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The classical Weyl-von Neumann theorem states the following: 2

Theorem /1/: Let H be a selfadjoint operator. Then for any é>0 the-
re is an A = AN Ggf,_(l()(Hilbert-Schmidt operators) such that WA\, < ¢
and H+A has pure poin} spectrum,i.e., there exist a real sequence
{2,), an orthonormal basis A(‘fn) c & (H) with (F+A) @, = Aafn -

In this paper we give two variants (Propositions 1 and 3) of this re-
sult in algebras of unbounded operators. The proofs are adsptions of
the classical one /1/. We give the details of the proof of Prop.1,
because we think that the ideas can be used to extend the results
further, It is also possible to give a short proof of Propositions 1
and 3 which uses the statement of the classical theorem. Ve give such
a proof for Prop.3, them Prop.1 is obtained as a corollary.

We start with some necessary notions and notations /?/,/4/. Let ¥

be a dense linear manifold in a separable Hilbert space ® . By
£2(D) we denote the following set of linear operators: L'(B) =
={A: ABcYT ! A¥TcD ) , with the usual operations and the involu-
tion A —e A" = AMY becomes a x-algebra. It can be shown thet
for 1 € p €90 the sets |

Jp(l)= (A LM(B): BACed(R)for all B,C e L™(D}

are two-sided x-idesls in L'(B). Here D denotes the closure of the
operator D and,ffﬂt)are the usual ideals in B{R). we need also the two-
sided mx-ideal W(V)= { AeL*(D): BAC bounded for all B‘C&L’(B)}

An 1mportant class of domains ¥ is given'by T = T’ (H) = f\ S\
where H=H" is an (unbounded) selfadjoint operator, without loss of ge-
nerality H ® 1, In this case g_'__\_b) and B(’b)can be characterized as
follows /4/:_39(3)__&_1\61.'(5) ulail nlA t\‘f‘,ﬂl) for all neN) =

-{ Acf¥n): A", Hed, o )for all neNl . and for B(X)analogously.
Now we state the result: ‘

Proposition 1: Let D = P(H), H=H" . Then for any § >0 there is an
A = A*GJ,.US) such that I AW, <& and H+A has pure point spectrum.

The‘proof of this proposition is based on an adaption of the corre-
sponding lemma in the classical case /1/.

Lemma 2: Let B =T (H), HxH". Then for any 9eD ,€>0, meM™N there
are a finite dimensional projection Pe¢[*(B)land an Y=Y GL’(B) such that
1) N(1-P)pll <€~

11) v, <€

111) H+Y is reduced by PR .

Remark that in what follows we will not indicate the closure D for
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bounded D if there camnot arise confusions. Statement iii) means
that 8, =P RN D is dense in P , (H+Y)B;cb, and (H+Y)1 D, 1is a
selfadjoint operator in 'R,-_ﬁ, » or what is the same, P commutes
with H+Y,

Proof of Lemma 2: Let a>» O be so large that

(1) Wit - E(I )Igu<e

where I-a' (-a,a] and E(. )e L¥(B)are the spectral projections corres-
ponding to H. For each neWN put Ek = E((gk—:ﬂ-z a, —?Tk‘-'ﬂ al ), k=1,.
vee,N. Remark that EjEk =& E, . E e L7(D)land consequently ﬁ‘-Ek}ch‘ 5
Put 4, = Ek‘f ¢ W™ D /Mgt 1f g # O andn, = O otherwise. Thus, (A )
is an orthonormal system satisfying

(2) Z“'\t‘ 'i @ = E(I )"f

and the &, are "almost-eiqenvalues” of H in the sense that for

XK‘ ZR-:-I N

(3 N(H-Ad% W = .\\ (H=- a)y. N & a/n, .
Let P denote the orthoprojection on the space spaned by Nar-+ ) ¥a .then
(4) P ef*D), dim P ¢ n
(5) (1-P) . = O implies W (1-P)H~ U= || (21~ P)(H-a‘)-h_\\é a/n and to-
gether with (2): (1-P)E{(1 ):g = 0,

(6) It is (1~-P)HN €W, hence {(1- P)th +(1-P)Hq = O for § # k.
From (5) the first statement of the Lemma follows: W(1-P)gy =

= W(1-P) (g = E(I)q) U € W(1-P)U-U(1-E(T ) <E .
Put =Y = (1=-P)HP + ((1- P)HP) . then from HaPHP+ (1=-P)H(1=P)+(1=P)HP +
+A((1-P)HP) one gets H+Y=PHP+(1-P)H(1-P). Clearly, this operator is
reduced by PR , i.e.,1ii1) is valid. Next let us estimate “H'“Yul 3
This is done by estimating Hm(l-P)HP and H“PH(l-P') separately. Using
H®(1-P)Hy, R 1t follows that un"'u-p)np*\\‘au‘é Gy T (1-P)H AR =

-Z\('f"ﬂ\lﬂ (1- P)H*K\\s\\*" ?maz/n? for allx e , Here we usgd (6).

(1-P)H~ ¢ E(T )'at and H" restricted to E(I,)® is bounded by a".
Consequently IH (1-P)HPY & a™1
because the dimension of H® (1=P)HP is smaller than n, To estimate
HmPH(l-P) one considers the adjoint operator, proceeds similerly and
obtains the same estimation., Thus, lleY II“ Za'"llnl/z
be chosen independent of a, ii) 1s proved.

2k-n=-1
n

. Because n cean
&

q.e8.d.

Proof of Proposition 1: Let (‘I\)C'B be 8 countable set, dense ;n'& .
Apply Lemma 2 successively:

1.4 =%, .¢ = §/2, m = 0, One obtains Py, € LrB)with 1)-111) as
in Lemma 2,

/n and therefore “Hm(l-P)let € a"’i/n /

e

2, Apply the Lemma to that part of HeY, which lies in (1-P )R(\B=

= (1-5) B with ¢ = (1-Py)g, , £ = §/4, w = 1, This gives P,,,Y which
we continue to whole 8 by O and denote the resqlting operators by the
same symbol. Then H+Y14'Y2 is reduced by PR and Pz'ae_ &

Continuing this procedure one gets two sequences of operators in [*D):
Pyaeees 8nd Yy Yo, 00s with W(1-Py-...=B ) g6 /2% andl\Hk-iY'i\l,_ «d/2k
for 81l k. Put A = 2 Y, and A = Z. Y;. To prove that A = A" &, (B)
we show that H Ahft‘mfor all me™N . For rom the estimation

’ ,
Ku" ;;_‘_ v i, ¢ Z_tuu Y M, 6 I.L':_S/z implies that (H"A ) is a

Cauchy sequence in J,(®). Now it is standard to see that HmAn"—hH"At
¢J, () . The estimation above also gives A n,_<é' . It remains to
prove that H+A has pure pbint spectrum. As in the classical case one
sees that Z,Pk = 1 and Pk%t_ reduces H+A, Thus the finite dimensio-
nality of each P,"'® and Z Py = 1 gives the desired result that
H+A has a complete system of eigenvectors,

g.s.d,
The following Proposition gives one of the possible generalizations !
of Proposition 1, :

Proposition 3: Let B = B (T), Hef (N)so that the following condi-
tions are fulfilled

i) H is essentially selfadjoint

ii) The spectral projections E, corresponding to H are in L¥*(®) .
i1i) E(I)R ¢ D for any bounded interval Ie® . ;

Then for any §2 0 there 1s an A=A'e$,(B)withi AW\, <J and H+A has
pure point spectrum,

M{ Put E = E((n,n+1}), R, = E nd® o Hoo= HIR, " I\x 3t %n.
for a11 neZ, meMN . Since we may suppose T 2 1, it follows that

8. @ Bnmel € .... for all m,n. Choose (8. ) so that §,>0 and T8.<8
2 ‘nnsn<°" On '3{ construct A -A according to the classical Weyl=-
von Neumann theorem so that llA u d‘ and H +A has pure point spectrum
as an operator on ®,. Put A = Z @A . ThenuT Au,_ﬁ Z\\T L

‘Zanmn Za n’§ S‘Zanu“’zanné-(”'

nym

For m=0 it follows that Ul All,_(d' Clearly, H+A has pure point spec-

trum, aiad.

As in the classical case one can get stronger statements sbout A,
This 1is formulated as a corollary to Propositions 1 and 3.

Corollary 4: Suppose that the assumptions of Propositions 1 or 3 are
fulfilled.Then for any p> 1 A can be chosen so that Aed,(B).



Proof: As in the classical case it is possible to choose A &JAK\C).
q>1 arbitrary. From the polar decomposition A = | AlV it follows that
[A\eJ'un. Moreover, considerations similar to those in the proof of
Proposition 3 give KT ALY = T Al <o ., 1.e.lAl eB(D)and consequently
1A eB(D) for allu>0- /4/. Now let p>1 be given, Choose O<w< 1 and g
so that p=q/(1-«). Construct A so that A&J.‘(w, then \A\e;\m\and
(A e dpl®). In the decomposition T"A = (T™{A1* )(1AV*™™ V) the
first factor is in BIW), the second ind tR) , hence T A&J,\K).

This means AEJP(B) 2 q.e.d.

Remark 5 : The condition iii) of Proposition 3 seems to be very

strong. It is of course fulfilled if T and H commute strongly. But
there is also a large class of operators H non-commuting with T such
that 111Lholds. Such operators can be constructed as follows.

Let T = f}u. dE LY °°) = \J I,. I, bounded and pairwise disjoint in-
tervals. R = F(I Yial: Then for appropriately chosen operators H, =
= Hn in R, the operator H = ZoHn satisfies the assumptions of Pro-
position 3. That means, H has a kind of block~decomposition with re-

spect to T. It seems that condition 1i1) cannot be droped completely.
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