	Объединенный институт ядерных исследований дубна
ils1,33	う <i>さう</i> E5-82-863

G.Nenciu

REMOVING CUT-OFFS FROM SINGULAR PERTURBATIONS: AN ABSTRACT RESULT

Submitted to "Letters in Mathematical Physics"

zana utakatu 19 maju kana maju maa na majukata kana mana matakata ing pana kana kana matakata 🖞 mana 🛥 mana kana

In this note we shall consider the addition problem for pairs of self-adjoint operators in Hilbert spaces, when these operators are mutually singular. The aim was to understand at the abstract level the following interesting phenomenon appearing in the study of one-dimensional Schrödinger operators/1.2/. Suppose $V_0(x)$, $x \in R \setminus \{0\}$ is negative and sufficiently singular near origin that the quadratic form of $-\frac{d^2}{dx^2} + V_0(x)$ is unbounded from below, but that $H_{D^m} - (\frac{d^2}{dx^2})_D + V_0(x)$ is self-adjoint and bounded from below on the domain of $-(\frac{d^2}{dx^2})_D$, where D refers to the Dirichlet boundary conditions at origin. Suppose $V_a(x) \rightarrow V_0(x)$ pointwise and $H(a) = -\frac{d^2}{dx^2} + V_a(x)$ be self-adjoint and bounded from below on $D(-\frac{d^2}{dx^2})$. It is proved in /2/ under some additional assumptions on V_a that $H(a) \rightarrow H_D$ in the norm resolvent sense. In what follows H_0 and V are self-adjoint operators in a

In what follows H_0 and V are self-adjoint operators in a Hilbert space H, $H_0 \ge 0$. A sequence $\{V_n\}_1^{\infty}$ of self-adjoint operators is said to be a regularising sequence for the pair (H_0, V) if the following conditions are met:

a. $H_0 + V_n$ are self-adjoint and bounded from below on $\mathfrak{L}(H_0)$, b. $\mathfrak{L}(V_n) \supset \mathfrak{L}(V)$, $V_n f \rightarrow V f$ all $f \in \mathfrak{L}(V)$. The problem is to find conditions under which $H_0 + V_n$ converge in some sense and to identify the limit. The problem is well understood if V = U + W, where U > 0 and W is form bounded with respect to H_0 (see $^{/3-6/}$ and references therein). As it is clear from the example above we are interested in the case when $H_0 + V_n$ are not uniformly bounded from below, e.g., $V \leq 0$ and sufficiently singular with respect to H_0 . Our result is contained in Theorem 1 below.

Theorem 1. Let H_0 , V be self-adjoint operators, $H_0\geq 0$ and $\{V_n\}_1^\infty$ be a regularising sequence for the pair H_0 , V . Suppose that

i.
$$V_n \geq V$$

ii. There exists
$$\mathfrak{L} \subset \mathfrak{L}(\mathfrak{H}_0) \cap \mathfrak{L}(\mathbb{V}), \mathfrak{L}_{-} \mathbb{H}$$
 such that

 $||Vf|| \le a ||H_0f|| + b||f|| ; a < 1, b < \infty all f \in \mathcal{L},$ (1)

 $||(V-V_n)f|| \le a_n ||H_0f|| + b_n ||f||; \quad \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0, \text{ all } f \in \mathcal{L},$ (2)

 $(H_0 + V)_{Q}$ has deficiency indices $(m, m), m < \infty$: (3)

iii. There exists $\{c_n\}_{l}^{\infty}$, $\lim c_n = \infty$ such that the spectrum of $H_0 + V_n$ contained in $(-\infty, -c_n)$ consists in at least m eigenvalues (counting multiplicities).

is bounded from below and $H_0 + V_n$ Then $(H_0 + V) \upharpoonright_{\mathfrak{L}(H_0)}^{+} \cap \mathfrak{L}(V)$ converges in the norm resolvent sense to the Friedrichs extension $(H_0 + V)_F$ of $(H_0 + V)^{\dagger} \hat{\mathcal{T}}(H_0) \cap \hat{\mathcal{T}}(V)$.

The proof of Theorem 1 is based on the following result proved in^{/7/}.

Theorem 2. Let A be a densely defined, closed symmetric operator with deficiency indices (m,m), $m < \infty$ and satisfying $(f, A f) \geq ||f||^2$, $f \in \mathfrak{T}(A)$.

i. Let $A_{\rm F}$ be the Friedrichs extension of A and P be the $_{\rm l}$ orthogonal projection on $(A \ (A))^{\perp}$. Then for $\lambda \in (-\infty, 1)$, $P \lambda A_F(A_F - \lambda)$ P: $PH \rightarrow PH$ is a strictly increasing function of λ and there exists $-\infty < \alpha (A_F; \lambda) < \infty$ such that

$$\sigma(P \lambda A_{F}(A_{F} - \lambda)^{-1} P) \in (-\infty, -\alpha(A_{F}; \lambda)),$$
(4)

$$\lim_{\lambda \to -\infty} \alpha(A_F; \lambda) = \infty .$$
⁽⁵⁾

ii. Let A_q be a sequence of self-adjoint extensions of A with the property that there exists $\{a_q\}_1^\infty$, $a_q > 1$ $\lim_{q \to \infty} a_q = \infty$ such that the spectrum of A_q contained in $(-\infty, -a_q)$ consists in m eigenvalues (counting multiplicities). Then $0 \in \rho(A_q)$ and

$$0 \ge A_{q}^{-1} - A_{F}^{-1} \ge -P(Pa_{q}(A + a_{q})^{-1}P)^{-1}P.$$
(6)

Proof of Theorem 1. Without loss of generality one can take $c_n \ge 1$, and $H_0 \uparrow \mathcal{D}$ to be closed. During the proof $H_0 \ge 1$, $b = b_n = 0$ some technical points are stated as lemmas and proved at the end.

Let $\Re = (H_0 + V) \pounds$, $\Re_n = (H_0 + V_n) \pounds$. Due to (1), (2) and the fact that $H_0 \ge 1$, \Re and for sufficiently large n , \Re_n , are closed subspaces. Let Q and Q_n be the orthogonal projections on \Re^+ and \Re_n^{\perp} , respectively.

Lemma 1.

$$\lim_{n \to \infty} ||Q_n - Q|| = 0.$$
⁽⁷⁾

From the von Neumann theory of symmetric extensions it follows that all symmetric extensions of a symmetric operator bounded from below and with finite deficiency indices are bounded from below [8.Ch.8]. Hence $(H_0^+ \cap V)|_{\mathfrak{L}(H_0)} \cap \mathfrak{L}(V)^{is}$ bounded from below.

Suppose now $\mathfrak{L} \subseteq \mathfrak{L}(H_0) \cap \mathfrak{L}(V)$. Since by Lemma 1, for sufficiently has deficiency indices (m,m) it large n , $(H_0 + V_n)$ follows that $(H_0+\bar{V_n})|_{\widehat{\Sigma}(H_0)}\cap \widehat{\Sigma}(V)$ has deficiency indices (n,n) ,

n < m . On the other hand since $V_n \ge V$, $(H_0 + V_n) \uparrow_{\mathcal{L}(H_0) \cap \mathfrak{L}(V)}$

are uniformly bounded from below and therefore $(H_0 + V_n)$ can have at most n eigenvalues going to $-\infty$ as $n \rightarrow \infty$ [8,§107]. This contradicts iii and hence $\mathfrak{L} = \mathfrak{L}(H_0) \cap \mathfrak{L}(V)$.

From (1), $V_n \geq V$ and $H_0 \geq 1$, it follows that for all $f \in \mathcal{L}$

$$(f, (H_0 + V_n)f) \ge (f, (H_0 + V)f) \ge (1 - \sqrt{a}) ||f||^2.$$
(8)

Let $(H_0 + V)_F$, $(H_0 + V_n)_F$ be the Friedrichs extensions of $(H_0 + V)_T$ and $(H_0 + V_n) \uparrow_{\Omega}$, respectively.

From (8) it follows that $0 \in \rho((H_0 + V)_F) \cap \rho((H_0 + V_p)_F)$.

Lemma 2.

n

~

$$\lim_{n \to \infty} || (H_0 + V_n)_F^{-1} - (H_0 + V)_F^{-1} || = 0.$$
(9)

Now $H_0 + V_n$ is a self-adjoint extension of $(H_0 + V_n) \nmid f$. Since by the general theory of self-adjoint extensions [8 § 107] the spectrum of $(H_0 + V_n)$ in the interval $(-\infty, \inf_{f \in \Omega} (f, (H_0 + V_n)f))$ consists in at most m eigenvalues it follows that $0 \in \rho (H_0 + V_n)$. From $||(H_0 + V)_F^{-1} - (H_0 + V_p)^{-1}|| \le$

$$\leq || (H_0 + V)_F^{-1} - (H_0 + V_n)_F^{-1} || + || (H_0 + V_n)_F^{-1} - (H_0 + V_n)_{-1}^{-1} ||^2$$

due to Theorem 2 ii and Lemma 2 the only thing we have to prove is that

$$\lim_{n \to \infty} || (Q_n c_n (H_0 + V_n)_F ((H_0 + V_n) + c_n)^{-1} Q_n)^{-1} || = 0.$$

For, let us remark first that from (8) it follows $(H_0 + V)_F \leq (H_0 + V_n)_F$ wherefrom for $\lambda < 0$

$$0 \ge \lambda (H_0 + V)_F ((H_0 + V)_F - \lambda)^{-1} \ge \lambda (H_0 + V_n)_F ((H_0 + V_n)_F - \lambda)^{-1}.$$
(10)

Consider, for sufficiently large n , the operator

$$U_n = (1 - (Q_n - Q)^2)^{-\frac{1}{2}} (Q_n Q + (1 - Q_n)(1 - Q)).$$

Then [9, II 4.2] U_n is unitary and `

 $U_n Q = Q_n U_n$. (11)

Moreover from the definition and Lemma 1

$$\lim_{n \to \infty} || U_n -1 || = 0.$$
(12)
From definition, for $\lambda < 0$

2

$$|| \lambda (H_0 + V)_F ((H_0 + V)_F - \lambda)^{-1}|| \le |\lambda|.$$
(13)

$$\mathbf{b}_{n} = \min \{ \mathbf{c}_{n}, \epsilon_{n}^{-1} \}.$$
(14)

Then using (10), Theorem 2i, (13) and (14) one has $Q_n c_n (H_0 + V_n)_F ((H_0 + V_n)_F + c_n)^{-1} Q_n \ge 0$

$$\geq [Q_n b_n (H_0 + V)_F ((H_0 + V)_F + b_n)^{-1} Q_n \geq (15)]$$

$$\geq Q_n U_n b_n (H_0 + V)_F ((H_0 + V)_F + b_n)^{-1} U_n^* Q_n - Q_n .$$

Due to (11)

$$Q_{n}U_{n}b_{n}(H_{0} + V)_{F}((H_{0} + V)_{F} + b_{n})^{-1}U_{n}^{*}Q_{n} =$$

$$\cdot$$

$$-$$

$$Q_{n}U_{n}Q_{n}(H_{0} + V)_{F}((H_{0} + V)_{F} + b_{n})^{-1}QU_{n}^{*}Q_{n},$$

wherefrom

$$\sigma \cdot (Q_n U_n b_n (H_0 + V)_F ((H_0 + V)_F + b_n)^{-1} U_n^* Q_n) \in (\alpha ((H_0 + V)_F; b_n), \infty).$$
(16)

From (15) and (16)

$$\sigma(Q_n c_n(H_0 + V_n)_F((H_0 + V_n)_F + c_n)^{-1}Q_n) \subset (\alpha((H_0 + V)_F; b_n) - 1, \infty)$$

which together with (5) proves the theorem.

Proof of Lemma 1. Let $g \in \mathcal{R}$, ||g|| = 1, $g = (H_0 + V)f$. From (1) and (2) one obtains

$$||(H_0 + V_n)f| - (H_0 + V)f|| \le a_n(1-a)^{-1},$$

wherefrom

$$D[g, \mathcal{R}_{n}] = \inf_{h_{n} \in \mathcal{R}_{n}} ||g - h_{n}|| \le a_{n} (1-a)^{-1}.$$
 (17)

In a similar way if $g_n \in \mathcal{R}_n$, $||g_n|| = 1$ then for sufficiently large n

$$D[g_n, \mathcal{R}] \leq a_n (1-a-a_n)^{-1}$$
 (18)

From (17) and (18) it follows that for sufficiently large n [8 § 39]

$$||Q-Q_n|| \leq a_n(1-a-a_n)^{-1}$$

and the proof of Lemma 1 is complete.
Proof of Lemma 2. Let
$$f \in \mathcal{R}$$
, $||f|| = 1$. Then
 $||(H_0 + V_n)_F^{-1} - (H_0 + V)_F^{-1} f|| \le$
 $\le ||(H_0 + V_n)_F^{-1} [f - (H_0 + V_n)(H_0 + V)^{-1} f]|| \le$
 $\le ||(H_0 + V_n)_F^{-1}|| ||(V_n - V)(H_0 + V)^{-1} f|| \le$
 $\le a_n (1 - a)^{-1} ||(H_0 + V_n)_F^{-1}||.$
(19)

From Theorem 7.9 in $^{/3/}$, $(H_0 + V_n)_F \rightarrow (H_0 + V)_F$ in the sense of strong resolvent convergence. On the other hand, from (19) the convergence is unifrom on \Re which finishes the proof of Lemma 2 since dim $\Re = m < \infty$.

Remarks

1. From (1) it follows that

 $H_{0,F} + V = (H_0 + V)_F$,

where $H_{0,F}$ is the Friedrichs extension of $H_0|_{\hat{L}}$, and $H_{0,F} + V$ is the from sum of $H_{0,F}$ and V.

2. Theorem 1 implies results of the sort given $in^{/1,2/}$. The following is an example.

Corollary 1. Let $-\frac{d^2}{dx^2}$, $(-\frac{d^2}{dx^2})_D$, $x \in \mathbf{R}$ be the Laplacian, and the Laplacian with Dirichlet boundary conditions at 0, respectively. Let V(x), $V_n(x)$, $x \in \mathbf{R}$, n = 1, 2, ... be real functions satisfying: $V(x) \leq V_n(x) \leq 0$; $|x|^{\gamma} V(x) \in L^{\infty}$ for some $\gamma, 0 \leq \gamma < 3/2$; $\int V(x) dx = -\infty$; $V_n(x) \in L^{\infty}$; $\lim_{n \to \infty} V_n(x) = V(x)$ a.e. Then $-\frac{d^2}{dx^2} + V_n$ converge in the norm resolvent sense to $(-\frac{d^2}{dx^2})_D + V$.

Proof. Let $\mathfrak{T} = \mathfrak{T}_1 \oplus \mathfrak{T}_2$, where

$$\hat{T}_{1} = \{ f \in \hat{T} (-\frac{d^{2}}{dx^{2}}) | f(x) = -f(-x) \},$$

4

Ł

$$\mathfrak{D}_2 = \{ f \in \mathcal{C}_0^{\infty}(\mathbf{R} \setminus \{0\} \mid f(x) = f(-x) \}.$$

Then using the Hardy inequality in two of its variants

$$\int_{0}^{\infty} |x^{-\beta} \int_{0}^{x} f(y) dy|^{2} dx \leq (\beta - 1/2)^{-2} \int_{0}^{\infty} |x^{-\beta + 1} f(x)|^{2} dx, \quad \beta > 1/2$$

$$\int_{0}^{\infty} |x^{-\beta} \int_{x}^{\infty} f(y) dy|^{2} dx \leq (\beta - 1/2)^{-2} \int_{0}^{\infty} |x^{-\beta + 1} f(x)|^{2} dx, \quad \beta < 1/2$$

one can easily verify that the conditions of Theorem 1 with $H_0 = -\frac{d^2}{dx^2}$, V, V_n, \hat{L} are fulfilled.

REFERENCES

- 1. Gesztesy E. J.Phys. A: Math.Gen., 1980, 13, p. 867.
- 2. Klaus M. J.Phys. A: Math.Gen., 1980, 13, p. L295.
- 3. Faris W.G. Self. Adjoint Operators. Springer, Berlin-Heidelberg-New York, 1973.
- 4. Harrell E.M. Ann. Phys., 1977, 105, p. 379.
- 5.Schechter M. Lett.Math.Phys., 1976, 1, p. 265.
- 6. Zagrebnov V.A. Trans. Moscow Math.Soc., 1980, 41, p. 121.
- 7. Nenciu G. Applications of the Krein Resolvent Formula to the Theory of Self-Adjoint Extensions of Positive Symmetric Operators. Submitted to J.Operator Theory.
- 8. Achiezer N.I., Glazman I.M.: Theory of Linear Operators in Hilbert Spaces (Russian), Nauka, Moscow, 1966.
- 9. Kato T. Perturbation Theory for Linear Operators. Springer. Berlin-Heidelberg-New York, 1966.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

5

You can receive by post the books listed below. Prices - in US 8,

including the packing and registered postage

		. .	
	_	The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.	8.00
	D11-80-13	The Proceedings of the International Conference on Systems and Techniques of Analytical Comput- ing and Their Applications in Theoretical Physics. Dubna, 1979.	8.00
	D4-80-271	The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.	8.50
	D4-80-385	The Proceedings of the International School on Nuclear Structure. Alushta, 1980.	10.00
-		Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.	25.00
	D4-80-572	N.N.Kolesnikov et al. "The Energies and Half-Lives for the α - and β -Decays of Transfermium Elements"	10.00
	D2-81-543	Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981	9.50
D1	0,11-81-622	Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980	9.00
	D1,2-81-728	Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.	9.50
	D17-81-758	Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.	15.50
	D1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	9.00
	D2-82-568	Proceedings of the Meeting on Investiga- tions in the Field of Relativistic Nuc- lear Physics. Dubna, 1982	7.50
	D9-82-664	Proceedings of the Symposium on the Problems of Collective Methods of Acce- leration. Dubna, 1982	9.20
	D3,4-82-704	Proceedings of the IV International School on Neutron Physics. Dubna, 1982	12.00

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR Head Post Office, P.O.Box 79 101000 Moscow, USSR

SUBJECT CATEGORIES **OF THE JINR PUBLICATIONS**

í.

÷

.

Index	Subject		Пусть $H_0 \ge 0$, V-самосопряженные операторы в гильбертовом пространстве \mathcal{H} , причем квадратичная форма $H_0 + V$ не ограни- чена снизу. Пусть V_n - последовательность самосопряженных опе- раторов, такая, что $V_n \rightarrow V$ в некотором смысле, причем опера- торы $H_0 + V_n$ самосопряжены и ограничены снизу. Формулируются ус-	
2. High end 3. Low ener	ergy experimental physics ergy theoretical physics rgy experimental physics rgy theoretical physics tics		повия, при которых, хотя операторы H ₀ +V _n неравномерно ограничены снизу, предел lim (H ₀ + V _n) существует в смысле равномерной резольвентной сходимости и является полуограниченным снизу самосопряженным оператором. Работа выполнена в Лаборатории теоретической физики ОИЯИ.	
	Nuclear spectroscopy and radiochemistry	``	Препринт Объединенного института ядерных исследований. Дубна 1982	
 8. Cryogen 9. Acceleration 10. Automat 11. Computing 12. Chemist 13. Experimentation 14. Solid s 15. Experimentation 16. Health 	ics ators ization of data processing ng mathematics and technique		Nenciu G. E5-82-863 Removing Cut-Offs from Singular Perturbations: An Abstract Result Let $H_0 \ge 0$, V be the self-adjoint operators in a Hilbert space \mathcal{H} , and suppose the quadratic form of $H_0 + V$ to be unbounded ded from below. Consider a sequence, V_n , of self-adjoint operators, $V_n \rightarrow V$ in some sense, such that $H_0 + V_n$ are self-adjoint and bounded from below on $\mathfrak{L}(H_0)$.Under appropriate conditions, in spite of the fact that the spectra of $H_0 + V_n$ are not uniform ly bounded from below, it is proved that $H_0 + V_n$ converge in the norm resolvent sense and the limit is identified. The investigation has been performed at the Laboratory of Theoretical Physics, JINR.	
18. Applied	researches sics	•	Preprint of the Joint Institute for Nuclear Research. Dubna 1982	

1

...

3

1

Ненчу Г.

.

абстрактный результат

.

Снятие обрезания сингулярных возмущений:

E5-82-863