





= P(A;‘ ...A:_l A:), n>1, may be interpreted as a number of par-
ticles arriving at the k-th modified counter with prolonging
dead time in that the dead time is produced according to dis-
tribution functions of interarrival times beginning from F,
Fk+l veee s and the distributipn functions of the lengths of
lmpulses begin from Hy , Hp,,,... It is clear that vy =v
and PBl=P,.
To determine P, we proceed as follows:

— n—1 .
P _P(A A ~ S 1y}
n = PA A A= PA,) j=21 %gi <o <i, <n-1 b

PAi...A Ay l

Using (2.3) we obtain in conclusion

n—-1

, 1+j
P,=P@A,), P =PA)- jEl—P(Aj)Pni;, n>e. (2.4)

. k, > .
Since the sequence {A,t,=1-k>1, has the property analogical
to (2.3) for lA,l ) , that is, for any
k+i k+i
1<i <..<i,n»2 PA*.A° (A% y_pa "l A1
2z 'ah 27 a1

we may obtain the next formula for the k—th modified counter

n-—1]
Pk_ praky pk_paaky 5 piakwokti - oo« -
1 R n *n’ Ty VT =i P Mo~ \Le2)

i=1 [ |
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where P(Alj‘) may be evaluated by (2.2).

If fA, o is a sequence of recurrent events, then P:an

for every k, n, and from (2.4) we conclude the known formula
n—1

P, =P(A,)~ X P(A )P
i=1

n ﬂ—j ]

n>1, derived by Pyke /4

Let ¢, (2) = n2=I'Pnkz" be the generating function for v k21,
Due to (2.5) we have

b @= X PAA-¢ @) |2l <1, (2.6)

A very interesting case is obtained when F - FI,F=Fp=F-...,
and H= Hy, H=Hy =Hg=... . If we put P(A%)= P(A2), then

i
For its generating function we conclude é(z)=(1 - ¢*(2)) U(z) »
lz] <1, Nwhere $*(2) is the generating function for P, »n >1,and
U(z) = ZIP(An)z“,
n=

- =1
P, - P(A), P, - PA,) - ".ZIP(Aj)P*‘ n>2, where P*-BZ-p3..
o
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3. PROPERTIES OF Ak

o0

Here we investigate the structure of the events {A:} k>1,

}DO

= =
for arbitrary sequences {F, 1,2, and H_ }}.,. "

Lemma 1. If P(All")>1 for any k>1, then P(A!:)>[) for any
k,n2>1.

Proof. Let there be two integers k and n such that P(Al;)=0.
Denote by ny the minimal integer n (for the given k) for

which P(AY) =0. If ny>1, then PG@AY ) = PAAL K‘i.o ) =

= P(As ) (- P@Y™™)).  Hence P@A{™07')-0 which contra-

dicts our assumption.
Q.E.D.

Let us define Ug(z)= nél‘ P(A:)zn. |z <1, and B:={xk <Tp+.
+ Teontt- Then the following holds:

Theorem 2. For any k>1 we have

(1) P@Ak)<P@kh, nxe (3.1)
Uy (2) <1+ U, (2). (3.2)
(ii) P(A:)zP(B:)P(A:_f{'), n>2. (3.3)

(iii) If for some n P(B:)>0, then

S PAN) - w iff 3 PATD - .

n=1] n n=1 n

(iv) If LmP(BX) - 1 and EIP(A';) = =, then
n-oo n=

lim}J_k (2) /Gs1(2) = 1. 3.4)

Proof. (3.1) and (3.2) are evident. In order to prove (3.3)
we use the Chebychev inequality: If ¥; (%X{,...,%;), i=1,2,
are non-negative real-valued functions either all are nonin-
creasing or all nondecreasing, and if Gj , i=1,..,n are dis-
tribution functions, then

‘{m;.. (1/11 (xl veous X)) Yol s X)) dGl(x 1) e dGn (x)>

> [ Ty &) X ) 0G5 ).e. 4G (x,) X

< [ o f°¢2 (% 1eers %) 4G (x))... 4G_(x_).



For (iv) we have the following. Let i>3. Then

i—1 o
2 PAN)z" + PBEz I P@Akt] jp-1
n=1] n=i

U (2) >
il aky.n k 52 k1, n
= X P(A)z" + P(BY) 2(Upy(2) - EIP(A‘,, )z™). >
= n=
Using (3.2) we may obtain 12> limUy(z) / U,y (2) > P(Bik). Let- \)
z-»17 ‘

ting i+~ we prove (3.4).
Q.E.D.

Theorem 3. If for some ng>1 we have Bngtl = P 427 o+

0 <
and P(A'l) <1,i=1,. then for any n qsn(l)—l iff T PA;) =
i=1

0,

Proof. If ng=1, then (2.6) implies ¢,;(z)=U,(2) /(1 +Uy(2))
¢2(z) =Uy(2) /(1 + Uy(z)). Hence Theorem 2 implies this partial
assertlon

If ng22 then ¢, . @-0, ., @/A+U, @) . 4, @®"
= U,,0 @/ + Unoﬂ(z)). For 1 <i<ng we have
R R L é P(A",."'i ) x
* (Baget(® = o iy @)=U, @/ U, ROTMOR E PA, Y
X (b g +1(8) = by i (2.
Using repeatedly (3.4) we prove the general case.
Q.E.D.

Observe that assumption P(Ail) <1, i=1,...,n
fluous. Indeed, IeE Ty=1, n>1, and Hi(1)= 1, Ho =Hy = ..,
Hg(1)= 0. Then P(A =1 and Uj(z)=13z, Uy(z)=0.

In the rest of thls part we will assume H (x)>Hy(x)> ...,
H,=—>H, and F= F‘l—F‘2

, 1ls not super-

Theorem 4. We have

(i) P(A'l‘)zP(A;)Z....

.. T ky_1; k+ly
(ii) p, _hnmP(Au)_lll:nF’(A‘\n )=Pyiy-
(iii) If P(AD)= l{mP(A:), then p_= limP(AT) = p, .
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Proof. It suffices to prove (iii). Let us put p, =p. Clearly
P> Po- Now let k be fixed. Then :

P(Ak) > P(AK+]) P(BK) > p,  P(3K) = pP(BK),

Hence P(A)) 2p [ ...of Hit, +... +t) dFe ). . .dF(t ) and, conse-

quently p_>p. Q.E.D.
Theorem 5. (i) If

LmP(AK) > 0, lim [x dH, (%) <, (3.5)

k 0

then p>0. (ii1) If 0< ch dF(x) <, then (3.5) is the necessary
0 .

and sufficient condition for p>0.

Proof. From (3.3) and (3.4) we have
P=p, =P, = MUP(AT) = lim [ [H( ) HE vt )

dF(t;)...dF(t ) 2 ffl P(x, <T,| +..+ T,

where Xn , 021, are i.i.d. random varlables with the distri-

hiskinn funorinn H and indanandant ~f "T‘ l TE con cbhoee ehae

-2 ~r- n—1 - [OER R

nlllP(iTl ot Ta>xab) >0, then the first part of the theo-

rem will be proved. For this it is sufficient to prove that
lE.";IF'(I)(“> T +...+T, D) < . (3.6)

where K>0 is a real number such that

and S =T, +...+T .Then
n 1 n

Let TX - min(T,, K)

MTK)> 0. Puc sKoTK, ., TK
SX:v'sf/n°

PUS, <xob <PUsK <yTn <pask

-MTE) <)+ PASK <3, 15X -MT 1> D <t -
- HOM(TS - ) + A/,

where A 1is a constant independent of n. We choose ¢ such that
M(TX)>¢. Hence (3.6) converges and therefore p> 0.
kow let us prove (ii). The sufficient condition has been

proved. Let p>0. The strong law of large numbers implies that

for an arbitrary ¢> 0 we have P(n 1S <Z2iMTHDH>1 - ¢,
i=ng



where ng is a suitable integer such that H(2ngy M(T) )>0. If p> 0,
then there is ¢> 0 such that p>¢. Then

p<e+ P(nr;l{xn <Spin l,Qnossj <ZMTP D <
and, consequently

0<P( N Ix® <8 In N {S. <2MT H)H <
n=1 “'m n j=ng 1 1

< P( 1010 {x:’<2nM(Tl W= il H(2nM(T, )).
n:no

n=ng

Hence 21(1 - HR0M(T, ))) <=  which implies Ofx dH(x) <. Condi~
n=
tion limP(Alk) >0 is evident.

Let us note that li{nP(A"’) >0 1is not superfluous condition.
Indeed, let H=H, =Hy =..,, H1) =0, T, =1, n>1. Then PA,)=0
for anyn and p=0 although M(T )=1.

4, THE CYCLE

I'he cycles of a counter are defined as interarrival times
between the moments of registered -particles. As has been no-
ticed by several authors (Barlow/19/ Pyke/4/, Smith/11/)the deter-
mination of the distribution function of the cycle, G, or its
Laplace transform, y, respectively, is an extremely difficult
. problem even for the recurrent input process and 1i.i.d. lengths

of impulses. However, there are some integral equations :
Takacs /8/ and Pyke/4/ which formally, but not always in prac-
tice, determine G or y .

Here we determine ®(s, z)=M(e-Szle) for the modified coun-
ter with prolonging dead time in the case of recurrent input
of particles.

Let F = F‘l’ =F =..,. Define a(s)= Fe"s"dF(x), $>0, u= Fx dF(x),
Q 0

and let 0<y < . With the given recurrent process frnﬁ'::{

we define a new recurrent one {rnsl°;=1'
. . . - - — x-—

distribution function F_(x)=P(ry, -7y <X)=a(s) 1 ge SUAF(t).

for any s>0 with the

Let ¢4(2z) be the generating function of the number of par-
ticles vy arriving at the modified counter during its dead
time according to the imput process irns}::l and the lengths
of impulses {x, i, .

8

Theorem 6. For any s2 0, |z] <1, s, 2) = ¢ ,(a(s)2), y(S) = g (a(s)),
M(Z,) =uM().

Proof. Since Zy =r,,, we have
o0 —-87,
O(s,z)= 32 [ e ntlongp -
n=1 {,=p
o0 —s(l +..+1 )
= nE=l~fC... (e 1 " ZUdF(t))...dF(t )dH, (x))...dH (x ),

n

where the integration area C, has the following form

B c .
(xp <tpPt [xp<ty+ty X Stptettp X <t 4.+t
yeeey . » .
X, <ty :
Xpop <o : .
n=1 " "n-1 X, <ty

(here the sign “c’ denotes the complement of the set mentioned
in the parentheses).

Hence P(s, 2) = E_Olva(s)“z“ P(vg = n) = ¢ (a(8)2).

The mean value of Z| is obtained using the Wald identity.
Q.E.D.

5. EXAMPLES

Example 1. Let 0<D, <Dy <..., and let H (x)=1 if x>D,
and O otherwise, and let {F {r = be an arbitrary sequence with
F,O,) #0. If we put p;, =F, (D;), ix1, then

PAS ) =1-py,, -

3 (5.1)
Pl =1- pk )

k _
Pl =pp e Byn2(1=Ppyppr D22

Example 2. Let F,(x) =1 1if x>a, for some a>0, and O other-
wise, n>1, and let O0<H @@)<1, H, (@)= 1, n>1. Putting p; =
= 1 - H (a),i>1, we may obtain the formula (5.1).

In the above two examples EIP: =1 iff _21 (1-p)=>= k21.
n= i=
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