

объединенный институт ядРрных исследований
 дубна

$115 / 83$

G. Nenciu

REMOVING CUT-OFFS

FROM SINGULAR PERTURBATIONS:
AN ABSTRACT RESULT

Submitted to "Letters in Mathematical Physics"

In this note we shall consider the addition problem for pairs of self-adjoint operators in Hilbert spaces, when these operators are mutually singular. The aim was to understand at the abstract level the following interesting phenomenon appearing in the study of one-dimensional Schrödinger operators/1,2/ Suppose $V_{0}(x), x \in R \backslash\{0\}$ is negative and sufficiently singular near crigin that the quadratic form of $-\frac{d^{2}}{d x^{2}}+V_{0}(x)$ is unbounded from below, but that $H D^{-}-\left(\frac{d^{2}}{d x^{2}}\right)_{D}+V_{0}(x)$ is self-adjoint and bounded from below on the domain of $-\left(\frac{d^{2}}{d x^{2}}\right)_{D}$, where D refers to the Dirichlet boundary conditions at origin. Suppose $V_{n}(x) \rightarrow V_{0}(x)$ pointwise and $H(a)=-\frac{d^{2}}{d x^{2}}+V_{a}(x)$ be self-adjoint and bounded from below on $D\left(-\frac{d^{2}}{d x^{2}}\right)$. It is proved in $/ 2 /$ under some additional assumptions on V_{a} that $H(a) \rightarrow H_{D}$ in the norm resolvent sense.

In what follows H_{0} and V are self-adjoint operators in a Hiluert space $K, H_{0} \geq 0$. A sequence $\left\{V_{n}\right\}_{1}^{\infty}$ of self-adjoint operators is said to be a regularising sequence for the paix ($\mathrm{H}_{0}, \mathrm{~V}$) if the following conditions are met:
a. $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ are self-adjoint and bounded from below on $\mathscr{L}\left(\mathrm{H}_{0}\right)$,
b. $\mathscr{L}\left(V_{n}\right)^{n} \mathfrak{T}(V), \quad V_{n} f+V i \quad$ all $f \in \mathscr{T}(V)$.

The problem is to find conditions under which $H_{0}+V_{n}$ converge in some sense and to identify the limit. The problem is well understood if $V=U+W$, where $U>0$ and W is form bounded with respect to H_{0} (see $/ 3-6 /$ and references therein). As it is clear from the example above we are interested in the case when $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ are not uniformly bounded from below, e.g., $\mathrm{V} \leq 0$ and sufficiently singular with respect to H_{0}. Our result is contained in Theorem 1 below.

Theorem 1. Let H_{0}, V be self-adjoint operators, $H_{0} \geq 0$ and $\left\{V_{n}\right\}_{1}^{\infty}$ be a regularising sequence for the pair H_{0}, V. Suppose that
i. $\quad V_{n} \geq V$
ii. There exists $\mathscr{T} \subset \mathscr{T}\left(H_{0}\right) \mathfrak{L}(V), \bar{S}_{\infty} Y$ such that

$$
\begin{align*}
& \|V f\| \leq a\left\|H_{0} f\right\|+b\|f\| ; \quad a<1, b<\infty \quad \text { all } f \in \mathscr{T} \tag{1}\\
& \left\|\left(V-V_{n}\right) f\right\| \leq a_{n}\left\|H_{0} f\right\|+b_{n}\|f\| ; \quad \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0, \text { all } f \in \mathscr{T} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathscr{L}} \text { has deficiency indices }(\mathrm{m}, \mathrm{~m}),{ }^{\wedge} \mathrm{m}<\infty^{\infty} \text { : } \tag{3}
\end{equation*}
$$

iii. There exists $\left\{c_{n}\right\}_{1}^{\infty}, \lim c_{n}=\infty$
such that the spectrum of $H_{0}+V_{n}$ contained in $\left.^{n} \rightarrow_{-\infty}^{\infty},-c_{n}\right)$ consists in at least m eigenvalues (counting multiplicities).

Then $\left(\mathrm{H}_{0}+\mathrm{V}\right) \uparrow \mathscr{T}\left(\mathrm{H}_{0}\right) \cap \mathscr{T}(\mathrm{V}) \quad$ is bounded from below and $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ converges in the norm resolvent sense to the Friedrichs extension $\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}$ of $\left(\mathrm{H}_{0}+\mathrm{V}\right)$ 信($\left.\mathrm{H}_{0}\right) \cap \mathscr{L}(\mathrm{V})$.

The proof of Theorem 1 is based on the following result proved in $/ 7 /$.

Theorem 2. Let $: A$ be a densely defined, closed symmetric operator with deficiency indices (m, m), $\mathrm{m} .<\infty$ and satisfying $(f, A f) \geq\|f\|^{2}, \quad f \in \mathbb{I}(A)$.
i. Let A_{F} be the Friedrichs extension of A and P be the ${ }_{-1}$ orthogonal projection on (AT(A)) ${ }^{ \pm}$. Then for $\lambda \in(-\infty, 1), P \lambda A_{F}\left(A_{F}-\lambda\right)^{-1} P$: $\mathrm{PH} \rightarrow \mathrm{PH}$ is a strictly increasing function of λ and there exists $-\infty<a\left(A_{F} ; \lambda\right)<\infty$ such that

$$
\begin{align*}
& \sigma\left(\mathrm{P} \lambda \mathrm{~A}_{\mathrm{F}}\left(\mathrm{~A}_{\mathrm{F}}-\lambda\right)^{-1} \mathrm{P}\right) \subset\left(-\infty,-a\left(\mathrm{~A}_{\mathrm{F}} ; \lambda\right)\right), \tag{4}\\
& \lim _{\lambda \rightarrow-\infty} a\left(\mathrm{~A}_{\mathrm{F}} ; \lambda\right)=\infty
\end{align*}
$$

$\lambda \rightarrow-\infty$
ii. Let $: A_{q}$ be a sequence of self-adioint extensions of A with the property that there exists $\left\{\mathrm{a}_{\mathrm{q}}\right\}_{1}^{\infty}, \mathrm{a}_{\mathrm{q}}>1 \lim _{\mathrm{q} \rightarrow \infty} \mathrm{q}_{\mathrm{q}}=\infty \quad$ such that the spectrum of A_{q} contained in $\left(-\infty,-a_{q}\right)$ consists in m eigenvalues (counting multiplicities). Then $0 \in \rho\left(A_{q}\right)$ and

$$
\begin{equation*}
0 \geq A_{q}^{-1}-A_{F}^{-1} \geq-P\left(P a_{q}\left(A+a_{q}\right)^{-1} P\right)^{-1} \mathrm{P} \tag{6}
\end{equation*}
$$

Proof of Theorem 1. Without loss of generality one can take $c_{n} \geq 1$, $\mathrm{H}_{0} \geq 1, b=\mathrm{b}_{\mathrm{n}}=0$ and $\mathrm{H}_{0} \ \mathfrak{T}$ to be closed. During the proof some technical points are stated as lemmas and proved at the end.

Let $R=\left(\mathrm{H}_{0}+\mathrm{V}\right) \mathbb{T}, \mathbb{R}_{\mathrm{n}}=\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right) \mathscr{L}$. Due to (1), (2) and the fact that $H_{0} \geq 1, R$ and for sufficiently large n, R_{n}, are closed subspaces. Let Q and Q_{n} be the orthogonal projections on \Re^{\perp} and \mathbb{R}_{n}^{\perp}, respectively.

Lemma 1.

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|Q_{n}-Q\right\|=0 \tag{7}
\end{equation*}
$$

From the von Neumann theory of symmetric extensions it follows that all symmetric extensions of a symmetric operator bounded from below and with finite deficiency indices are bounded from below [8.Ch.8]. Hence $\left(\left.\mathrm{H}_{0^{+}}{ }^{\cdot} \mathrm{V}\right|_{\mathscr{T}\left(\mathrm{H}_{0}\right)} \mathrm{n}_{1} \mathscr{I}(\mathrm{~V})^{\text {is }}\right.$ bounded from below.
Suppose now $\mathfrak{T} \nsubseteq \mathbb{T}\left(\mathrm{H}_{0}\right) \cap \mathscr{T}(\mathrm{V})$. Since by Lemma 1 , for sufficiently large $\mathrm{n},\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right) \uparrow \mathscr{T}$ has deficiency indices (m, m) it follows that $\left(H_{0}+V_{n}\right) \mathscr{L}\left(H_{0}\right) \cap \mathscr{T}(V)$ has deficiency indices (n, n),
$\mathrm{n}<\mathrm{m}$. On the other hand since $\mathrm{V}_{\mathrm{n}} \geq \mathrm{V}$, $\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right) \mathfrak{T}\left(\mathrm{H}_{0}\right) \cap \mathscr{T}(\mathrm{V})$
are uniformly bounded from below and therefore $\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)$ can have at most n eigenvalues going to $-\infty$ as $n \rightarrow \infty$ [$8, \S 107]$.This contradicts iii and hence $\mathscr{T}=\mathscr{T}\left(\mathrm{H}_{0}\right) \cap \mathscr{T}(\mathrm{V})$.

From (1), $\mathrm{V}_{\mathrm{n}} \geq \mathrm{V}$ and $\mathrm{H}_{0} \geq 1$, it follows that for all $\mathrm{f} \in \mathbb{T}$

$$
\begin{equation*}
\left(f,\left(H_{0}+V_{n}\right) f\right) \geq\left(f,\left(H_{0}+V\right) f\right) \geq(1-\sqrt{a})\|f\|^{2} . \tag{8}
\end{equation*}
$$

Let $\left(H_{0}+V\right)_{F},\left(H_{0}+V_{n}\right)_{F}$ be the Friedrichs extensions of $\left(H_{0}+V\right) \uparrow \mathfrak{L}$ and $\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)+I$, respectively.

From (8) it follows that $0 \in \rho\left(\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}\right) \cap \rho\left(\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)_{\mathrm{F}}\right)$.
Lemma 2.

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(H_{0}+V_{n}\right)_{F}^{-1}-\left(H_{0}+V\right)_{F}^{-1}\right\|=0 \tag{9}
\end{equation*}
$$

Now $H_{0}+V_{n}$ is a self-adjoint extension of $\left(H_{0}+V_{n}\right)!\mathbb{I}$. Since by the general theory of self-adjoint extensions [$8 \S 107$] the spectrum of $\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)$ in the interval ($-\infty, \inf _{\in}\left(\mathrm{f}_{\mathrm{f}}\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right) \mathrm{f}\right)$ consists in at most m eigenvalues it follows that $0 \in \rho\left(H_{0}+V_{n}\right)$. From $\left\|\left(H_{0}+V\right)_{F}^{-1}-\left(H_{0}+V_{n}\right)^{-1}\right\| \leq$

$$
\leq\left\|\left(H_{0}+V\right)_{F}^{-1}-\left(H_{0}+V_{n}\right)_{F}^{-1}\right\|+\left\|\left(H_{0}+V_{n}^{*}\right)_{F}^{-1}-\left(H_{0}+V_{n}\right)^{-1}\right\|
$$

due to Theorem 2 ii and Lemma 2 the only thing we have to prove is that

$$
\lim _{n \rightarrow \infty}\left\|\left(Q_{n} c_{n}\left(H_{0}+V_{n}\right)_{F}\left(\left(H_{0}+V_{n}\right)+c_{n}\right)^{-1} Q_{n}\right)^{-1}\right\|=0
$$

For, let us remark first that from (8) it follows $\left(H_{0}+V\right)_{F} \leq\left(H_{0}+V_{n}\right)_{F}$ wherefrom for $\lambda<0$

$$
\begin{equation*}
0 \geq \lambda\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}\left(\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}-\lambda\right)^{-1} \geq \lambda\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)_{\mathrm{F}}\left(\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)_{\mathrm{F}}-\lambda\right)^{-1} \tag{10}
\end{equation*}
$$

Consider, for sufficiently large n, the operator

$$
U_{n}=\left(1-\left(Q_{n}-Q\right)^{2}\right)^{-1 / 2}\left(Q_{n} Q+\left(1-Q_{n}\right)(1-Q)\right) .
$$

Then [9, II 4.2] U_{n} is unitary and *

$$
\begin{equation*}
\mathrm{U}_{\mathrm{n}} \mathrm{Q}=\mathrm{Q}_{\mathrm{n}} \mathrm{U}_{\mathrm{n}} \tag{11}
\end{equation*}
$$

Moreover from the definition and Lemma 1

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|U_{n}-1\right\|=0 \tag{12}
\end{equation*}
$$

From definition, for $\lambda<0$

$$
\begin{equation*}
\because\left\|\lambda\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}\left(\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}-\lambda\right)^{-1}\right\| \leq|\lambda| \tag{13}
\end{equation*}
$$

Let $\epsilon_{n}=2\left\|U_{n}-1\right\|+\left\|U_{n}-1\right\|^{2}$ and
$b_{n}=\min \left\{c_{n}, \epsilon_{n}^{-1}\right\}$.
Then using (10), Theorem 2i, (13) and (14) one has

$$
\begin{align*}
& Q_{n} c_{n}\left(H_{0}+V_{n}\right)_{F}\left(\left(H_{0}+V_{n}\right)_{F}+c_{n}\right)^{-1} Q_{n} \geq \\
& \geq Q_{n} b_{n}\left(H_{0}+V\right)_{F}\left(\left(H_{0}+V\right)_{F}+b_{n}\right)^{-1} Q_{n} \geq \tag{15}\\
& \geq Q_{n} U_{n} b_{n}\left(H_{0}+V\right)_{F}\left(\left(H_{0}+V\right)_{F}+b_{n}\right)^{-1} U_{n}^{*} Q_{n}-Q_{n} .
\end{align*}
$$

Due to (11)

$$
\begin{aligned}
& Q_{n} U_{n} b_{n}\left(H_{0}+V\right)_{F}\left(\left(H_{0}+V\right)_{F}+b_{n}\right)^{-1} U_{n}^{*} Q_{n}= \\
& =Q_{n} U_{n} Q b_{n}\left(H_{0}+V\right)_{F}\left(\left(H_{0}+V\right)_{F}+b_{n}\right)^{-l} Q U_{n}^{*} Q_{n}
\end{aligned}
$$

wherefrom

$$
\begin{equation*}
\sigma \cdot\left(\mathrm{Q}_{\mathrm{n}} \mathrm{U}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}\left(\mathrm{H}_{0^{+}} \mathrm{V}\right)_{\mathrm{F}}\left(\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}}+\mathrm{b}_{\mathrm{n}}\right)^{-1} \mathrm{U}_{\mathrm{n}}^{*} \mathrm{Q}_{\mathrm{n}}\right) \subset\left(a\left(\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{F}} ; \mathrm{b}_{\mathrm{n}}\right), \infty\right)\right. \tag{16}
\end{equation*}
$$

From (15) and (16)

$$
\sigma\left(Q_{n} c_{n}\left(H_{0}+V_{n}\right)_{F}\left(\left(H_{0}+V_{n}\right)_{F}+c_{n}\right)^{-1} Q_{n}\right) \subset\left(a\left(\left(H_{0}+V\right)_{F} ; b_{n}\right)-1, \infty\right)
$$

which together with (5) proves the theorem.
Proof of Lemma 1. Let $g \in \mathbb{R},\|g\|=1, g=\left(H_{0}+V\right)$ f. From (1) and (2) one obtains

$$
\left\|\left(H_{0}+V_{n}\right) f-\left(H_{0}+V\right) f\right\| \leq a_{n}(1-a)^{-1}
$$

wherefrom

$$
\begin{equation*}
D\left[g, R_{n}\right]=\inf _{h_{n} \in R_{n}}\left\|g-h_{n}\right\| \leq a_{n}(1-a)^{-1} \tag{17}
\end{equation*}
$$

In a similar way if $g_{n} \in \Re_{n} \quad,\left\|g_{n}\right\|=1$ then for sufficiently large n

$$
\begin{equation*}
D\left[g_{n}, R\right] \leq a_{n}\left(1-a-a_{n}\right)^{-1} \tag{18}
\end{equation*}
$$

From (17) and (18) it follows that for sufficiently large n [8§39]

$$
\left\|Q-Q_{n}\right\| \leq a_{n}\left(1-a-a_{n}\right)^{-1}
$$

and the proof of Lemma 1 is complete.

$$
\text { Proof of Lemma 2. Let } \mathfrak{f} \in \mathbb{R},\|f\|=1 \text {. Then }
$$

$$
\left\|\left(H_{0}+V_{n}\right)_{F}^{-1}-\left(H_{0}+V\right)_{F}^{-1} f\right\| \leq
$$

$$
\begin{equation*}
\leq\left\|\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)_{\mathrm{F}}^{-1}\left[\mathrm{f}-\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)\left(\mathrm{H}_{0}+\mathrm{V}\right)^{-1} \mathrm{f}\right]\right\| \leq \tag{19}
\end{equation*}
$$

$$
\leq\left\|\left(H_{0}+V_{n}\right)_{F}^{-1}\right\|\left\|\left(V_{n}-V\right)\left(H_{0}+V\right)^{-1}\right\| \leq
$$

$$
\leq a_{n}(1-a)^{-1}\left\|\left(H_{0}+V_{n}\right)_{F}^{-1}\right\|
$$

From Theorem 7.9 in $^{/ 3 /},\left(H_{0}+V_{n}\right)_{F} \rightarrow\left(H_{0}+V\right)_{F}$ in the sense of strong resolvent convergence. On the other hand, from (19) the convergence is unifrom on \Re which finishes the proof of Lemma 2 since $\operatorname{dim} \Omega=\mathrm{m}<\infty$.

Remarks

1. From (1) it follows that

$$
\mathrm{H}_{0, \mathrm{~F}}+\mathrm{V}=\left(\mathrm{H}_{0}+\mathrm{V}\right)_{\mathrm{F}},
$$

where $H_{0, F}$ is the Friedrichs extension of $H_{0} I_{\mathscr{T}}$, and $H_{0, F}+V$ is the from sum of $H_{0, F}$ and V.
2. Theorem 1 implies results of the sort given in $/ 1,2 /$. The
following is an example.
Corollary 1. Let $-\frac{d^{2}}{d x^{2}},\left(-\frac{d^{2}}{d^{2}}\right)_{D}, x \in R$ be the Laplacian, and the Laplacian with Dirichlet boundary conditions at 0 , respectively. Let $V(x), V_{n}(x), x \in R, n=1,2, \ldots$ be real ${ }_{1}$ functions satisfying: $\mathrm{V}(\mathrm{x}) \leq \mathrm{V}_{\mathrm{n}}(\mathrm{x}) \leq 0 ;|\mathrm{x}|^{\gamma} \mathrm{V}(\mathrm{x}) \in \mathrm{L}^{\infty}$ for some $\gamma, 0 \leq y<3 / 2$; $\int_{-1}^{1} V(x) d x=-\infty ; V_{n}(x) \in L^{\infty} ; \lim _{n \rightarrow \infty} V_{n}(x)=V(x)$ a.e. Then $-\frac{d^{2}}{d x^{2}}+V_{n}$ con-$\stackrel{-1}{-1} \underset{\text { verge }}{n \rightarrow \infty}$ in the norm resolvent sense to $\left(-\frac{d^{2}}{d x^{2}}\right)$ D $+V$.

Proof. Let $\mathfrak{T}=\mathscr{I}_{1} \oplus \mathscr{T}_{2}$, where

$$
\mathscr{I}_{1}=\left\{\left.\mathrm{f} \in \mathbb{I}\left(-\frac{\mathrm{d}^{2}}{\mathrm{dx}} \mathrm{x}^{2}\right) \right\rvert\, f(\mathrm{x})=-\mathrm{f}(-\mathrm{x})\right\}
$$

$$
\mathscr{T}_{2}=\left\{\mathrm{f} \in \mathrm{C}_{0}^{\infty}(R \backslash\{0\} \mid f(\mathrm{x})=\mathrm{f}(-\mathrm{x})\} .\right.
$$

Then using the Hardy inequality in two of its variants

$$
\begin{aligned}
& \int_{0}^{\infty}\left|x^{-\beta} \int_{0}^{x} f(y) d y\right|^{2} d x \leq(\beta-1 / 2)^{-2} \int_{0}^{\infty}\left|x^{-\beta+1} f(x)\right|^{2} d x, \quad \beta>1 / 2, \\
& \int_{0}^{\infty}\left|x^{-\beta} \int_{\mathrm{x}}^{\infty} \mathrm{f}(\mathrm{y}) \mathrm{dy}\right|^{2} \mathrm{dx} \leq(\beta-1 / 2)^{-2} \int_{0}^{\infty}\left|\mathrm{x}^{-\beta+1} \mathrm{f}(\mathrm{x})\right|^{2} \mathrm{~d} \mathrm{x}, \quad \beta<1 / 2
\end{aligned}
$$

one can easily verify that the conditions of Theorem 1 with $H_{0}=-\frac{d^{2}}{d x}{ }^{2}, V, V_{n}, \mathscr{I}$ are fulfilled.

REFERENCES

1. Gesztesy E. J.Phys. A: Math.Gen., 1980, 13, p. 867.
2. Klaus M. J.Phys. A: Math. Gen., 1980, 13, p. L295.
3. Faris W.G. Self. Adjoint Operators. Springer, Berlin-Heidel-berg-New York, 1973.
4. Harrell E.M. Ann.Phys., 1977, 105, p. 379.
5.Schechter M. Lett.Math. Phys., 1976, 1, p. 265.
5. Zagrebnov V.A. Trans. Moscow Math.Soc., 1980, 41, p. 121.
6. Nenciu G. Applications of the Krein Resolvent Formula to the Theory of Self-Adjoint Extensions of Positive Symmetric Operators. Submitted to J.Operator Theory.
7. Achiezer N.I., Glazman I.M.: Theory of Linear Operators in Hilbert Spaces (Russian), Nauka, Moscow, 1966.
8. Kato T. Perturbation Theory for Linear Operators. Springer. Berlin-Heidelberg-New York, 1966.

WILL you fill blank spaces in your library?
You can receive by post the books listed below. Prices - in US 8. including the packing and registered postage

D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical physics. Dubna, 1979. F Few Parti.
Dubna, 1979.
D4-80-385 The proceedings of the International School on Nuclear Structure. Alushta, 1980.

Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volunes.

D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the α - and β-Decays of Transfermium Elements
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10, 11-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy on Polarization Pheno

D2-82-568 Proceedings of the Meeting on Investigations in the Field of Relativistic Nuclear Physics. Dubna, 1982
D9-82-664 Proceedings of the Symposium on the Proceedings of the Symposium on the
Problems of Collective Methods of AcceProblems OL Dubna, 1982
D3,4-82-704 proceedings of the IV International School on Neutron Physics. Dubna, 1982

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR
Head Post Office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES

 OF THE JINR PUBLICATIONS| Index |
| :--- |
| 1. High energy experimental physics |
| 2. High energy theoretical physics |
| 3. Low energy experimental physics |
| 4. Low energy theoretical physics |
| 5. Mathematics |
| 6. Nuclear spectroscopy and radiochemistry |
| 7. Heavy ion physics |
| 8. Cryogenics |
| 9. Accelerators |
| 10. Automatization of data processing |
| 11. Computing mathematics and technique |
| 12. Chemistry |
| 13. Experimental techniques and methods |
| 14. Solid state physics. Liquids |
| 15. Experimental physics of nuclear reactions |
| at low energies |
| 16. Health physics. Shieldings. |
| 17. Theory of condenced matter |
| 18. Applied researches |
| 19. Biophysics |

Ненчу Г.

Снятие обрезания сингулярных возмущений:
абстрактный результат
Пусть $\mathrm{H}_{0} \geq 0$, V -самосопряженные операторы в гильбертовом пространстве \mathcal{H} ', причем квадратичная форма $\mathrm{H}_{0}+\mathrm{V}$ не ограничена снизу. Пусть V_{n} - последовательность самосопряженных операторов, такая, что $V_{n} \rightarrow V$ в некотором смысле, причем операторы $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ самосопряжены и ограничены снизу. Формулируются условия, при которых, хотя операторы $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ неравномерно ограничены снизу, предел $\lim _{\mathrm{n} \rightarrow \infty}\left(\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}\right)$ существует в смысле равномерной резольвентной сходимости и лвляется полуограниченным снизу самосопряженным оператором.

Работа выполнена в Лаборатории теоретической физики ОияИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Nenciu G.

E5-82-863
Removing Cut-Offs from Singular Perturbations:
An Abstract Result
Let $H_{0} \geq 0, V$ be the self-adjoint operators in a Hilbert
space \mathcal{H}, and suppose the quadratic form of $\mathrm{H}_{0}+\mathrm{V}$ to be unbounded from below. Consider a sequence, V_{n}, of self-adjoint operators, $V_{n} \rightarrow V$ in some sense, such that $H_{0}+V_{n}$ are self-adjoint and bounded from below on $\mathscr{T}\left(\mathrm{H}_{0}\right)$. Under appropriate conditions, in spite of the fact that the spectra of $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ are not uniform$1 y$ bounded from below, it is proved that $\mathrm{H}_{0}+\mathrm{V}_{\mathrm{n}}$ converge in the norm resolvent sense and the limit is identified.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

