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for at any time instant t the vectors p(t) and v(t) are direct
ed identically. Let 

-+ -+ 
q {t) = H(t) I H(t) , ( 2 • 4) 

-+ 
i.e., q(t) is the vector which corresponds to the direction of 
the magnetic field at moment t. The symbol merr {t) will denote 
t!he effective mass at the time instant t. It is related to the 
rest mass m via the relation 

2 2 -112 
m8 rr{t) =m[l-(v(t) /c)] (2. 5) 

and, furthermo~e, to the modulus of impulse by the relation 

p(t) = m
8
rr{t) v(t). (2.6) 

The expression inside the square brackets in (2.5) is a relati
vistic factor. Substituting (2.2) through (2 . 4) into (2.1) yields 

~ e v(t) -+ -+ 1 dp -+ 
- =- --H(t) [ n( t) x q(t)] -- -n(t). (2.7) 
dt c p (t) p (t) dt 

Of course, (2. 7) is valid when p(t) .f, 0 (and this corresponds 
physically to a particle which does not stop moving inside the 
time interval [O, T] within which we shall study (2.1)). Were
turn t the pp p · 1 s ater . Using (2 . 6) we ma 
rewrite (2.7) in the form 

-+ dn -+ -+ -+ - = Q 1 (t) [ n ( t) x q (t) ] + S (t) n (t) , 
dt 

(2.8) 

where 

e H(t) 
Q 1 (t) = c ' 

merr (t) 

1 dp 
S(t) = - p(t) dt. (2.9) 

We see that the function t ... p(t) enters (2.8) as a parameter. 
It is well-known that this function satisfies a certain dif
ferential equation (the explicit form of which is not important 
for us at present) 

dp 
- = c:/>(t, X), (2.10) 
dt 

where X stands for the parameter of environment (in fact, we 
usually have not (2.10) itself but its solution- the loss func
tion- at our disposal). In order the Cauchy problem be fully 
determined we must add initial conditions for (2.8) and ·(2.10): -+ -+ . 
p(t) = Po, n(t) = n 0 for t = 0. (2. I I) 
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In order to simplify forthco~ng considerations we need se
veral notations more. If a and f3 are two vectors then !![a', j}] 
designates the plane containing those vectors and ~(d,{3) the 
spatial angle between them (if defined). Let O(t) = ~ [n(t), q(t)]. 
Then 

... ~ ... ~ ~ .... 
n(t) x q(t) = ln(t) I Jq(t) I sinO(t) e(t) = sinO(t) · e(t), (2 .12) 

where e(t) is the unit vector orthogonal to the plane rr[n(t), q(t)]; 
in symbols 

(2.13) 

Before proceeding to the study of the system (2.8) through 
(2.11), several remarks seem worth to make. In the original 
equation (2.1) the energy losses are not taken into account. 
Therefore it might appear more reasonable to start with a mo
dified Lorentz equation 

~ ~ 

~ = ..![V"(t) X H(t)] + p(t) ~. (2.14) 
dt c p(t) dt 
In fact, such a strategy is usually followed even at pr~ent 
(see Refs. 11•21 ). Using the formula (3.2) of Ref.I for (}= P 
we get in place of (2.8)-(2.11) the following system of equa
tions: 

~ 

~ = ~ H<t> [ii<t> x ii<t> 1 
dt c p(t) 

..2_ = cp (t, X) ; ( 2 • I 5) 
dt 

p(t)=Po• n(t)=no for t=O. 

From the geometrical point of view the system (2.15) is more 
evident than (2.8)-(2.11), for the vectors rnn/dt is nothing 
but the normal vector to the trajectory at the point t. Since 
n(0 is a tangent vector at the same point, elementary geomet
rical arguments show that the first equation in (2.15) is geo
metrically "consistent" in the sense that the vectors on both 
sides are identically directed. Moreover, we have from elemen
tary geometry that 

dO ~ 
= K(t) 1/(t), (2.16) 

dt 

where ~ (t) is the unit normal vector and K(t) stands for the 

curvature at the point t (2.15) and (2.12) entail 

K(t) .. !.. ~sinO(t). 
c P\•J 

(2 .17) 

On the other hand, (2.15) does not correctly reflect the 
energy losses. Indeed, it follows from (2.17) that the energy 
losses merely change the curvature. However, physically it is 
evident that the process of energy losses works essentially 
in the direction tangent to the integral curve of (2.1). Conse
quently, a certain displacement of the centre of curvature 
should result. But this means there exists an additional term 
(in the direction of n(t) ) to the rotation tensor n(t) X q(t), 
Such an additional term is present in (2.8). Hence, the system 
(2.8)-(2.11) seems to be more reasonable, from the physical 
point of view, than (2.15) is. 

I 
f-. 
I 
I 

~ 
I 

Fig. I 

No~ let us return to the former system. The corresponding 
geometrical picture is given on Fig.!. Introducing the quantity 

Q(t) .. Q 1 (t) sin(} (t) e 
=-c 

H(t) sine (t) 
m,tt {t) 

(2. 18) 
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the equation (2.8) will assume on the form 

dfi ... ... dt = Q(t) e (t) + S(t) n (t) • 
(2 .19) 

It follows from (2.9) and (2.18) that Q(t) and S(t) are (in phy
sically interesting situations) continuous functions. From 
(2.16) it follows that the vector dO/dt is a unit one only 
when n(t) is a vector tangent to the surface of a unit sphere 
s1, i.e., when K(t)=l. In the general case we must renormalize 
dri/dt. Since the vectors e (t) and n(t) are orthogonal, (2. 19) 
shows that 

I dO I = [ Q(t) 2 + S(t)2 ] 1/2 
dt 

(2.20) 

The quantity (2.20) differs from zero unless the particle moves 
along a straight line (see below). Using (2.20) we finally come 
to a non-linear algebraic equation 

... ... ... 
77(t) = A(t) e(t) + B(t) n(t), (2.21) 

where 

A(t) = Q(t)[ Q(t) 2 + S(t) 2] -1/2 l 
B{t) = S(t) [Q(t)2 + S(t)2r1/2 J 

Fig.2 Fig.3 
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On Fig. 2 we have IOAI = A(t) , lOBI = B(t), and the plane of that 
figure is orthogonal to IT[n(t), q(t)]. This means that the ro
tation from e(t) to ii(t) acts in a plane orthogonal to 7T[n(t) ' 
q(t)] and intersecting the latter in a straight line containing 
the vector n(t). 

Equations (2.21), (2.10), and (2.11) completely determine 
the function t ... ij(t). If the change of the unit vector ii is 
represented by the motion of its end point, then we finally 
get a representation of the system {2.8)-(2.11) in the form of 
a (deterministic) walk on the surface of the sphere s

3 
(Fig.3). 

Next let us clarify the meaning of objects entering the geo
metrical representation obtained so far: 

(a) ~(t) = A(t) e'(t) + B(t) o'(t); 

(b) A(t) = Q(t)[Q(t) 2 + S(t) 2 ] - 112 ; 

(c) B(t) = S(t) [Q(t) 2 + S(t) 2]-112 ; 

(d) Q(t) =eH(t) sin9(t)[cmerr(t)]-
1
; 

(e) S(t) = -p(t)-1 dp/dt; 

(f) dp/dt = f/>(t, X); 

(g) p(t)= p 0 , n(t) =no for t=O. 

Let 

... ... 
..;. ('.} = .,. l "('.}. ,, ('.} J • '} 

... ... 
1/1 (t) = ~ [ n(t), 11(t)]. 

Fig.4 • 

(2.23) 

(2.24) 

See Fig.4 and observe that e(t), 
n(t) and ij(t) each are lying in 
the same plane. By scalar multi
plication of (2.23a) by ij(t), e(t), 
and n(t),respectively, and by 
evaluating the corresponding 
scalar products we obtain 

1 = A(t) cos f/>(t) + B(t) coBI/1 (t) ; } 

A(t) = cosf/;J(t); (2.25) 

B(t) = coBI/1 (t) • 

Since cosl/1 (t) .. cos [ q, (t) + "/2] 

(2.25) follows from the 
reduces to A (t) 2 + B(t) 2 .. 1 . 

= -sinf/>(t), the first equation in 
second and the third ones, and 

We now describe some particular cases throwing light upon 
the physical meaning of objects in (2.23). Suppose the field is 
constant in each direction and modulus (i.e., q(t) = q(O), 
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H(t) s H(O)) and that there are no losses of energy (i.e., p{t) sp0 ). 
In this case S{t) s 0. Consequently, A (t) s l and B(t) s 0. Hence 
cf>(t) "'0 and the vectors ij(t) and e(t) coincide at each time 
instant t. This is natural for in the absence of energy losses 
also the displacement of the curvature centre must be absent. 
The equation (2.23a) reduces to 

-+ -+ 1 -+ -+ 
11 (t) = e (t) = [ n (t) x q {0)] • 

sin8(t) 
(2.26) 

In case when J [ n 0 , q (0)] = rr/2, equation ( 2. 26) transforms into 
the tautology ~(t) = e(t). and this corresponds to the motion. 
along a unit circle placed in the plane orthogonal to K[n 0 ,q(O)]. 

In order we get also a physical information about the motion, 
return to (2.7), which, in our particular case, assumes on the 
form 

-+ 

~ = !_ v(O) H(O) ; (t) • 
dt c p(O) 

(2. 27) 

We already know that the scalar multiplicative constant in 
(2.27) has the meaning of curvature. Hence, we see from (2.27) 
that the additional information about a homogeneous field merely 
entails the change of the unit curvature to some constant one, 
K, where 

e v(O) · 
K "' K(O) = c p(O) H(O) (2.28) 

(cf. Fig.S). 

-> 
~(0) 

·- ·-·-·"' ·--·-·-
Fig.S 
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• 

-+ 
field H(t) for which 
along q(t) changes 

All reasoning remains true also for a 
q(t) s q{O) and in H(t) only the component 
in time, The only difference consists of 
vature will no longer be constant: 

the fact that the cur-

e v(O) 
K (t) = c "'"iiro) H(t) • (2.29) 

• -+ -+ 
Now_ le~ us cons~der the case when H(t) s H(O), q(t) s q(O),and 
J[n 0 ,q(O)]~rr/2. The scalar term (sinO(t))-1 in (2.26) is 
a periodic function which changes the curvature, however, the 
motion itself again lives on the plane orthogonal to rr[n 0, q(O)]. 

When the field is absent (i.e., H(t) s 0 so that Q(t) s 0) we 
get a singularity in (2.23) to the effect that the end point 
of the vector ij(t) becomes a fixed point. This corresponds to 
the motion along a straight line. Indeed, in this case we get 
from (2.7) the equation 

eli dp -+ p{t)- = --n (t) • (2.30) 
dt dt 

It follows from these considerations that all general results 
(to be obtained in subsequent papers) will work equally well 
also for straight trajectories. 

We conclude this section with the following remark concer
ning the relation between 8(t) and ch{t). Using (2.23). (2.24). 
and (2.25) we get 

B(t) = sin c;6 (t) tgc;(>(t) 
(1/p(t)) (dp/dt) 

A(t) cos c;6 (t) (e/c) (H(t) sinO{t) /m eff (t)) (2.31) 

3. CONCLUSION 

A thorough investigation on the geometrical representation 
of equations of motion made it possible to recognize clearly 
the relations between geometrical and physical properties of 
braking processes and of the magnetic field, respectively(these 
are processes P1 and P6 in the notations of Ref. I). The gene
ral system (2.23) shows that, even in absence of random factors, 
the yrocesses P 1 and P6 are not independent. 

In principle, all considerations of the present paper remain 
valid even in the presence of random factors. However, it turns 
out that it is more convenient to pass to an operator represen
tation of separate physical processes obeying random character. 
This will be the aim of the next paper. 
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