 2 Iu ~1/my| <o,
In this case 2 (n -1/mg) +1~ ml/mg— E (u{1 -1/mg) . Parti-

cularly,
s (uwl i enRi e :
u2=O(ulx l/mg) MB./2m2+1 mi./mz. (5.9)
Proof. Using (5.5) we may obtain
R, (2) /(myQ, (2)) + (P, (2) B, (2))/((1 - 2)Qp(®)) = U, (@) -1/(my(1-2)).
If M_<~,then Rg(z)/m Qz(z) has the absolutely convergent coef-
ficients of its power series. The same is true for the power se-
ries for (P (z) - P (z))/mgﬂg(z) Therefore E |u -ll | <oo, due
to Theorem 5.2. Hence 2 Iu = 1/mgy|< e and the Abel theorem
=0
entails (5.9); its r1ght-hand side follows from/8 .2/,
Conversely, suppose E |u -1/m | < 0. Theoreme m2<°° and
n=

Theorem 5.2 guarantees Iu -u2| < «, Therefore 2 [u® -l/m | <o
< n=0

and, consequently, Mg< oo, Q.E.D.

Theorem 5.4. Let {u i}fmo be certain, fu® !n o non-periodic

and let m < w,m <~ Then
u111= 1/m, + o(1/n), i (5.10)

u§=1/m2+0(1/n). . (5.1

Proof. The last formula has been proved by Feller /6. Th-4/ (ip
this case the assumptmn m <e is superfluous, of course). The
term n(ul -1/m2) is obv1ouslly the coefficients of z8~1 on the
1eft—hand side in

1 T 1 (" Rg(z) - Qé(z) ]
m 2( 1-z)2 1~ Pg(z) My 02(2)

i@ -

13



Pg(2)( - Py (2))
AT 1. (5.12)

+[P{@® -

We have seen that the power series of the term within the first
square brackets converges absolutely for z=1 and its value
is 0 by (5.3). The coefficients of the factor (1-P (z))‘1 con-
.verge to 1/m2, and therefore the, coefficients of z“ tend to ze-
ro. The analogous result is also true for the coefficients of
the term within the second square brackets, consequently, (5.10)
is proved. ; Q.E.D..
Theorem 5.5. Let f{u .uh}"f_0 be certain and let {ui}:=o be
non-periodic. Then for any 0<z <1 :

(1) U, (2) 22U, (z) iff Q 1@ _<_,Q2(z) ift P (z) > 2 By (z) iff my<m,y.
1 2’ S (ul_n2
(ii) If u, >u and u Sy, n >1, then MISM,2 aqd nEl(un.un) <1.

If u: <1, then m1<~iff my<es, and

A-wme<mcmg. : (5.13).

1= .2
(iii) If uwi>u?, ul  <u® n>1, and My<«,then
2y -w) <w. _ (5.14)

Proof. Part (i) follows immediately from (5.9), (5.1) and
from the properties of the generating functions and their mean
values.

Taking the derivative of (5.8) we have

Q7(2) - Qp(z) = Qy(Uz(2) - U{(2)) +Qp(2) (g (@) - Uy (2)) . G515

. From this equality we have, for any 0O<z<l, Q’(z) < QJ(z),which
yields M <M,. i
Slmllarly we obtain Ug(2) -U (z) +1 >0 and so

2
0< nEl(un—un) <l
Now we suppose that m;<e, Then

1

oo 0o '
El(u%fu;)z" =n§1 (ugn—u}”lz)z“- ’u}z =A(Z) - uqz,

n=
where A(z) denote the first term in the above middle. The for-
mula (5.8) entails Q,(2) ~Q,(2) = Qy(2)A(z) -Q,(Duiz, Q,(2) =
& Qz(z)A(z) +(1 ulz)Q o(2) . Because of ui( l, the last 1mp11es
Q @ >0 -uln)a, l and so, due to (5.2), My<e and (5.13)
holds.
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To prove (iii) it suffices to take into account that (ii)

guarantees Mj<e. Therefore using (5.14) we can prove (5.14).

Q.E.D.

Finally we note, that we hope to study elsewhere a continuous

analogue of the semirecurrent events.
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B 06veguHEHHOM MHCTUTYTE RAAEPHHIX WCCNEAOBAHUK Hauvan
BuxoauTh c6GopHuk "Hpamxue coobyenusk OHAH", B Hem
6yayT noMewaTbCA CTaThv, cCopepXalue OpUruHaNbHbe HayuHbe,
HayUHO=TeXHUUECKHE, MeTOgUUEcKMe ¥ NpUKNaaHue pesynbTaT,
TpebGyouue cpouHoit nybnukaumm. Byayum uactbio ''CoobueHuis
OUAU'', cTaTebu, Bowepuume B cOOpPHMK, MMEOT, KakK u apyrue
_ M3panuA OMAU, cratyc opmumanbHex nyGnuxauwi .

C6opHuk "'KpaTtkue cooﬁmenua OUAK'' GypeT BUXOAUTDL
perynapHo.

The Joint Institute for Nuclear Research begins publi-
shing a collection of papers entitled JINR Rapid Communi-
cations which is a section of the JINR Communications
and is intended for the accelerated publication of impor-
tant results on the following subjects:

Physics of elementary particles and atom1c nuclei.
Theoretical physics. \

Experimental techniques and methods.

Accelerators,

Cryogenics.

Computing mathematics and methods.

Solid state physics. Liquids.

Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear~Research have the status
of official publications.

JINR Rapid Communications Will be issued regularly.
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