


These problems are important not only for the counter theo­
ry. The same problems, from the mathematical point of view, 
arise in the cases of the film or filmless measurements of the 
particle track ionization in the so-called bubble and streamer 
chambers (for details see, e.g./1•2). The description of the 
queuing systems with infinitely many servers leads to similar 
problems (see, e.g., /3/), 

The known results on the mentioned random variables in ques­
tion are ~vailable only in the particular case when F = F1 = F2= ... , 
and H=HJ =H2= .... Pyke/4/ derived the distribution of v, and 
some limit properties have been . investigated by Afanas~eva and 
Mikhailova/5/ (in GI/GI/oo terminology), and by Dvuretenskij 
and Ososkov 16/, 

The cycle has been studied only for the above particular 
case by Pollaczek/7/ in the form of complicated contour integ­
rals. Pyke / 4/ and Takace /8/ have obtain only some integral 
equations. The Laplace transform in the explicit form is given 
by Dvure<!enskij and Ososkov 161. 

2. NUMBER OF PARTICLES ARRIVING DURING DEAD TIME 

Let us put 

An = 1x 1 < T 1 + ... + Tn, x2 < T 2 + ... + T ..... , Xn < T,.l, n _<: 1. (2. I) 

Then Pn = P(v=n) = P(A 1· ••• A._ 1 A.), n~ 1. It is clear that 
if the input process is recurrent and the lengths of impulses 
are i.i.d., then tAnl";;=l is a sequence of recurrent events 
in the sense of Feller 191 that is, for any 1 ~ i 1 < ... < i., n;;:: 2, 
P(A 1 ... A1 I A 1 ) = P(A 1 _ 1 ... A 1 _ 1 ), consequently P may be 

2 n I 2 I n I 
easily found. 

For 1 S i S i define 

A 1.i =lx1 < T1 + ... +Ti' xi+ 1 < Ti+l. + ... +Ti•···•Xi < Til. 

Then 

P(Ai,j ) = J'" J H1 (t 1 + ... + ti ) Hi+ 1(t1+ 1 + ... +t i ) ... Hi (ti- )dFj (t 1) ... dFj (ti) (2. 2) 

and for 1Si 1 < ... < in' n_?2, we have 

P(Ai ... A, lA, ) = P(A; +I i ... A, +I I). (2.3) 
2 n I I '2 I 'n 

It is easy to verify that IA.I";;=I from (2.1) is a sequence 
of recurrent events iff P(A

1
._1·) = P (Al+l . ) for 1 < i ~j. . ,. I . 

To deternune Pn, n ~ 1 let us put for k ~ 1 An= Ak,k+n-I•If>l. 
The integer-valued variable "k , k ~ 1, defined by P: = P(vk =n) = 

~-iftiC'lUtt.tl I HCTft'\'YT \ 
~~ ;cr..'I~UU.nl 
c:.wc:. rut~~J rEKA 
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P (A~ ... A~- I A~), n_? 1, may be interpreted as a number of par­
ticles arriving at the k-th modified counter with prolonging 
dead time in that the dead time is produced according to dis­
tribution functions of interarrival times beginning from Fk, 
Fk+I .... , and the distribution functions of the lengths of 
impulses begin from Hk , Hk+I , ... . It is clear that III =- 11 

and Pni = Pn. 
To determine Pn we proceed as follows: 

n-I · I 
P =P(A1 ... A_IA )=P(A )- l .S _ (-1)~-
n n n ° j= I I S,i I<- .. < i j .$n-I 

P(Ai 1 ... AiiA.J. 

Using (2.3) we obtain in conclusion 

PI = P(A 1 ), 
n-1 I+j 

P
0 

= P(A
0

) - _l P(A 
1
.) P 

0
_

1
. , n?: 2. 

I"' I 
(2 .4) 

Since the sequence !A: I ::I, k;::: 1, has the property analogical 
to (2.3) for !A0 l;=I , that is, for any 

. . k k k k+i I k+i I 
1 S.I < ... < 1 , n ~ 2, P(A. .._A. I A. · ) = P(A. . ... A. . ), 

1
2 1

n 
1 1 12-11 1 n-1 I 

we may obtain the next formula for the k-th modified counter 

P k = PrAk\ 
t· 

pk _ PrAk) _ n~I DrAk,ok+i 
n " n , j= I ,--j ,- n-j , &.& .::::... ~. 

k 
where P(A.) may be evaluated by (2.2). 

I 

\L oJ) 

If !An I ;:1 is a sequence of recurrent events, then P!' = P
0 

for every k, n, and from (2.4) we conclude the known formula 
n-1 

P =P(A )- l P(A. )P . 
n n ._

1 
1 n-1 

1- 00 k 
Let ¢k(z) = l P z 0 

n=l 0 

n > 1 - . derived by Pyke /4/. 

be the generating function for vk, k ~ 1. 

Due to (2.5) we have 

¢k (z) = nfl P(A~) (1 - ¢k+n (z)), lzl < 1. (2 .6) 

A very interesting case is obtained when F = FI·, F = F2 = F3 = ... , 
and H = H 1 , H=H 2 = H 3 = .... If we put P(A~)= P(A;), then 

- ~I 2 3 
PI= P(AI), P0 =P(A0 )- !- P(Ai)P0~i, n>2, where P,: =P

0 
=P

0
= .... 

I= I 
For its generating function we conclude ¢(z) = (1- ¢*(z)) U(z) , 

lz I < 1, where ¢*(z) is the generating function for Pn , n 2 1, and 
00 

U(z) = l P(A
0 

)z 0
• 

n=l 
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3. PROPERTIES OF A~ 

. . IAkl"" Here we ~nvest~gate the structure of the events 
0 

n=l' k?: 1. 
for arbitrary sequences IF0 1;:I and IH0 l;=-I· 

Lemma I. If P(A~) > 1 for any k ~ 1. then P(A~) > 0 for any 
k, n ~ 1. 

Proof. Let there be two integers k and n such that P(Ak) =0. 
Denote by n0 the minimal integer n (for the give~ k) for

0 

which P(Ak) = 0. If n
0 

> 1, then P(Ak I) = P(Ak I Ak ) 
n no- no- no 

P (A: -I ) (1 - P (A\+no-I)). Hence P (A~+no-I) = 0 which contra-
d

. 0 . 
1cts our assumpt~on. 

Q.E.D. 

Let us define U~t(Z)= I-P(A:)z 0
, lzl<1, and B~=lx~t<T~t+ ... 

n=I 
+ Tk+n-Il · Then the following holds: 

Theorem 2. For any k ?: 1 we have 

(i) P(Ak) < P(AkH), 
n - n-1 n;::: 2. (3. I) 

U~c(z)s1 + uk+I (z·). (3.2) 

(ii) P(Ak) > P(Bk)P(Ak+I-) 
n - n n-1 ' n?: 2. (3. 3) 

(iii) If for some n P(B~)>O, then 

f P(Ak) = oo iff l ·P(Ak+ 1) = oo. 

n=-1 ° n= l 0 

(iv) If limP(Bk) = 1 and 
n ~oo n 

£ P(Ak ) = oo , then 
n=I 0 

limlJk (z) /1\.+t(z) = 1. (3.4) 
z->1-

Proof. (3. I) and (3.2) are evident. In order to prove (3.3) 
we use the Chebychev inequality: If r./Ji (x1 , ... , X

0 
), i = 1, 2, 

are non-negative real-valued functions either all are nonin­
creas ing or all nondecreas ing, and if Gi , j = 1, ... , n are dis­
tribution functions, then 

{ .,_ {r./1 1 (xi'"'' X0 ) r./J2 (x1 , ... , X
0

) dG 1 (x 1) ... dG
0 

(x
0

);;:: 
-oo -oo 

~ r ... r r./JI (xi'"'' xn)dGl(xl) ... dGn(xn) X 
-oo -oo 

X r ... r r./12 (~ ..... xn) dGI (xl ) ... dGn (xn ). 
-oo -oo 
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For (iv) we have the following. Let i~3. Then 

i-1 "" 
Uk(z) 2: .;, 1P(A:)zn+P(3~)z .;,iP(A~~~)zn-1= 

i-I k k i- 2 .1. I n 
I P(An )zn + P(B; )z(Uk+l(z)- I P(.li·! )z ). 
=I ~I 

Using (3.2) we may obtain 1.? limU~r.(z) /Uk+dz) ~ P(B;k). Let­
z->1-

ting i-+oo we prove (3.4). 
Q.E.D. 

Theorem 3. If for some n0 ?: 1 we have <Pn +I= <Pn + 2 = ... 
0 0 0 "" 

and P(A\) < 1. i = 1, ... ,n 0, then for any n ¢ (1) = 1 iff l P(A.) = ""· 
n i=l t 

Proof. If n 0 = 1, then 
¢ 2 (z) =U 2 (z) /(1 +U2 (z)). 
assertion. 

(2.6) implies ¢ 1(z)=U 1(z)/(1+U2 (z)), 
Hence Theorem 2 implies this partial 

If n0 2: 2, then cPn +1-(Z)= Un +I (z)/(1 + U
0 

+l(z)) , 
0 0 0 

¢ (z)= 
no 

uno (z) I (1 + Uno+ I (Z)). For 1 .::; i <no we have 

i n -i 
¢ . (z) = U . (z) (1 - ¢ (z)) + I P(A .0 ) x 

no-• no-• nO+I j=l I 

' . uu-· 
x(¢n +I(z)-¢ _.+

1
. (z))=U _ 1 (z)/U (z)¢ (Z)+ .I P(A

1
. )x 

0 no I no no no. I= I 

x (¢no+l(z)- cPno-i+ i (z)). 

Using repeatedly (3.4) we prove the general case. 
Q.E.D. 

Observe that assumption P(A~) < 1, i = 1, ... , n
0

, is not super­
fluous. Indeed, let Tn = 1 , n 2 1, and H1 (1) = 1, H2 = liJ = ... , 
H2(1) = 0. Then P(Af) = 1 and U1 (z) = z, U2 (z) = 0. 

In the rest of this part we will assume H1 (x) 2: H
2

(x) ~ ... , 
Hn=> H, and F = F 1 = F2 = .... 

Theorem 4. We have 

(i) P(A~)?:P(A;)z .... 

(ii) pk = limP(Ak) = limP(Ak+l) = pk+I. 
n n n n 

(iii) If P(A"")= limP(Ak), then p =limP(A"")=P~r.· 
n k n "" n n 

{) 

.J;> 

) 

} 

Proof. It suffices to prove (iii). Let us put Pk = p. Clearly 
p ~ p"". Now let k be fixed. Then 

P(Ak) > P(Air.+I) P(Bk) > p P(Bk) = pP(Bk ). 
n - n-1 n - k+ l n n 

Hence P(A"") ~p ( ... fH(t 1 + ... +t) dF(t 1) ... dF(t) and, conse-n 0 0 n n 
quently p"" 2: p. Q.E.D. 

Theorem 5. (i) If 

limP(A\) > o. lim r X dHk (x) < ""• (3. 5) 
k 0 

then p > 0. (ii) If 0 < (x dF(x) < ""• then (3.5) is the necessary 
0 

and sufficient condition for p > 0. 

Pr.oof. From (3.3) and (3.4) we have 

"" "" 
P=P =P =limP(A"")=limf ... fH(t

1
) ... H(t

1 
+ ... +t) 

Jr."" R n no 0 n 
"" dF(t 1 ) ••• dF(tn)2 ll P(lx:<T1 + ... +Tnl)• 

n=l 

where x :;' , n ~ 1, 
'h •• .-.; ............. + ........... .-..; ,.... ..... H 

are i.i.d. random variables with the distri-
"" ...... A .: ... A ...... 'P'Io .......... A .............. ...... ~ 1T t 00 

• T.C ................................... t.. .... .... 
--·- --·--r--·----- ~- u · u-a ........... ··-- ............. .. 

IiP(ITJ + ... +Tn >x;l) > 0, 
n=I 

then the first part of the thea-

rem will be proved. For this it is sufficient to prove that 

l P(l X""> T 1 + ... + T I) < ""· 
n=l n n 

(3.6) 

Let TK = min(T , K), where K > 0 is a real number such that n n 

M(T!) > 0. Put S!= T 1K+ ... + T! and Sn = T 1 + ... +Tn.Then 

P(ISn s.x:l> .$ P(IS! .$ x:l).::; P(IS! S.x:'. I S~/n-

- M(Tf> I .$d)+ P(l s~ .$ x;. ISnK/n- M(T f'> I > d).$ 1 -

- H(nM(T1K) - £)) + A/rl- , 

where A is a constant independent of n. We choose£ such that 
M(TK)>£, Hence (3.6) converges and therefore p>O. 

~ow let us prove (ii). The sufficient condition has been 
proved. Let p > 0. The strong law of large numbers implies that 

"" for an arbitrary£> 0 we have P(0 IS
1
· <2jM(T1)!):;;.1- £, 

J=no 
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where n0 is a suitable integer such that H(2n 0 M(T1 ))>0. If p > 0, 
then there is f > 0 such that p >f. Then 

P.$f+P(;; 1x""<S 0 In _;':, IS
1
· <2jM(T 1 )1)~ n=l n J=no 

and, consequently 

00 00 

0 <P( n I x"" < S In .n IS. < 2jM(T1 ) I)~ 
n=l n n 1=n0 I 

~P(0~00Ix;<2nM(T 1 )1)= 0
[

00

H(2nM(T1 )). 

Hence I {1- H(2nM(T1 ))) <"" which implies ( x dH(x) < oo. 
n=l 0 

tion l~mP(')k) > 0 is evident. 

Condi-

Q.E.D. 

Let us note that li~P(A~·) > 0 is not superfluous condition. 
Indeed, let H = H1 = H2 = ... , H(l) = 0, T

0 
= 1. n 2 1. Then P(A

0
) = 0 

for any n and p = 0 although M(T ) = 1. 

4. THE CYCLE 

The cycles of a counter are defined as interarrival times 
between the moments of registered particles. As has been no­
ticed by several authors (Barlow/10~ Pyke/4/, Smith/11/)the deter­
mination of the distribution function of the cycle, G, or its 
Laplace transform, y, respectively, is an extremely difficult 
problem even for the recurrent input process and i.i.d. lengths 
of impulses. However, there are some integral equations 
Takacs /8/ and Pyke /4/ which formally, but not always in prac­
tice, determine G or y • 

Here we determine IJ>(s, z) = M(e-sZiz 11
) for the modified coun-

ter with prolonging dead time in the case of recurrent input 
of particles. 

Let F = F{ = F2 = ... Define a(s) = {e-s't!F(x), s > 0, J1. = fx dF(x), 
0 0 

and let 0 < 11 < oo. With the given recurrent process I r
0

l:'=l· 

we define a new recurrent one lr
0
sl:=l for any s2:0 with the 

X 

distribution function Fs (x) = P(r:+l- r: < x) = a(s)-1 ~e-st dF(t). 

Let cf>s(z) be the generating function of the number of par­
ticles lis arriving at the modified counter during its dead 
time according to the imput process lrsl""_ 1 and the lengths 

oo n n-
of impulses I Xn I n=l. 

8 

l 

I 
"" I 
... 

Theorem 6. For any s..;:. 0, lzl < 1, IJ>(s, z) = ¢s(a(s)z), y(s) = ¢s(a(s)), 
M( Z 1 ) = 11 M (v ) • 

Proof. Since z1 = r
11

+l we have 

oo -srn+l n 
II> ( S, z) = I r e z dP = 

n=l l11=n I 
-s(t I+ ... + tn) n 

= ~,fc··· (e z dF(t 1) ... dF(t
0
)dH 1(x1) ... dH

0
(X

0
), 

n- n 

where the integration area en has the following form 

(xI < t I)~ 

( 
X 1 < t 1 + t 2) c • •• • • ( ~I < t I + • • • + t n-1) c 

1 
(·~ 1 < t 1 + • • • + t n) 

x2 < t2 ' . 
X n-1 < t n-1 · ~ < t 

n n 

(here the sign '~''denotes the complement of the set mentioned 
in the parentheses). 

00 

Hence ll>(s, z) = I ·a(s)"z" P(vs = n) = ¢s(a(s)z). 
n=l 

The mean value of z, is obtained using the Wald identity. 
Q.E.D. 

5. EXAMPLES 

Example I. Let O<D 1 ~D 2 ~ ... , and let H0 (X)=1 if x>0 0 

and 0 otherwise, and let IF
0

I;=I· be an arbitrary sequence with 
F

0 
(0

0
) =I 0. If we put pi= Fi (Di ), i:;: 1. then 

k . 
P(An) = 1- Pk+n-1' 

k (5. I) 
PI = 1- Pk • 

Pk . 
n = Pk ··· I\+n-2(1- Pk+n-~' n:;: 2. 

Example 2. Let F~ (x) = 1 if x >a, for some a> 0, and 0 other­
wise, n > 1. and let 0 <H0 (a) < 1, H0 (2a) = 1. n;;::. 1. Putting Pi = 

1 - I\ (a), i > 1. we may obtain the formula (5. I) • 
00 k 00 

In the above two examples I P = 1 iff I (1- p. ) = ""• k ~ 1. 
n=l 0 i=l 1 
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