


1. INTRODUCTION

In a previous paper’!V we studied in detail a geometric re-
presentation of Lorentz equation (see (2.1) of Ref.II) in the
form of two equations - a differential equation describing the
time evolution of the modulus of impulse, and a nonlinear al-
gebraic equation describing a walk on the surface of the unit
sphere 8g. In the presence of random factors the geometrical
picture becomes much more complicated due to the "memory ef-
fects" of these factors. Consequently, in the geometric picture
characterizing the direction A(t) of the impulse (or velocity)
vector a remarkable role is played by information concerning
the previous states of the system considered.

In light of this fact it is more appropriate to construct
an operator representation of the investigated dynamical system.

2. OPERATORS AND FLOWS FOR LORENTZ EQUATION
AND ITS GEOMETRICAL REPRESENTATION

Let the quantities Q(t), 8(t), and e(t), t <[0,TIbe defined as
in (2.18), (2.13), and (2.12) of Ref.II, respectively. The dy-
namical system describing the particle”s motion in the absence
of random forces may be described by the following system

@ 2 _ampmio ;
dt

. (2.1)
(b) -;’f- -6t X); telo, T],

where (a) is but an equivalent form of the classical Lorentz
equation (see’/!” Eq. (2.1)). As pointed out in the quoted paper,
we may transform (2.1) (under the condition that p(t) >0 for all
te {0, T]) to (2.1b) and

%‘:—-Q(t) S) + OB . (2.2)

Let us fix the same initial conditions GLB) for both systems.
For (2.1) this should be understood as p = pn. Let pit), t €0, T],
be a solution to (2.1). By substituting it into (2.1a) we get
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—==n() + -—p(t) =Q®p)e®, i.e., -g"— = Q(t)e(t) +St) n ().

Conversel let (@), n()),tc(0, Tl, be a solution to (2.2). As
PG)-—pG)n(O, we have

dp
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dp _-dl-» .92-:. _ - - - a
Pt nt) + " P(®) =t X)n(®) +[QE) e(t) + S(t) n(t) Ip(t) =

=Q®p®8®) +a® [H, X) + p(t)S(t)].

But ¢(t, X) +P()8(t) =4, X) - p(t) —~ p(t) =0
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so that —de =QM)P(t) 8(t), and thus any solution to (2.2) is also

a solution to (2.1). Let us describe this fact in the language
of flows. Let

TV, 0 =(e®, 1®) it pO =p, 70 =n;

2% =50 it 50 -5 (2.3)

The states of (2.1) are the vectors p(t) Since pa)=pa)n(0.
where 0(t) €84, we have p(t) & S3(p(v)), here Sa(r) stands for the
sphere of radius r. Put

= 2.4
SS rgos:;(r)v_ ( )

where the spheres S.(r) are considered as concentric. A state
of (2.2) is a pair (p(t),n(t)) belonging to the space

‘L: R+)( 83 (R+=(00 N))- (2-5)
Let
®: (,0) €L — pa(=p)& §,. (2.6)

Then the above reasoning results in the assertion that

oIt e, )1 =-T® (00, ]

is valid for any t&c[0, T], pGR+, and 5@53. i.e.,

¢oT§1’ =Tt(2)°d>. (2.7)

Since it is clear that ¢ is invertible, the flows T(= CI“)
tc [0, T) and T® - (T“z),t <{0, T]) are 1somorph1c Further~
more, we can introduce canon1cal topologies in spaces L and Sa'
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If k is the minimum of degrees of smoothness of right-hand si-
des of (2.1) and (2.2), then it is possible to show that ¢

is a Ck¥-diffeomorphism /1/, Hence, the two dynamical systems
are CE-flow equivalent.

The main difference between the descriptions of a particle’s
mot1on in terms of equations (2.1), (2.2), and in terms of flows
T and T<2)-respect1ve1y is the following.The former descrip-
tion 1is local (instantaneous) while the latter one is global
in the sense that it describes the total change up to a fixed
time instant t. We pass to the global description because of
memory effects in random factors mentioned above. But first let
us introduce the local operators corresponding to non-random
factors.

3. FIELD AND MEAN LOSS OPERATORS
As pointed out in Section 2, non-random factors admit for
a local description. Consequently, we shall describe the in-

fluence of the magnetic field and of mean energy losses by in-
stantaneous operators Ay, and AuL t,respectively, where
+ s

Ay ®®, 1(t)) = QE)PO), 6®): (3.1

> dp -
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A summary of Ref.II (see also the preceding section) says that
the action of the pair'Ay, ,AyL,, is equivalent with the ac-
tion of the operator

VE 20, (3.3)

Agyn,: @®,0®) = (AW +8)*]
where ;(0 stands for the unit vector directed as the deriva-
tive dofdt (see (2.23) of Ref.II).

A formal integration of (2.1) and (2.2) within the intervals
[0,t], t< T, enables us to express the global flow operators

‘1) and T®in terms of operators Ay, , Ayy,and Agyy ,

for re [Oti Hence, the local operators un1que1y determine’ the
corresponding flows.

Let us make a remark concerning the magnetic field. An
exact statistical model requires also that we take random fluc-
tuations of the magnetic field into account. On the other hand,
the majority of measurement devices work with averaged charac-
teristics of the magnetic field so that we continue considering
it as deterministic (and smooth enough for the solvability of
the Cauchy problem for (2.1) of Ref,II).



4. OPERATOR EXPRESSIONS FOR RANDOM FACTORS

The basic aim of this section is to give a full description
of the flow (Tt.tG[O T)) corresponding to the motion of a par-
ticle under influence of magnetic field, energy losses (in-
cluding random radiation losses), and scattering processes,
respectively. As far as concerns the latter, it seems necessa-
ry to investigate small and large angle scattering separately.
In what follows we suppose that the small angle scattering con-
stitutes the essential part of scattering processes. In this
case we can give, based on the microscopic theory of the pro-
cesses involved, the following phenomenological description .
of all forces whlch change the initial state (Poono)lnto the
final state (p(t), 0(t)), t € [0, Tl. We make this transparent by
means of the following scheme:

@19 =L (lr,), B )
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However, a formal description of the process just depicted is
very tedious matter because of necessity to introduce com li-
cated normalizations preserV1ng the 1nterpretat10n of 1 ¢ (’1)
n@ )02) etc., as unit vectors. For this reason it is more
convenient to pass to the frame of corresponding spatial angles.

So, let us fix an orthogonal coordinate system in Sg, say
(Oxyz). Each n € Sg then may be identified with an angle 0. The
scattering process in our scheme is described as a continuous-—
time process which comes into effect at random discrete time
instants (Markov moments) 0 < 1 <rg <w.<rg <t At the time
instant r; the result of scattering is described by a random
rotation which transforms the direction (angle) of n& )} into
the direction (angle) of the vector sum n&i) + f,. The mecha-
nism of scattering does not change in time, however, the dis-
tribution of the scattering angle depends on time through the
total energy at a given time instant.

Unless the time instants r; we suppose the motion is under
influence of merely the processes H (magnetic field) and [
(energy losses). Following /3/ we suppose that the process of
energy losses is expressed as a sum
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() =pt) +£@) t < [0, T], 4.1)

where p(t) is the instantaneous value of the mean impulse modu-
lus and (¢£(@®); t>0) is a white noise process. We suppose it is
independent of the random angles 6,. Also, we suppose that
T1sTgsersTK are the Markov moments of a Poisson process with
intensity function t —»A(t) .In particular

t
Prob[K(t) = m] = (m!) " ( t[/\(r)dr)m exp (- [/\(r)dr). (4.2)

It follows that the Markov moments have exponential dlstrlbu—
tions. Using (4.1) and (4.2) we may express the operator A 807
corresponding to the random part of energy losses and to scat-
tering as follows:

t K(t)
AL (o ®gr0g)= B+ [A@), 05+ 3 0 ). (4.3)
’ =1 k

In which sense does (4.3) describe interactions between the two
processes? To this end recall that the distribution of scatter-
ing angles includes the total energy as a parameter (this may
be seen from the well-known Rutherford”s formula). Ln the pre-
sence of the random process Il we see from (4.1) that the total
energy at a given time .instant depends also on the random sum-
mand £ . Conseauantly, the dietrihutinne af enime in (4 3) alen
depend on II.

We may consider (4.1) also in another way. Replace the "mean"
equation for p (cf. (2.1b)) by

%";—=¢(t.x) +£@®;  telo0,T]. (4.4
Let us formally integrate:
: y (4.5)
7(t) =p + [ ¢, X)dr+ [ d€(r).
° 0
Then we get instead of S(t) the quantities
8, =—n(t)—1[¢(t. X)+ £® 1. (4.6)

Though the solution to (4.4) does not possess an ordlnary mean-—
ing, the properties of white noise entail that 8 1)  is a well-
defined random variable for any t c [0, T] such that I%ob[nG)>0}d
Now we can formally describe the "stochastic" flow T = (Tt.tG[OTD
which corresponds to the process depicted on the above scheme.

5




We have

T;(pweor=@ug,évgn

LS
plry) =pg + f [Q(ﬂ +8 0)2]1/2 ; 4.7)
- '1 Q)
0.) =6,+ [ alr)dr +
R N T N R
" §,(r)

B dr,

0 [Q(n?%+s, (r)%]1/2

where a(r) is the spatial angle of €(r) and B(r) is that of
n(r). At the time instant r1 the scattering process is working
and results in a change T, (pq, ) - Tr ®or 00 ), where the
latter is obtained from the former by addlng the random angle
0,1 to the second component of the state vector. Similarly,

T'2 (pO'oo) = ng_'l[Tlfl(po,oo)], (4'8)

etc., If 'K(:) =1 then

f(p,e‘,.__~1 Py Vo). (4.9)
t 0 0 rx(o 0 0

1f TR (1) <t then

T - (4.10)

Tl(pﬂ' 00) = T [T (p()'oo)].

TR TR

In this way we got a full description of the flow along "sto-
chastic" trajectories. The formula (4.8) suggests there exjsts
a property very similar to the requirement that the flow T
‘be a Markov semigroup. However, a detailed investigation of
the statistical properties of the flow T exceeds the frame of
the present paper.
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