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I . INTRODUCTION 

In a previous paper/III we studied in detail a geometric re­
presentation of Lorentz equation (see (2.1) of Ref.II) in the 
form of two equations - a differential equation describing the 
time evolution of the modulus of impulse, and a nonlinear al­
gebraic equation describing a walk on the surface of the unit 
sphere 8 8• In the presence of random factors the geometrical 
picture becomes much more complicated due to the "memory ef­
fects" of these factors. Consequently, in the geometric picture 
characterizing the direction n(t) of the impulse (or velocity) 
vector a remarkable role is played by information concerning 
the previous states of the system considered. 

In light of this fact it is more appropriate to construct 
an operator representation of the investigated dynamical system. 

2. OPERATORS AND FLOWS FOR LORENTZ EQUATION 
AND ITS GEOMETRICAL REPRESENTATION 

Let the quantities Q(t), O(t), and e(t), t ~[O,T]be defined as 
in (2.18), (2.13), and (2.12) of Ref.II, respectively. The dy­
namical system describing the particle#s motion in the absence 
of random forces may be described by the following system 

d ... 
(a) .2. .. Q(t) p(t) e(t) 

dt 
-+ (2.1} 

(b) .!!E., .. lf>(t, X); t ~ [0, T], 
dt 

where (a} is but an equivalent form of the classical Lorentz 
equation (see 1111 Eq. (2. 1)). As pointed out in the quoted papP.r, 
we may transform (2.1) (under the condition that p~) >0 for all 
t'" [0, T]) to (2.1b) and 

... 
dn ... ... 
- .. Q(t) e(t) + S(t) n(t). 
dt 

(2.2) 

Let us fix the same initial conditions ~.n) for both systems. 
For (2.1) this should be understood as p = pn.... Let Pet), t "[0, T], 
be a solution to (2.1). By substituting it into (2.1a) we get 



· .. ... 
dp -+ dn -+ 
dtn(t) + dtp(t) = Q(t) p(t) e(t), i.e., dn -+ ... 

dt .. Q(t) e (t) + S(t) n {t). 

9onverselX, let {p(t),n(t)),tc;;(O,T], be 
p {t) = p (t) n (t) , we have 

a solution to (2.2). As 

-+ .. 

..s!. = S!_ n (t) + ~ p (t) = cp (t, X) n (t) + ( Q (t) e (t) + S(t) n (t) ]p (t) 
dt dt dt 

= Q <t> p <t>"iht> + -n <tH q, ct. x> + p <t> s <t> 1. 
1 dp 

But cp(t, X) + p(t) S{t) = cp (t, X)- p(t) p(t) • iir = 0 

dp .. 
so that dt =Q(t)p(t)e{t), and thus any solution to (2.2) is also 

a solution to (2.1). Let us describe this fact in the language 
of flows. Let 

... ... 
p (0) = p, n (0) = n ; 

-+ -+ 
ir p(O) = p. 

(2. 3) 

The st~tes of (2.1) are,..the vectors p(t}.Since p(t)=p(t)n(t), 
where n (t) c;; S3 , we have p (t) ~;;. S3(p(t) ), here S

3
(r) stands for the 

sphere of radius r. Put 

S3 = u S 3(r), 
r ~ 0 

(2.4) 

where the spheres S8(r) are considered as concentric. A state 
of (2.2) is a pair (p(t),n(t)) belonging to the space 

L "" R + X s 3 ( R + = (0, 00)) • 

Let 

Ill: (p.~) ~ L -. p;(=P) ~ s
3

• 

Then the above reasoning results in the assertion that 

(1) ... (2) -+ 
~(Tt (p,n)]=Tt [~(p,n)] 

is valid for any tc;;(O, T], p c;;R+' and ilc;;s 3 , i.e., 

~ oT(l) = T(2)o.., 
t t .... 

(2.5) 

(2.6) 

(2. 7) 

Since it is clear that ~ is invertible, the flows T(l)= (T(l); 

t c;; [0, T]) and T(2)= (T~2 >; t c;;(O, T]) are isomorphic. Furth~r­
more, we can introduce canonical topologies in spaces L and 8

3
• 
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If k is the minimum of degrees of smoothness of right-hand si­
des of (2.1) and (2.2), then it is possible to show that ~ 
is a C k-diffeomorphism 111. Hence, the two dynamical systems 
are ck-flow equivalent. 

The main difference between the descriptions of a particle's 
motion in terms of equations (2.1), (2.2), and in terms of flows 
T{l) and T<2>,respectively,is the following.The former descrip­
tion is local (instantaneous) while the latter one is global 
in the sense that it describes the total change up to a fixed 
time instant t. We pass to the global description because of 
memory effects in random factors mentioned above. But first let 
us introduce the local operators corresponding to non-random 
factors. 

3. FIELD AND MEAN LOSS OPERATORS 

As pointed out in Section 2, non-random factors admit for 
a local description. Consequently, we shall describe the in­
fluence of the magnetic field and of mean energy losses by in­
stantaneous operators A H,t and At.tL,t , respectively, where 

... -+ 
A H, t (p (t), n ( t)) = (Q (t) p (t), e (t)) ; (3. I) 

A summary of Ref.II (see also the preceding section) says that 
the action of the pair'AH,t, AML,t is equivalent with the ac­
tion of the operator 

.. 2 2 112 -+ 
A HML, t (p (t), n (t)) "' ([ Q (t) + 8 (t) ] , '1 (t)) , (3.3) 

where ~(t) stands for the unit vector directed as the deriva­
tive mvdt (see (2.23) of Ref.II). 

A formal integration of (2.1) and (2.2) within the intervals 
[0~ t], t ~ T, enables us to express the global flow operators 
T \1) and T (2) in terms of operators A H r , A ML r and A HML r 
for r c;; [ o,tf. Hence, the local operators' uniquel'y determine' the 
corresponding flows. 

Let us make a remark concerning the magnetic field. An 
exact statistical model requires also that we take random fluc­
tuations of the magnetic field into account. On the other hand, 
the majority of measurement devices work with averaged charac­
teristics of the magnetic field so that we continue considering 
it as deterministic (and smooth enough for the solvability of 
the Cauchy problem for (2.1) of Ref.II). 
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4. OPERATOR EXPRESSIONS FOR RANDOM FACTORS 

The basic ~im of this section is to give a full description 
of the flow (T t; t 4::; (0 T]) corresponding to the motion of a par­
ticle under influence of magnetic field, energy losses (in­
cluding random radiation losses), and scattering processes, 
respectively. As far as concerns the latter, it seems necessa­
ry to investigate small and large angle scattering separately. 
In what follows we suppose that the small angle scattering con­
stitutes the essential part of scattering processes. In this 
case we can give, based on the microscopic theory of the pro­
cesses involved, the following phenomenological iescription 
of all forces which change the initial state (Po,no) into the 
final state (p(t), n(t)), t 4::; (0, T]. We make this transparent by 
means of the following scheme: 

~ (p(r 2 ), n (2)(r2)) 

1 so 
~(2) ; H" 

(p(r2), n (r2) +~2 >- ... ..!!J:...o(p(t),n(t)). 

III 

... (8).( ) 
n '2 

However, a formal description of the process just depicted is 
very tedious matter because of necessity to introduce comr,li­
~ated normalizations preserving the interpretation of n<2 (r 1 ), 
n<3>(r 2 ), etc., as unit vectors. For this reason it is more 
convenient to pass to the frame of corresponding spatial angles. 

So, let us fix an orthogonal coordinate system in S3 , say 
(Oxyz). Each ii ~ Ss then may be identified with an angle 9. The 
scattering process in our scheme is described as a continuous­
time process which comes into effect at random discrete time 
instants (Markov moments) 0 < r1 < r 2 < •.• < r K ~ t. At the time 
instant r 1 the re.sult of scattering is described by a random 
rotation which transforms the direction (angle) ... of n(r I) into 
the direction (angle) of the vector sum n(r 1) + f I• The mecha­
nism of scattering does not change in time, however, the dis­
tribution of the scattering angle depends on time through the 
total energy at a given time instant. 

Unless the time instants r 1 we suppose the motion is under 
influence of merely the processes H (magnetic field) and n 
(energy losses). Following 1SI,we suppose that the process of 
energy losses is expressed as a sum 
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"<t> = p(t> + e <t> • t (; (0, T], (4. I) 

where p(t) is the instantaneous value of the mean impulse modu­
lus and (f(t); t ~0) is a white noise process. We suppose it is 
independent of the random angles (Jt. Also, we suppose that 
r1 ,r2

, ••• ,r K are the Markov moments of a Poisson process with 
intensity function t -• A (t) 121

• In particular 

1 t m t 
Prob(K(t) = m] = (m!)- ( ( A(r)dr) exp (- ( A(r)dr). 

0 0 

(4. 2) 

It follows that the Markov moments have exponential distribu­
tions. Using (4.1) and (4.2) we may express the operator AY(80 , 
corresponding to the random part of energy losses and to scat­
tering as follows: 

(t) t K(t) 

All, sc (Po,() o) = (Po+ Jo df(r), oo + I. 9, 
k = 1 k 

) . (4.3) 

In which sense does (4.3) describe interactions between the two 
processes? To this end recall that the distribution of scatter­
ing angles includes the total energy as a parameter (this may 
be seen from the well-known Rutherford#s formula). in the pre­
sence of the random process ll we see from (4.1) that the total 
energy at a given time instant depends also on the random sum­
m;mcl E(t). r.on>'lPf!11Pntly, thP ni<>trih11tinn<> nf <>11mC in (L, 1) <>len 

depend on n. 
We may consider (4.1) also in another way. Replace the 11mean11 

equation for p (cf. (2.lb)) by 

~ /: . - = ¢ (t, X) + ., (t), 
dt 

t ~ ( 0, T] . 

Let us formally integrate: 

t t 
"(t) = p

0 
+ ( ¢(t, X) dr + J df(r). 

0 0 

Then we get instead of S(t) the quantities 

-1 
S"(t) =-"(t) [¢(t,X) + e(t)]. 

(4.4) 

(4. 5) 

(4. 6) 

Though the solution to (4.4) does not possess an ordinary mean­
ing, the properties of white noise entail that S"(t) is a well­
defined random variable for any t (; (0, T] such that _Probj"(t) >0]..1.. 
Now we can formally describe the "stochastic" flow T =(Tt; t(;[O;T]) 
wh·ich corresponds to the process depicted on the above scheme. 
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We have 

p(r1) = Po + 
r 1 2 2 112 
([Q(r)+S,.(r)] dr; 
0 

'1 Q (r) 
O(r

1
) = e

0 
+ ( a(r)dr+ 

0 [Q(r)2+ s,.(r)2] 1/2 

'1 
+ r 

0 

s,.(r) 
-----~~ f1 (r) dr, 
[Q(r) 2 + S,. (r) 2] 112 

(4. 7) 

where a(r) is the spatial angle of e(r) and f1(r) is that of 
n(r). At the time instant '1 the scattering process is working 
and results in a change T; (p 0, 00 ) ... T,1 (p 0, Oo ), where the 
latter is obtained from thJ former by adding the random angle 
0,

1 
to the second component of the state vector. Similarly, 

(4.8) 

etc. If r K(t) = t then 

-1 t Wo • t1 o I = ·1 r tP o• tJ o> • 
K(t) 

(4.9) 

If 'K(t) < t then 

(4. 10) T t (p 0 • e 0) = T ~-r [ T r (p 0. e 0)] • 
K (t) K(t) 

In this way we got a full description of the flow along "sto­
chastic" trajectories. The formula (4.8) suggests there exjsts 
a property very similar to the requirement that the flow T 

·be a Markov semigroup. However, a detailed investigation of 
the statistical properties of the flow T exceeds the frame of 
the present paper. 
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