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}. INTRODUCTION

The mathematical theory of particle counters is concerned
with the formulation and study of stochastic processes associa-
ted with the registration of particles due to radioactive sub-
stances by a counting device designed to detect and record them
and placed within the range of a radioactive material. The ge-
neral problem can be described as follows. .

We first consider a sequence of random events con51st1ng
of the arrival of the emitted particles. This sequence is cal-
led the primary sequence of events or primary process. We
suppose that any arriving particle generates an impulse of
a random length (may be constant one, too). Due to the inertia
of the counting device, it is possible that all particles will
not be counted. The time during which the device is unable to
record is called the dead time. The sequence of registered par-
ticles forms a secondary process which is selected from the
primary sequence according to a used type of a counter.

The basic problem in the counter theory is to determine the
distribution function of the distance between two successive
registered particles if the distribution function of the pri-
mary process, distribution of impulses and the counter type
are known.

Our main aim in this note is to determine the joint Laplace
transform of the above-mentioned distribution, and the gene-
rating function of the number of particles arriving to the
counting device during the dead time for the so-called Type II
counter, and to make some remarks on the registrations of m
types of particles (mx1).

2. NOTATIONS AND KNOWN RESULTS

The mathematical and physical literature on the counter
theory deals mainly with two types of models. A Type I counter
(counter with nonprolonging dead time) is one in which dead
time is produced only after impulses of particles have been
registered. A Type II counter (counter with prolonging dead
time) is one in which dead time is produced after registration
of all impulses of emitted particles. Examples of Type I and
Type II counters are the Geiger-Miiller counters and electron
multipliers, respectively. An extensive bibliography of the
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counter theory is in Takdcs /24/ and smith /%, From the physical
literature dealing with this object see,for example,the mono-
graphy/ 11/,

Let us suppose that particles arrive at a counter at the
instances 0=r; < 7, <7y <... <, where the interarrival times
fn - a1 (@=12,...) are identically distributed, independent,

n . 3 . 3 3 3 3 3 \
positive random variables with the distribution function i

F®=P(r, - r, ;< x).

Denote by X, the duration of impulse starting at r_ ,(n=0,12...).
It is supposed that {y,} 1is a sequence of identically distri-
buted, independent, positive random variables with the distri-
bution function

H@=P(x, < x),

and independent of {r }.

At any instant t there are two mutually exclusive states
in which counter may be: state Eg when no impulse covers the
instant, and state Ej otherwise. The interval when the counter
is in a state Ej corresponds to the dead time, and the interval
when it is in E; state corresponds to an idle time. The par-
ticles are reaistered only if the counter is idle, and let us
suppose that the registration process starts from re =0.

In the Type II counter the n-th particle (n=1.2,...) is
registered iff r, + m«’n for any m=0,1,...,n -1, If we define
accordingly to Pyke /!3/ ng =0,

n; =min{k:k > n,_,,

i - Tk > 7 + X, » T=Dj 5,00, k=1]

r

o0
for j=12,...., then {nj}j=0 is a sequence of indices of regis-
tered particles. Since the primary process is recurrent one,
the secondary process

Z.=f - T ’

j nj nj.l j=1,2.-co.

is recurrent, too.
The main problem is to determine the distribution function

G(x)=P(Z]. < x), : 2

or, equivalently, its Laplace transform

y(s)=M(e " ), az0. ‘ \

This very interesting problem has been studied by several
authors. The partial case of the Poisson primary process i§

2

discussed by Takdcs /22-24:26:28/, pollaczek /14/smith/2!/, Sankara-
narayanan /17-19/, Albert and Nelson’4/, Afanaseva and Michajlo-
NB e

Although in the physical practice we deal mainly with the
Poisson primary process, due to the repeated handling of par-
ticles by several counters, the initial process inputting at
the last counter will not be Poisson, but only recurrent one. s

The recurrent primary x;grocess and constant length of impul-
ses are studied in refs./I52428/ and the e onentially distri-
buted impulse times are discussed in papers /14.15,25,27,28/

The general case has been taken into account by Pollaczek/14/
who has given the solution in the form of complicated contour
integrals. Takdcs /24/ and Pyke/15/ obtained only integral equa-
tions without their solutions. Similar results are obtained
using the multiplicative processes by smith/?!/.In authors: pa-
per/ / the explicit computable formulae for the discrete pri-
mary process and discrete lengths of impulses are given. Many
other problems of the theory of Type II counters are investi-
gated, for example, in refs/6,20/,

This problem is important not only for the counter-theory.
The same problems (from the mathematical point of view) are
studied in the film or filmless measurements of the particle
track ionization in the so-called bubble and streamer chambers
(for details see, for example, refs./78:12/ )  The description
of the queueing systems with infinitefy many servers leads to
analogical problems, in general, '

3. TYPE II COUNTER

As has been noticed by several authors /5:15:21/ the determi-
nation of G or y is an extremely difficult problem. However,
there are the integral equations which formally, but not al-
ways in practice, determine G or y, respectively. Takacs
obtained an integral equation in M(t) -~ the expected number of
registered particles in a time interval (0,t) for all t> 0.

Lemma 1. (Takiacs’?%) For all t20

t i £
M) = é’H(y)dF(y)+H(t) ;M(t-)')dF‘(Y)-
' 0

£t ¢))
~ [ M(z-y)dH(2)dF(y).
00
If we know M(t),then y(s) may be determined by
Y@= [ MO /Ay o aMw), 520, @




Barlow/5/ generah.zed the equation (1) to the case of the
semi-Markov primary process.
Pyke/ 5/ obtained the integral equation for Q.

-

Jemma 2. (Pyke/‘*"y‘) For all x>0

G(x)=f Z"a-G(x—y-t))n(y+:)dN(c)dxé(y). | 3)
and for all s20

y(®) = A&+ 6D, )
where

A(E) = ffe""‘“’H(xu)ap(xjm(t).

These two representations are equivalent in the sense that
G and N are uniquely determined one by another. Below we

give an explicit form of the Laplace transform y of the distri—'

bution function, G which determines the solutions of the equa-
tions (1) and (2), respectively.

Let us denote by q, the number of the impulses present at
the arrival of the n-th particle (n=0,12,...). The sequence
of events A, defined by

.

An = {qn = 0}, n=0,1,...,

is a sequence of recurrent events in the sense of Feller/10/,
i.a., !

P(A; /A, coAp )=PQ,

vige

i)

for any finite system of indexes

i;<i,< e <i , n=23,..., ¥ B .

Hence we have 4

P@A)= { {H(xl)...H(xl-k coe+ X )AF(xy)...dF(x), (5)
* '1’

P(Ag)=1.

We suppose that P(A;)>0 (the case P(A,;)=0 corresponds to the
case when during the dead time there arrive infinitely many
particles). If we define by v the number of particles which
arrive at _the counter during the dead time, then P(yv=n) =
=P@&,...A |A) and for P, =P(v=n) we have

P = P(A).
1 1 6)

n-1

P, = PA,- iEIP(Ai)_P n>2.

n-i *

It is clear that P(A,) 2 P(A,,1), and there exists hm P(Ap) =

= P, and M()=1/P_. In ref. /3/  there are the suff1c1ent con-
ditions to ensure P, >0,
Let us put

a, =PA) - PA ) n=01,... .

Hence for the generating function f(z)=M(z") of v we have
oo n o0 g _l
(@=20- 3 2,2)a-23 N <t )
Define

8

a(e)= [ e **dF(x), s>0,

8@

B = f xdF(x).

o

L 00
With the given recurrent primary process f{r, | _, we define the
new recurrent one {r;}%_o for any s3>0 with the distribution
function

F,@=P( - +>,<x)=2"(s fxe's' dF(t).
0

Let fg(z) be the generating function of the number v, of the
particles arriving during the dead time according to the pri-
mary process lr: }n=g and the lengths-of impulses | n

Then we obtain the following forms for ®(s, z)=M(e" lz")

and y(s), respectively.

Theorem I. For any s3>0, |z/<1

®(s, z) = f4(a(s) 2), (8)




y(®) =14(a(s), . 9)
M(Z;) = pM(v). : : o (10)

Proof. Since Zj=r, we have

] -sfv o
®(s,2) = % f e z°dP-=
- n=l !Vgl'l)
o -sty 4o + ty) 4
=n§1 f.é;:[ e z dF(tl)...dF(tn)dH(x,)...dHV(xn).

where the integration area Cp is of the following form

c
@<t

(4
x1<tl+t2 x1<tl+...+tn_‘-‘ 3

x2<t2 .

X<t

24

(here the sign "¢’ denotes the complement of the set mentioned
in the parentheses).
Hence

®(s, 2) = ngl P ©2"P(v, =n)=1,a()).

Analogically we proceed for y(8). The mean value of Z; is ob-
tained from the .Wald identity.
i Q.E.D.

4. THE PROPERTIES OF v

The integer-valued random variable v -1 determines the number .
of the nonregistered particles between two successive registra-—
tions. Although 'in the physical practice it is hardly observable
value during the registration process by counters, it has an
importance in other practical applications. For example, in the
film handling of track information the » means the number of
the streamers with constant diameters in the blobs’7'%. Some
limi i/ng properties of v, when P, » 0, are investigated in
ref.’3 "and it was proved that P(vy>n)= g =t

6

-

>

Now we examine the behaviour of P(v=n)
Therefore we need the next notion.

A distribution function F concentrated on <0,~) is Cramer
one if

in dependence on n.

0@ X
sup{A>0: | exdF(X)<ml’=co-
0

It is clear that the set C of all the Cramer distribution func-
tions is convex. Moreover, if F(xg) =1 for some x¢>0, then
FeC, and if dF(x)=aexp(-bx°),x3 0,for some a30,b>0,c32,
then FeC.

-

Theorem 2. Let the primary recurrent process have the Cramer
distribution function F and P_> 0.Then

P, =(B-Dp 8" 4 1,. i
where

| © 1 a k ;

E-lvii o azk-T v @1, | (12)

k i
= 2 e s
k=0 k! dzk Ly (Z)“z:l ; (13)

=0
and

ni <G

(the constant C does not depend on n, and R> 1 ). Here

4@ =P@A)E+ I, (PA,) - PR, )2 .

Proof. According to the Cauchy formula’'¥/

we have
Poil ‘gling il g vim
2m |alel g1 20 g (g g @)™

From the conditions of the theorem we have

0.<.an = P(An)_ P(AD‘FI):P(XI < fl ’ ."'xﬂ<rn 'x;n+l 2

2.7941) < P(xpp1 2 7441)-
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y(8) = f4(a(s)), : 9
M(Z,) = pM(v). ' (10)

Proof. Since Z,=7, we have

®(s, 2) = S

n=1 !V=nl

=8ty +e + ty)

-8,
£¥dp =

= g f...jfe

3l 2"dF(t,)...dF (t )dH (x,)...dH(x ),

where the integration area C, is of the following form

c 14
(xl<t1) 2 Xp <ty +ty ) seeey fxp <ty +aest N7,
x2 < t2 .
xl-l_< tn-l

y ST ks
X <ty
(here the sign "¢’ denotes the complement of the set mentioned

in the parentheses).
Hence

06 9= 3 8" ©2"Py, =0)=1,6E0).

Analogically we proceed for y(8). The mean value of Z; is ob-
tained from the Wald identity.
Q.E.D.

4. THE PROPERTIES OF ¥

The integer-valued random variable v -1 determines the number .
of the nonregistered particles between two successive registra-—
tions. Although 'in the physical practice it is hardly observable
value during the registration process by counters, it has an ’
importance in other practical applications. For example, in the
film handling of track information the v means the number of
the streamers with constant diameters in the blobs’7'%. Some
limi i/ng properties of v, when P, » 0,are investigated in
ref.”3/ and it was proved that P(vr>n)= e Fe B,

6

»

_-_;—_.._—..——_.

Now we examine the behaviour of P(v=n)
Therefore we need the next notion.

A distribution function F concentrated on <0,~) is Cramer
one if

in dependence on n.

o X
supfA0: [ & dF(x)<oo}=oco.
0

It is clear that the set C of all the Cramer distribution func-

¥ tions is convex. Moreover, if F(xg) =1 for some x>0, then
FeC, and if dF(x)=aexp(-bx°),x3 0,for some a>0,b>0,c3 2,
then FeC.

.

Theorem 2. Let the primary recurrent process have the Cramer
distribution function F and P_>0.Then

P, =B-DBE™ 4 1, an
where
o0 1 dk-l k :
k b
sy L) k .
= 2 e .
A k=0 k! dzk Ly (Z)“z:l (13)
.
and
Ir,| < CR™

(the constant C does not depend on n, and R> 1 ). Here

Y@ =PA)z+ 3, (PA)-P@A, )z

/13/

Proof. According to the Cauchy formula we have
¢ -l giad 1 ¢ v@e
2ml |zlal g * i |z)a1 1-z+ :/;(z))zMl
» From the conditions of the theorem we have

0<a, = PA,) - P@A,1)=P(x; < Ty eens Xg <Tpov Xpal 2

2='n+1) S P(xp 2 a4l )

B -l IR




Since F G C we obtain

Ar

1 .n+l

; AX] Z
P(Xn+12- rn+l ) S M(e )M(e )
for any A20. Hence the series 20 a,z" has the convefgence
radius e

-Ar

1
R>1/M(e )>1;
when A+, then R=«.Therefore the equation 1 -z+y¥(2)=0 has

a unique (simple) positive root z=8>1 with the minimal
module. This follows from the following

1-z+|[r(z)=1—zn2‘.oanzn, and a, > 0.

Let R>1 be a radius of a circle in which the function
1-2+¢y(z) has a unique zero z=p8. Then

1 o fpas | W@ .
l'n 2ni Ii!BR zl+] (¢ ‘(B) i 1)ﬂl+1 x P'n (14)

The integral in’the left-hand side of (14) may be estimated by
the maximum module |f,] < CR™™. Putting B = 1/(1 -y18)) we
obtain the formula (11).

To obtain the explicit expressions for g and PBprespectively,
we consider a function w=2-y(2) which in a conform way
transforms some neighbourhood of the point w=1 to other one.
Therefore w=vw(z) has its inverse function z=z(w). It is
clear that 8=2(1) and B,;=1z(1).Using the Lagrange expansion
formula we obtain the (11) and (13).

Q.E.D.

5. TYPE III COUNTER

G.E.Albert and L.Nelson’4/ used more general form of the coun-
ter model which contains both the mentioned Type I and Type II
counters as special. cases.

They supposed that if the particle arrives at the counter,
then the impulse (of the length x, ) starts with probability
P if at time r, an impulse is in course, and with proba-
bility 1 otherwise. If p=0, then we obtain the Type I counter;
and if p=1, the discussed above Type II counter.

This model has been studied by several authors /4,24,26-28,15,17-19/
The distribution function related with the secondary process
for p>0 may be easily deduced from the one of the Type II coun-
ter as it was mentioned by Takdcs/28/. "

8

-

Indeed, let us suppose that 0<p<1. We define the primary
process with the distribution function

]

F@=p nﬁthn'an(X).

where q=1-p, and F,(x) denotes the n-th iterated convolution -
of the distribution function with itself. It is easy to see

that the only difference between the secondary process of the
Type III counter determined by F(x), H(x) and p, and of the
Type II determined by F(x), H(x), is that the latter contains
an additional interval spent in the state E, immediately before
every transformation Eg —E;.The lengths of these intervals are
identically distributed, independent random variables with the
distribution function

Q@=p I o"F, ()

and these random variables are independent of any other random
variables involved. .

If y(8) and y(s) denote the Laplace transforms of the
distances between successive registrations by the Type III coun-
ter and by the Type II counter mentioned above, then we have

y(®) = y(&p( - qa(s) ™,

where a(s) is the Laplace transform of the distribution func-
tion F(x). Hence we have

y(®=3©® - sa)p . | | (5)

Here ;(s) is determined by (9) in which we change F(x) by f‘(x).

6. MARKOV RENEWAL PRIMARY PROCESS OF ZERO ORDER

In this section the problem of registration of one type of
particles is generalized to the case of m types of particles
(1<m< ») which arrive at the Type II counter.

Let us suppose that there be m types of radioactive mate-
rials which emit m types of particles according to the Markov
renewal primary process of zero order. These processes have
been introduced and'studied by Pyke/16/ :

Thus, we suppose that the relationships between different
types of particles and their impulses are as follows. Let the
n -th particle (n>0) arriving at the counter be of the type

J, and let the type of the particle do not depend on the




previous types of particles, and

5 m
P(Jn = k)=pk’k=lv""m'k§l Py = L

Let F;(x) and H;(x),i=1,..,m, be distribution functions with
F; @ =H;0)=0 for each i Then we define the process of
interarrival times {T,l;.ij, where T, is the time between the
arrival of the (n-I)th and n-th particles, specifying Ty=0
and

P(Tn < x/TO""'Tn-l » Jo SR Jn) = FJn (x) a.s.« (16)
for all' x>0 and n> 0.
We see that the primary process r_ =

n
one determined with the function !

I Mo

T,,n>0,is recurrent
0

F(x) = 351 ijj (x).

The ‘lengths of impulses {an:o:o of particles arriving at
the moments 7, , n>0, are determined as follows

Pxo< */30: T =H; (@ as.forall x20,
a7)
P(x, < ®/Jgiees I oXgrecesXneys Tooeees Typ) = H; (x) as.
n

for all x>0 and n>1.

It results from (16) and (17) that the lengths of impulses
are independent, positive random variables with the common dis-
tribution function :

m
Hx)= T p.H:(x), x>0,
j=1711

and they do not depend on |r_ |.Then the above interesting cha-
racteristics of the resulting secondary process may be deter-
mined by the methods developed in the third section.

7. EXAMPLES

-A :
Example 1. Let F(x)=1-e  ,x>0,and H(x) be an arbitrary
distribution function, then -

P@A,)= A/ ?! ;'H(x)dx}“e"\‘ dt, n=0,1,...,
9 0

10 .

. oo t
) =1-( fem(-A [ - zH(x)axan, |z|<1,

P(s,z)=1 -((A + 8) fwexp( -8t —A}(l - zl*I(x))dx)dt)"1 i
0 . 0

>0, |z]<1,

oo { 2
y(&)=1-((A+8) [ exp(-st=Af (- H(x))dx)dt)-l i
0 0

5> 0.

If h= [xdH®x)< =, then by’/29/lim P(A,,)=ef)ul .  Hence
. ;

H
M(v)=erh,
M(Z l)=e“‘/A.

The expression for y agrees with one in ref./2V/, By an analogi-
cal way we may pbtain the formula for the y for the Type III
counter since F(®)=1-¢™P*, x>0,

Example 2. Let F(X)=1 if x>a>0 for some a, elsewhere
0 and H be an arbitrary distribution function with H@)#0.
Then

n
P(A n) = 5 Hl H(ia)' n= 0,1.-.-,
i=

Here the empty product is equaled to 1. Hence, if H(na)# 1

for any n=12,.., then limP(A,;) = 0 and therefore M(yv) = ..
Now let ny+1 be the minimal integer n such that H(a)=1,

then

M(v)=1/ I? H(ia),

and for the genmerating function of v we have
no-l no'l
f(z)=2z(1 - £ a z")(l %A z")-l
4 n=0 B n=0 " .

where

a, = (1 -H(@+1)a)) N HGa)

Si=




Hence we obtain
O(s, 2)=f(ze ™°), 820, [z]<1,

y(®) =1, s>0.

Example 3: Let F be an arbitrary distribution function,
and HéXE=I if x>b>0 for some b, and zero elsewhere. Then

PA,)=1 n-12,..,
-1
<D | niie.
where

I=1-F(®-0)

(we assume that F(b-0) £ 1 ). Moreover

M(v) =1/,

(@ -1 - g-D2)" , [2]51,

oo b
O(s,z)=z f e-sxdF(x)/(l -z fe-"(‘i?(x)), s>0, {z]<1,
b 0

y(s)= [ e dF(x)/ (1 - F e ““dF(x)), s3> 0.
0

The expression for y(s) is the same as one in refs;!5+28/,
Let us put

F(x)= P(r, <x/r, <b),

Fx) = P(r, <x/r 2D),

and let g and B, be the r-th moments with respect to the
distribution functions F(x) and F(x), respectively. Then for
the dead time B we obtain '

M(B)=b+ (1 + D, /1,

r=-1
u(xs')=b'+(1-1)1l 3 ehE . oe-tal

and for the moments of Z; we have
12

when
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OsypeueHckuit A., OcockoB I.A. E5-83-255
K opHolt mpo6neMe cueTunkoB npogneBawomero (II) Tuna

B paGoTe HccnenyeTcd ABHHIT BMO COBMECTHOr'oO npeofpasoBaHHA
Jlannaca paccrosHHi MeXOy ABYMA COCeOHMMH MOMEHTAaMu perucrpa-
UMM YACTHIK cyeTunxoM Tuna II /cueTunx ¢ MepTBHM BpeMeHeM npog-
neBaiomero Tupa/ B ofmeM ciiy¥ae M YMC/Ia YacTHI[, NpUMESNHX 3a
nepHod MepTBOr'O BpeMeHH. 3THM HalileHO fABHOe DEMeHHEe CJIIOXHBIX
HHTEerpaNnbHHX YpABHeHHII, BHBEeZEHHbX APYIrHMH aBTopamMH. Kpome ToO-
ro, Hccenyercs reoMeTpHYecKoe NOBedeHHe pacChnpesielieHHs 4YHCia
yacrul. lonyyeno pemenHe gna cderunka tHna III u usyuaercsa pe—
THCTPAIMA WM THNOB YaCTHIl. JTH 3axad¥ NPHMEHHMH Takxe K npolS—
JleMaM ollpefeJjieHHA paclnpeneseHHA JIHH 6J1060B B CTDHMEDHBIX KaMme-—
pax B dHSiKe BHICOKHX SHeprHii.

PaGoTa BhmoniHeHa B JlaGopaTopuu BHUHCIIHTENIBHON TEeXHHMKH
H aBToMaTHsanun OHAH.

fipenpuHT O6BEAMMEHHOTO MHCTUTYTa RAEPHHX Mccneposanwi, flybna 1983

Dvurecenskij A., Ososkov G.A. E5-83-255
Note on One Type II Counter Problem

An explicit form of the joint Laplace transform of the
distances between two neighbouring moments of particle regist-
ration by Type II counter (the counter with prolonged dead
time) in the general case, and the number of particles arri-
ving during the dead time is investigated. An explicit solution
is given to complicated integral equations determined by other
authors. Moreover, the geometric behaviour is studied of the
distribution of the number of particles. The Type ITI counter
problem is mentioned, and the case of registration of m types
of particles is discussed. These problems are applicable to
ones of the distribution determination of blob length in the
streamer chambers in the high energies physics.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983




