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I. INTRODUCTION 

The aim of this article is to study the asymptotic behaviour 
of the scattering phase s(A) related to an elliptic second or
der formally self-adjoint operator H, defined either in Rn or 
in an unbounded domain n with Dirichlet or Neumann boundary 
conditions. Recently, this problem was investigated by many· 
authors. In ref.141 Buslaev announced a result about the asymp
totic of s(A) as A--> "" for differential operators in R n , as well 
as in the obstacle case with Dirichlet boundary conditions. The 

b d . d d . f / 41 h . . pertur e operator H. cons1 ere 1n re . , as a pr1nc1pal 
symbol with constant coefficients and 0 is not an eigenvalue 
of H. Later, the same problem was studied by A.Majda and J.Ral-

1141 Th d h ' f . . ston . ey prove t e ex1stence o an asymptot1c expans1on 
and computed the first three coefficients when s(A) is the 
scattering phase of the Laplacian with Dirichlet boundary con
ditions on a convex obstacle, and when s(A) is the scattering 
phase of the Laplace-Beltrami operator for a non-trapping met
ric on R~ which is Euclidean in a neighbourhood of ~ . The 
authors conjectured that the same asymptotic expansion holds 
for anl non-trapping obstacle. This conjecture was proved in 
ref: 18 by V.Petcov and the author for the Laplacian with Di
richlet or Neumann boundary conditions. 

For the Schrodinger operator H-- !\+ V , V c; C~(Rn) and n: 3, 
the asymptotic behaviour of s(A) as A-->.,., was investi~ated by 
Colin de Verdiere 151 , and for any n-odd by Guillop(/ 1

. Recently, 
an asymptotic expansion of s(A) related to a first or second 
order elliptic operator on a Hermitian bundle over an odd di
mensional Riemannian manifold was announced by V.Ivrij and 
M. Shubin 191 . 

In this paper, both cases, n -even and n .-odd, are conside
red, as well as the case when A· 0 is an eigenvalue of the per
turbed operator H. The asymptotic behaviour of the scattering 
phase s(A) as ,.\ __. oo is investigated for arbitrary second order 
elliptic, formally self-adjoint differential operators H in 
a domain 0 c R n , satisfying a non-trapping condition and such 
that H-- /':.. in a neighbourhood of ,. . The self-adjoint extensi-
on of H in L 2 (n) with Dirichlet or Neumann boundary conditions 
on JO when 0 ,f.. Rn is bounded from below but it allows to have 
a finite number of non-positive eigenvalues in contrast to 

/14 18/ Th f -refs. ' . 
1
/,ere ore

1 
there 1s not always a good rate of local 

decay for ~~ sin(tH r~ ) , t __."" essentially used in ref/ 181 
-------- -~ 
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where Hac is the absolutely continuous part of the operator H. 
In order to overcome this difficulty we study the asymptotic 
behaviour of the B -matrix at infinity. 

Suppose K is a bounded domain in Rn with smooth boundary 
aK and 0 .. R'l K or 0 .. Rn . Consider an elliptic, formally seld
adjoint second order differential operator. P in n with Di
richlet or Neumann boundary conditions on a K, when 0 f. R.n 
and P--~ outside the ball BR .. !x; Jx\~R!. Without loss of 
generality assume that P nhas the form P --~r; + hD + V, 

where Vt; q~)(Rn) , hD -.~ 1 h/x)Dj, Di --ia/axi and ~r;is the 
Laplace-Beltrami operatorJfor a Riemannian metric g, 

n -%. . i' % .. 
~ .. !. g a /a xi c g J g ) a ;a x . 

r; i,.i:->1 J 

ij 00 - ( ij ) -1 " I ., R g c;; C (O), g •. det(g ij) , gij- g and gij •uij for x > . 
The projections of the (generalized) bicharacteristics of P 
on Q are called (generalized) geodesics of g 

11?1 

Definition. The metric g is said to be non-trapping if thera 
is T > 0 such that every (generalized) geodesics, beginning in 
BR, leaves the ball B R by the time TR. 

Let Ho and H be the self-adjoint extension of the free Lap-
lacian - ~ in L2 (Rn) and of P. in L2 (0) with Dirichlet or 
Neumann boundary conditions on a K when 0 /. Rn . These operators 
generate groups of unitary operators exp(itH0 ) and exp(itH)E!ll 
in L 2(If) .. L2 (n) E!l L2 (K). The wave operatorc; W+ are defined as 
follows -

itH -itH0 
W ± ,. s -lim ( e E!l 1) e . 

t-+ + 00 

· 11 k 131 h W · · 
2

( n d It 1.s we nown t at ± are 1.sometr1.cs on L R ) an Rang 
(W+) = Rang (W_), so the scattering operator S .. W* w_ exists 
as a unitary operator on L2 (Rn). In the spectrat representation 
of Ho on L2 (R+,L 2(sn- 1 )) the scattering operator S can be con
sidered as a function of unitary operators S(A) on L2 (S n-t) 
which is called a scattering matrix. Moreover, S(A) .. I+ K(A), 
where K(A) is a trace class operator for A> 0. This enables us 
to define the function detS(A) : R+ ... s 1 

.. ! zc;; c; I z\-1! as a pro
duct of the eigenvalues of S(A). It was proved in refs.

17
•
10

• 
11 

that there exists a continuous (even analytic) in R+function 
·s(A), satisfying the equality 

detS(A),. exp( 2rri s(A)), A > 0. 

Such a function s(A) is called a scattering phase. 

2 
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We 'shall prove the following results. 

Theorem 1. Suppose•the metric g is non-trapping in Rn.Then 

s(A) ~ 

Moreover, 

"" n/2-j 
:£ a.,\ 
j-0 J 

as 

-n/2 -1 

A ... "" • 

a
0 

.. ( 4rr) (r(n/2 + 1)) l vo1r;(B R) - vole(B R)l, 

-n/2 -1 K·/- Jh\ r; 
a 

1 
.. (4rr) (['(n/2)) J (--12.. -- + V(x)) dx, 

3 4 

(I . 1) 

where vol g(B R) and 
volume of the ball 

vole(B.R) are the Riemannian and Euclidean 

n i j 
lhl = !. g .. h h 

g ij-1 IJ 
In the case of 

BR , K(~ is the scalar curvature and 

is the Riemannian length of the vector h. 
the Sc~rBdinger ~perator we prove 

Theorem 2. Let H .. - ll+ V , V c C""(Rn) ,n>-.3. Then s(,\) has 
the form ( 1. 1) when A->"" , where 

n a 
a ... [ P. (V,DV , ... ,D V)dx, 

J . J 
a a 1 an 

D ,. D 1 ... D n 

P
n . . pn n 

and i are some un1.versal polynom1.als. Moreover 0 • 0 , P 1 (V) = 
= (4rr J-n/ 2(1(ni2))- 1V and 

n 3/2 l+\a\/2 a j n a 
Pi (AV,A DV, ... ,,\ D V) .. ,\Pi (V,DV, ... ,D V), A>O. 

In the obstacle case we prove 

Theorem 3. Let H--~g+h[Y+ V in L 2
(0) with Dirichlet or 

Neumann boundary conditions on an and suppose the metric g 
is non-trapping in Q C R n , n ~ 3. Then 

(n-j)/2 
s (A) - :£ a. A as ,\ ... ,. 

j-0 J 

and 

-n/2 -1 
a0 - (4rr) (r( n/2 + 1)) I 'lOlg(On B R) - vole (B R) l. 

1 -(n-1)/2 ll+ 1 -1 
a 1- ±4'(4rr) (r(-

2
-)) votg<an), 

where+(-) sign is ~sed in the case of Dirichlet (Neumann) 
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boundary conditions and vol can) 
an . g 

is the Riemannian volume of 
' 

The plan of the paper is as follows. In section I we prove 
that the point spectrum of the operator H is finite and inves
tigate some properties of the scattering phase. In section 2 
we study the behaviour of the scattering matrix at ~ in order 
to find functions ·s:~.(A) add ·s?JA) such that ·s(A2 ) .. ·s 1(A) + ·s 2(A) 
and·s 1(t)(;;£'(R1) )S 2(A) ,.Q(X·) , N(;;.l,A-+oo for any Ni;;l 
In section 3 we investigate the distribution ·s 1 (t) using sui
table trace formulas and prove a similar to theorem I result 
in the case of matrices of first order differential operators. 

2. THE SCATTERING PHASE AND THE SPECTRUM OF H 

We begin to study the spectrum of H in L
2
(Rn).First we prove 

that the point spectrum of H is finite. Since H-- D. outside the 
ball BR the Rellich~s theorem and the unique continuation pro
perty of second order elliptic operators yield the absence 6f 
the positive point spectrum of H. Moreover, H;::-£!J.+V 1 for some 
£ >'0 , v1 ~· C'Q (Rn) when il. Rn and since the negative po"int 
spectrum of -c!J.+ V 1 is finite, so is those of H. In the casen 
n" Rn we use the inequality H~ H1E1J H2 in L

2
(0nBR) L

2
(Rn8a). 

where H1 ,. H in. {l n.BR , H2 .. ..,.D. in Rn BR with Dirichlet boundary 
conditions on a(nriBR) and aBR respectively. Notice that both 
operators H1 and H2 have finite negative point spectrum.More
over, the eigenvalue o has a finite multiplicity. Indeed, as
sume there exist infinitelymany ¢j~L2 (Rn), (¢ .• ¢k)"'ojksuch 
that H¢i•O. T'!:,enn D.¢j'·(D.-H)¢i and ¢j(x)•JI x-yj·t+2<,D.-H)¢i(y)dy. 
Letn>4, x~C (R) •X"'O onBR andx(x)-1 for lxi>R+l. Then 
IX¢j(x)j~clxl-n+2 and IIO+Ixl 2t ¢j!IH2(Rn) ::;.C for somec>O 
C>O. Now it is not hard to choose a Cauchy subsequence of ¢ j 
inL2 (Rn) , which contradicts our assumption. Whenn=3 or n-4, 

-2 ~ 2 n 
we havef(L\-H)¢j(y)dy .. O since\~ (!J.-H)¢j(,;) •¢j(~) 1;;-L (R ). 
Then ¢j (x) = J (D.-H)¢ j (y)[ I x-yl-n+g,l x\-n+2 ] dy and the argu-
ments gi.ven in the case n> 4 can be repeated. Therefore the 
point spectrum up(H) of H is finite and non-positive. More
over, the continuous spectrum of H is absolutely continuous 
and coincides with R+ . 

In the rest of this section we study the scattering phase 
s(A) related to the pair H , H0 • First consider Ko "'(a+H0)-

1 

K .. (a+H) -1 which are bounded, self-adjoint operators for 
a> inflap(H),O! ,.,x. 1 • Moreover, the operator KP-Kg is a trace 
class one for p :-- n (see ref / 21 

) • Th~n the scattering phase 
·s(,\; KP ,Kg) related to the pair K P , Kg is defined as follows 

s(.\;KP.~)=rr- 1 limargdet[ 1+(KP-K
0
P)(KP -.\- ic)- 1], ,\.(; R1 (2 I) 

c-++0 0 • 

4 

\ 

d h h • ( f /3,'7,10/ an as t¥e propert1es see re s. . 
(i) ·s(,\; KP , ~J t; L1(Rn) and supps C [ 0, ( ,\

1 
+ a)~ 1], 

(ii) For any <ll t;; C""(Rn) the operator '<ll(KP) -'<ll(Kd) is 
a trace class one and 

Tr!<ll(KP )-<P(Kg)!= f <ll'(A)s(A;KP,Kb)d..\, 

(iii) detS(,\;KP,K~)- exp(-2rri·s(A;KP,Kg)), A> 0, 
where S(.\;KP,Kb) is the scattering matrix for the pair H, H0 . 

The function ·s(A),. s((a+A)- 1 ; KP,K!Q) will ba called a scatter
ing phase for the pair H ,H 0 . This notion is motivated by the 
property (iii) det S( ,\) ,. exp ( -2rr is( A)) derived from (iii)' by 
the invariance principle. Using (i)' and (ii)' it is not hard 
to see, that (i) (1+.\ 2 )-Ps(.\) <;L2 (R 1 ) for p>n and supps C 

c[,\1 ,oo), (ii) For any. <!Jt;;.fxR 1)the operator <!J(H)-¢(H
0

) is 
a trace class one and 

Tr I <l> (H)- <l> (H 
0

) ! "' J ¢' (A) s (A ) d A . 

Moreover, the function s(A) is analytic in R+ ~ince the opera-
torR has no positive point spectrum (see refs: 10 · 181 ). 

Two special choices of the function <!J in (ii) are very use
ful for &tudying the asymptotics of s(A) at infinitely. Let 
<!J(A) ~ e- ¢(A) , ¢ c C""'(R 1), rf; (A),. 1 for A t;;[-a, .... ) and ¢CAl ~o 
for A c (-oo ,-a-1). Then <t>c;; S(R 1) and 

-II! ·-tHo "" -tA 
Trle 'll0 -e l--tf e s(A)dA, t'>O, (2. 2) 

-'-. 

-Ill -tH 2 2 n 
where e 11\ 0 acts as e in L m l and as 0 in L CR \ll,_De-
note~lAJ .. ~':._llifcos(/Xt)p(t)dt , p·;;. c;(R 1 )and Bo·vHo , 
B1 • •/Hac <P i\1-H P • where Hac and H Pare respectively the absolu
tely continuous and discrete part of H. Then ¢c; SCR 1 ) and it is 
not hard to see from (ii), that 

Tr r p (t) I cos Bt t (j) 0 - cos Bat l dt 2 1/2 r -~- p(fl) S(fl) dtl. 
,. dtl 

(2.3) 

where I' • (-x •"" )U (-ia, ia) and ;( 11) .. s(fl. 2) for 11 <:;,. (0,><) 
svl)• -S(f12) for 11 4;; (-x ,0) u (O,ia). 

(ia,O), 

- 1 . Remark. It turns out that the function sv1 ) , f1 t;; R 1s the 
scattering phase for the wave equation in Lax-Phillips scatter
ing theory (see ref./ 181 

) • Moreover, using (2. I) one can obtain 
the equality (see refs. 15 •71 ) 

ia d _ 
1/2 f -- ji( 11 ) s(fl.) ct 11 

-i a d11 

!. p(,r;) +p(-JTj) 
Aj';c·ap(H)\!ol 2 s(Aj ). 

5 
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3. DECOMPOSITION OF ·s(.\) 

' 
In this section we 'construct functions ·sl(.\) , j .. 1,2 with 

the properties 
( i) s ( >. 2 ) ~ s 1( >.) + s i >.). 

(ii) ls2(.\)l..$ CN(l+>.);-N when A->.,.·, N G Z, 
(iii) The Fourier transform of ·s 1 (A) is a compactly sup

ported distribution. 
To do this we use the equality 

d d 
-·s(>.) = Tr {8(>.)- 8*(>.)1, 
d,\ d.\ 

>. > 0, 

as well as an explicit form of the scattering matrix. We are 
going to obtain a representation formula for the S-matrix. By 
the invariance principle we have 8(>.),,.. S((a+.\)- 1 ; KP ,K~ ), ,\>'0. 
Moreover, the stationary approach/!, 11.12/ can be applied to de
rive a representation formula fot the 8-matrix of the pair 
K,~.Denote by A the operator of multiplication by (1+lxl 2 )-f3/2, 
(3 > n and let C be the operator given by K"' Ko + :ACA. Since H 
coincides with H outside the ball Ba, the operator C is a com-
pact one from Ho,,mt to H 0 'm2 for every m 1 , m 2 ~-R. Here-
after H5 'm will be the weighted Sobolev space with norm 

l!"fll:,m .. f (1+1~12)s I :f[(l+ I xl2)m/2 f] (~)12d~ 

cr • cr ix ~ 
and J stands for the Foun.er transform J (f)(~),.. f e f(x)dx. 
The operator Q0 (0,., :A(Ko-() -1 A has the norm-continuous boun-
dary values Q~ (j.t) for p. c;.I=(o,a-1) as (->f!±io. Moreover, 
the compact operator CQg=(j.t) has no eigenvalue I in L 2(R 4) 

since H has no positive point s~ectrum (see ref/ 111 §7). Fol-
lowing Agmon, Kato, Kuroda 1 1• 11• 1 one can prove that Q ±(p.) 
= lim ·A (K- 0- 1 A exists as a continuous function of opera-

. 2 n + + 
tors bounded m L (R ) for p. ~.I. Moreover 1- CQ 'iJ,t),. (1+CQ 0-'{p.))~ 1 

for p. ,;;; I. The S-matrix for the pair K, Ko can be written in 
the form 

8(j.t ;K,K
0

) ,. 1-2rri.F
0 

(p.) [ 1+CQ;(j.t)} -lF
0 

(j.t)* 

... 1-2rriF
0 

(j.t)[1-CQ+(j.t)]F
0

(j.t)*. 
(3.2) 

The operator F
0 

(j.t) : L2(Rn) ... L2(8 n-t) is determined by the equa-
lity F0 (j.t)F(j(p.) .. -(2rrif 1 [Q~(j.t)-QQ (p.)]. Denote by y(.\) the 
trace operator on the sphere with a radius >. , (y(.\)u) (w) = 
= u(>.w) , w ..;;;. 8n- 1 for u(; C""(Rn), where polar coordinates ~ .. pw 

are used. The operatory(>.) extends to a Holder continuity 
with resrect to >. function of bounded operators from H s,m (Rn) 
to L2 csn· ) for any S> 1/2 , m (; R 1 .Using the equality (Ko-()- 1 

6 

=-(1+Z)-(1+Z)
2

(Ho.-z)- 1 
, t;-(a+z)- 1 and the Holder continuity 

ofy(>.) we obtain Fo (p.) .. 2 -'h (1+>.)>. (n-l)/ 4cr (>. 'h ):fA, p.,. (a+.\) - 1 • 

]hen (3.2) and the in~ariance principle yield 

2 (n-1)/2 2 
8(.\) • 1-rri(l+.\) ,\ O(A:)[1+(1+.\)V+0+.\) VR(.\ 2+i0)]VO*(>.) (3.3) 

'h q for .\>.0, where 0(>.)-y(,\ ) J , V .. K-K 0 and R(z) .. (H- z)- 1 • 

Remark I. In the case f!. R n a more simple formula than (3. 3) 
is known ' 

(n-2)/2 
8(,\). 1- rri.\ 0(,\)[V-VR(>.+io)V]G*(.\), (3. 4) 

where V .. H ·-Ho (see ref/ 
131 

) • This formula is also valid when 
H and H0 are matrices of differential operators and G(~ is 
suitably choosen. 

Lemma I. The 8-matrix has the form 8(,\2 ) .. 8 1 (.\) +82(.\), 
where 

(I)(~/ 82(>.) is a trace class operator with norm 
d.\ 

d j -N 
IIC"'(IT) S2(>.)11Tr $. CN(l+>.), .\>0, N ~ Z, j < n-1, 

( 2) S 1 ( t) - { e 1 v\ S 
1 

(A) d.\ 
to t. 0 

has a compact support with respect 

Obviously Lennna I and (3. I) give together the desired decom
position of the scattering phase. In order to prove Lemma I 
we need the following assertion. 

Lemma 2. The operator V-K-Ko has the form V.V1+V2 where 
the distribution kernel of V 1 is compactly supported and V 2: 
Hs,m1 ... H &+N,m2 is a bounded operator for each s , m 1 , m 2 , 
N.c; R1 • l1oreover supp v2 u c If BR for any u (; H S, m1 

"" n+1 
Proof. Let¢-' C (R ), ¢(t,x),. 1 for lxJ <t+ R , ¢(t,x) ,.o 
-..,...--.--,..- n+ 1 "" 1 

for Jxl>t+R+ 1. Choose x~CQ(R ), X"'l on BRand tf;t;Co(R~ 
r/J(t) • 1 for It I< 1 , r/J ( t) .o for 1 tJ > 2. Using the finite propaga-
tion speed of s·/ sintBj we obtain 

"" -t -( -1 
V • f e r/1 ( t) ¢ ! B 1 sin t B 1 Ell 0 - B 

0 
·sin t B 

0 
l ¢ dt + 

0 
"" -t -1 -1 

+fe (1-r/J)x!Bl, sintB 1 'llO-B
0 

sintB0 ldt+ 
0 

00 
-t -1 -1 

+f e (1-r/J)C1-x)¢!B 1 ·sintB 1 EllO-B
0 

·sintB
0
l¢dt. 

0 

Denote the third integral by V 2 and the sum of the first and 

7 
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' 

second one by V1 • Obviously the distribution kernel of V 1 is 
compactly supported. Moreover suppV2 u C supp(1-·y)CRn BR. 
Integrating by parts in the third integral and taking into ac
count the inequality I xI ::;t + R on supp ¢> we claim that 
v

2
: H 8 •m1..., Hs+N,m2 is a bounded operator. 

Lemma 3 •. Suppose that the operators Wj(;j~(L2)have compactly 
supported distribution kernels. Let the metric g be non-trap
'ping in fi'. Then the operator Q(,\) = W 1R~A2 +i0)W 2 has the form ' 
Q (,\) = Q 1 (A) + Q2 (,\), where 

(i) ll(d/d\)kQ 2 (A)II~(L2 (0)) ~ CN(1+A)-N, ,\;:;.R+, N(;l, k<n-1 

(ii) Q
1 

(t) .= j eiAt Q 
1
(.\)d.\ is compactly supported. 

0 

Proof. Consider the operators P. (t) = B-:- 1sintB j , j = 0,1. 
Obviously Po (t) and P 1 (t) solve tfie probiems 

2 (D t - D0 )P0 (t) = o 

P 0 (0) = 0, P Ot(O) = I 

(D ~ -· H)P 1 (t) = 0 

P 1 (0) = 0, P 1t (0) = I 

BP 
1 

(t) = 0, 

. au . 
where Bu = u/ao or Bu = -!a0 and n is the outward normal to 

an 
aO. Let X G C~(R\ X"' 1 on SUPPx,y W j(x,y) , , j = 1,2 and x(x) = 0 
for X~'BR 1 where wj (x. y) are the distribution kernels of wj. 
!)ue to the non-trapping condition, there exist T ::tO, such that 
every generalized null bicharacteristic of D1-·H passing 
over supp X n at t = 0 lies for I t I > T completely over the 
set Rn BR. Moreover the bicharacteristics of D1 -H are straight 
lines outside the ball B~ The propagation of singularities for 
the distribution kernel P 1 (t, x, y) of P 1 (t) yield 

sign supp P ( t, x, y )x (y) C I ( t, x, y ); II x I - t I < 'I l , T > R 1 : (3. 5) 

Choose a cut-off function e (;· C'\:Rn+~such that t = 1 on a neigh
bourhood of l(t, x); llxl -·tl < T I, , t(t, x) =0 if (t,x) ltl(t,x); 
l!xl-t! < T+1l and suppose xf(t,x) =0 for tGR1 x 

Consider the operators Pox= x P0 (t)x , P 1x = x P 1 (t) X, , E o 
= tP 1(t) x. , RX(A) = xR(.\)x. Then we have 

W
1

R(.\ 2 + iO)W
2 

=W
1

1xE(A) +[Rx(.\2 +iO) -xE 0 (.\)]IW2 • 

It is easy to see that the operator xE0 (t) has a compact support 
with respect to t. 

8 
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. I ,, 

! 
l 

'~ 
11 

! 
\ 
i 
• 

·.I 
:.1 
~; 

~~~ 
'! 

So we need the following estimate 

IID![R(A2 +i0)-xE(.\)]Ij.., (n)) <C (1+A)-N,NG·Z,j<n-1, (3.6) 
"' • .t. (L u -· N 

where ~(L2 (O)) is the space of bounded operators from L
2

(0) 
to L 2 (0). A similar to (3.6) estimate was obtained by Vain
berg/211 and Rauch /20(our proof of (3.6). is close to that given 
in ref.1201 and we only shall sketch it. 

Consider the operator .F(t)= tD~-H.f] P(t)x, . F(t) G·~(L 2 
(0)). 

It follows from (3.5) that the kernel F(t, x, y) of F(t) is 
a smooth function, suppFC l(t, x, y); T< llx1-ti<T+1land 
F(£) (O) = 0 for any £ ~;;.z+, since e = 1 on supp X. Moreover 

(D~ -·H)E 0 (t) =· F(t), 
(3. 7) 

E 0(0) = 0, E0 t (0) =X, BE 
0
(t) = 0 , 

where Bu = u/ ao or Bu = #n- I a~. Let F (t, X, Y') be a smooth func
tion in R1 x Rn x 0 such that F = F for x G·O and F(t, x, y) = 0 
for x G K , t > 2T. Consider the problem 

(D 2 - H 0)W(t) = F(t) 

W(O) =0, W
1

(0) =0. 
(3. 8) 

Choose Y, <;. C 
00

(Rn), 1/J = 1 on supp x, , 1/J (x) = 1 for I x \ > 2T. From 
(3.7), (3.8) and Duhamel's formula we have 

t 
W(t) = E 

0
(t) e 0 -·P 

0 
( t)x + f P 0 (t- s)(H 0- He O)(E0 (s) eO) ds (3. 9) 

0 

in L2 (R0
), 

t 
E 0 (t) =1/JW(t) + P

1 
(t)x + f P 1 (t- s)Q(s)ds (3.10) 

0 

~ 

in L 2 (0), where Q(s) =(1-1/J).F(s)+[H,I/J]W(s). SincexEo has a com
pact support with respect to t, we can choose T > 0 so that 

T 
xW(t) = P (t) + f P (t- s)(H -·He O)(E (s) e O)ds. ox ox 0 0 

The local energy decay of the operator P 0(0. i.e., 

j -n 
liD t P ox(t)!\ ~ (H-s.ss) :S. C s, it , t > c 

and the smoothness of the kernel of W(t) yield the est:i,mate 

II 
i -n 

Dt xW(t)[\~(H-s,Hs) :S C s,j (1 + t) 
-·+ 

for t (; R . 
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Using the equalities xW(f) ( 0) = 0 for £sz+, we obtain 

IIDJ xW(,\) II (Uc s s < c (1 + ,\)-N for N ~,z+, j < n -·1. 
t ~ H- ,H ) _, N 

Therefore 
J ~ N 

IID,\Q(I\)IIf(L2(11)) :5. CN(l+,\)- for N " Z ·~ j < n - 1 . (3. II) 

Moreover, the function Q(,\) = j e ikL Q(t)dt is analytic on the 
half-plane Imk >0 with values 0 in f(L2 (fl)) and it has a cn-2 
continuation on R. Multiplying (3.IO) by x and taking a Fou
rier-Laplace transform with respect to t we get 

x E0 (k) - Rx (k 2 ) = Rx(k2 ) Q (k) 

for Imk 2: C , C -sufficiently large. We can extend thi~ equality 
in lk; lmk > 0, Rek > 01 since the functions R (k2 ) and G(k) are 
analytical in this region with values in !'_fL2 (11)). Using (3. II) 
we obtain 

IID.\JRx (,\
2 

+ iO)JI fcL 2(11)) ~ C.\ P, A::::, .\ 0 , J < n- 1. (3. 12) 

for some p, and prove the estimate (3.6). So we complete the 
proof of Lemma 3. 

We are ready to prove Lemma I. Using Lemma 2 and Lemma 3 
with Wi =V 1 we can write S(.\

2) in the form S(.\ 2 )=S 1(A)+S 2 (A), 
where 

Sl(A) = 1+ 77i(1+.\2)G(.\2)x[Vl +Ql(A))xG*(.\2).\n-2. 

S 2 (.\) = "i (1 + ,\ 2 ) A n-2 I (1 + A 2 ) 2a (,\ 2) Q2 (.\) G * (.\ 2) + 

+ G(.\2 )[1+(1+.\2 )Vl + (1+.\2 )2 V1 R(.\ +iO) lllO] V2G*(.\2 ) .._ 

+ G(t\2 )V2 [1 + t\ 2 + (1 + .\2 ) 2 R(.\ + iO) Ill 0) VG*(,\2 )!. 

The operator S1 (A) sat;.isfies the second condition of Lemma I. 
Indeed, the operator Q 1(t) has a compact support with respect 
to t in view of Lemma 3 and so does 0(,\2) x (t) with. distriBu
tion kernel B(t-xw)x(x), _ x GC~(Rn), w ~sn-~In what follows we 
shall prove that S2(.\) satisfies the first condition of Lemma!. 

I. First consider the oper;xtor 11 (A)= Q(.\2 ) QJ (A) G*(A2 ). The 
kernel of G(,\2 ) is equal to e wx, therefore l1 ~.\) is an operator 
with smooth kernel I 1 (.\, w, (J) and 

II1(A,w, (J)i =If eiAwxx(x)Q2(A)(e-iA0y x(-y))dxl $.. 

:::c IIG2(,\)IIfcL2(11)) ~CN(1+,\)-N. 
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I 
J : 

.t . ! . ' . ~ 
t ~ 
~ 

I 

Therefore ~~~ is a trace class operator and 

' -N II I 1 (,\) II Tr $,C N (1 + \) . 

2. In order to estimate the other terms of S2 (.\) we use the 

inequality 

I! R (.\ 2 + iO) 1 I R 0 0 < C (1 + A) P for some p. 
~ (H ,n • H '-n) -

(3. I3) 

This estimate was proved for xR(.\2 +iO) x (see (3.12)). To de
rive it for R(.\2 + iO)x consider the resolvent equation 
R(.\2 + iO)x = R 0 (.\2 + iO)x -· RQ(.\ 2 + iO)(H- H 0 )xR(A2 + iO)x. Using 
the '~nequali ty liD~ Ro (.\2 + iOJ \I£ (HO,n, H 0,-!ll :::; c~ for Ia I ::; 2 we 
obta1n (3.13) for R(.\2 + iO)x and repeat1ng th1s argument we 
prove (3. I 3) • 

Consider the Dperator I 
2

(,\) = G(A) V 1 R(.\ 2 + iO) V 2 G *(A). This 
operator has a smooth kernel 

-I 2 (.\, w, 8) = (i.\)-2Nf e it\xw V 1 R (.\2 + iO)(V 2 ~ N ( e -iAy8 )) dx 

and Lemma 2 yields (I 2 (.\, w, O)l :::c.\ - 2 N. The other terms of S 2(,\) 
can be estimate irr a similar way. 

4. PROOF OF THE THEOREMS 

In this section we show(that the scattering phase has an 
asymptotic development at infinity and compute the coefficients. 
Denote by a the distribution 

<a,p> = Tr fp(t)lcosB 1t e 0- cosB0t!dt, p ;:;,c~(R 1 ). 

Using the trace formula (2.2) we have 

A 1 "" d ~ - 1 ia 
pa(A) = -· f _,p(,\-1!) s(tL)dt-£ + -· I 

2 -oo <lit 2 -ia 

d " ~ - p (A. - ,.d s (j!) dlL 
dtL 

and the second integral is O(A -N) for any N as ,\-+"" The de-
composition of s(A2) obtained in Sect.2 yields 

A d A N 
p * - s (,\) = -2pa(,\) + O(F ) 

dA 3 

with s ¥ (,\) = s 1 (,\) 

p GC~(R) and p:l 

for A>,Q and s
3

(,\)=-,s 1(,\) for A<O. For 
on supp s 1 (t) 'the last equality leads to 

d 2 ~ 
-s(,\ ) =- 2p a(,\) + O(A-N), N G z+, A>O. (4. I) 
dA 

11 
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First consider the case n = R0
• To study the right-hand side of 

(4.1), introduce the distribution kernels v (t, x, 'y;) and 
v 1(t, x, y) of the operators cos B 0 t and cos~ 1t. Obviously v0 
and v 1 are solutions of the problems 

2 (Dt - H0) v 0 = 0 (D 2 -H)v = 0 
t 1 

vo:'t=O =o(x-y), vot/~r-o=O v 1/~r-o=o(x-y), vlt/~r-o= o 

and a(t) is equal to the distribution f[v
1
(t, x, x)-v0(t,x,x)]dx. 

Repeating the arguments in the proof of Corollary 1.2 in ref.15 ~ 
one can prove that sing supp a:::: ! Ti , 'I i is a period of a periodic 
geodesic of gl. Since the non-trapping condition sing supp a=!Ol. 
Then (4.1) holds for any p~C~(R 1),p;:d on a neighbourhood of 
t=O. Using the finite speed of propagation and ?pplying a fi
nite partition of unity, one can reduce the problem to the in
vestigation of the functions 

Ij (A)= rr e-iAtp(t)¢(x)vj (t, X, x)dxdt, j = 0,1, 

with ¢ c; C~(R
0

). It turns out that for it I <8 and o sufficiently 
small, the distributions v 1 and v 0 are sums of oscillating in
tegrals 

(t ) r i~+(t, x, y,O) + (t 0) dO v± .,.x, y = e - a- , x, y, • (4. 2) 

h + 1 . 1 1" d + ~ + + were a- are c ass1ca amp 1tu es, a--.-:: Cj, Cj- homogene-
ous of order -j with respect to 0. The pnJlse functions <I>± have 
the form <!>± = ~~ (x, y, e)± tg(y, 0) (see '6 1 ), q2 is the principle 
symbol of Hand rjJ is a local solution of q(x,d t!J(x,y,IJ)) 
= q(y,l:l), 0(x,y,0)=0 when <x-y,i:1"=0 and dx0(x,y,0) =0 
for X=y. Then the integral I 1 (A) became 

n iAt(t-qd.l:l)l t -N 
1

1 
(A)= A ( e ' d>(x)p(t)a (t,x,x:l1)d0dx+ O(A ). 

Substituting 

O=rw q(x,w)=l. r>O, S=lu>:q(X,rtJ)=ll 

we have 

"" iAtO-r) + -1 
I(A) ~ A0 JJJ e p(t)¢(x)a (t,x,x,ArctJ)\ V q\ dSdrdxdt, 

0 s 
and applying the method of stationary phase we obtain \ 

-n oo oo 
1

1
(..\) - (2rr) l l 

j-o k~ 

n-j-k-1 2 . 
A -1 a n-1-J + dS 
-- {f (i --· ) [ r c (t,x,x,w)]'/ ¢(x)-.::::... dx. 

12 

k! S (.Ita r J tzO ' v qj 
~1 

~ 
I 

l· 

I 
j• 

This formula leads to (1.1) with 

-n + 
a i ~ (2rr) JJ ( c i (0 ,x,x\w ) + 

i - 1 -1 · k + dS dx 
+ l (n-j-l) ... (n-j-k)(k!) (i a/at} c. k (O,x,x,w) ------. 

k-t J· I v qJ 

(4. 3) 

In order to compute the coefficients in the case of the Schro
dinger operator Ha-~+V, observe that cfi±•.<x-y,O>'± t\0\Vci• V2, 
and cr , ~ > 0 solves the transport equation 

+ + . ' 2 + 
acE-.<O.vx>cE -l/2(at -~+V)CE-t ,.o, 

+I .. o. cE tsO · 

Using (4.3) we prove inductively that aj has the form prescribed 
in theorem 2. 

The investigation of the asymptotic behaviour of p7r(..\) as 
A .. "" in the obstacle case n .. R0 for the Laplace operator 

with Dirichlet or Neumann boundary conditions was done in 
/8 18/ ~ 00 (n-j-2)/ 2 

refs. ' . It was proved, that pa·(..\) - l a . ..\ and the 
' j•O J 

fi~st three coefficients aj , j ,.o,t,2 were obtained in the case 
a 1l ,.i)ij . The method used 1n r~fs/~· 181 by Ivrij, can be ap
plied to the investigation of pa·(..\) for arbitrary second or
der differential operators in 0 with Dirichlet or Neumann bo
undary conditions. In order to" compute the first two coeffici
ent of ·s(..\) one can use the trace formula (2.2) as well as the· 
asymptotics of the right-hfn~ side of (2. 2) as t-+ + 0 given 
by Me Keen and Singer (see 15 §4 and §5, formula (2)). Comparing 
the coefficients of the two sides of (2. 2) as t ... +0 we get ao 

a~d a 1 • 
The method used in the previous sections can be applied with

out change to study the asymptotics of the scattering phase re
lated to systems of first order differential operators. Let 
H

0 
.. !.~i .. 

1
AjDi, H 1 .. !.~,., 1 ~A~(x)Dj+B(x) be self-a~joint opera

tors 1n IJ (R n ;C 2m ) , A0 be constant 2m x 2m matr1ces, 
, 2 n J 

1 00 n 4m k ~ k 1: 
·A. ~ C (R ; R , ), A .. f- .AJ. s i 

J ~1 
A~sume, that the eigenvalues 

, k .. 0,1 ; H 1 .. H0 outside the ball BR. 

,.\/X, ~) of A 1(x, ~) are simple and 

..\ 1(x, ~.< .... < ,.\ m(x, ~) < 0 <A m+ 1 (x, ~ < ... .<A Zm (x, ~ ). (4 .4) 

Then the spectrum of Ho is absolutely continuous and a(lj)"' R
1 

• 
The eigenfunctions of H 1 in L 2 corresponding to a non-zero ei
genvalue are smooth and supported in BR and so they a.re finite
ly many. Moreover, the eigenvalue A=O has a finite multiplici
ty. Thus a·(H 1)"'ap(H 1) aac(H 1) and a·p(H 1 ) is finite, aac(H!l .. R1

• 
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Consider the scattering phase ·s(A) related to the pair H
1

, 
H0 • The function ·s(A) has Athe properties (i)-(iii) described 
in Sect.2. Choosing <ll(A) ... P (A) , p ~ C0(R 1 ) in (iii) we obtain 
the following trace formula 

iill iill0 d 
Tr f p(t) {e -e !dt-f -p(A)s(A)d,\. 

d,\ (4 .5) 

Denote by Pi (t) , 1 ~ j ~ 2m the projections of the bicharac-
teristics of A i (x, () on the x -space. We shall use the fol
lowing non-trapping condition. There exists T>·o, such that 

and 

P.(t) r:/BR 
J 

for t > T if P /0) ~ BR · (4. 6) 

Theorem 4. Suppose that (4.4) and (4.6) are valid. Then 
00 + . 

s(A) - I a .-A n-J 
j•O J 

as ,\ ... ± 

+ -n/2 -1 + 1 + 
a0 -(4rr) (l(n/2+1)) J Tr(77:lA (x,f)-77

0
-A 0 ({))dxdf, 

where 77+(77-:-) is the projection on the positive (negative) 
eigenspdceJof A . The proof of theorem 4 is similar to that of 
theorem I and we shall only sketch it. In order to decompose 
s(A) as a sum of fu,nction.s sj(,\) , ja1,2 with the properties 
(ii) and (iii) described in Sect.3, we use the formula 

S(A) • 1- 277iG(A)! V + VR(,\+ io)VI G*.(A), 

1 • 
where A~;;; R p (ap(H 1) 0), V -H 1 -H 0 • Here G(A) are boul\ded opera-
tors from H ' 8 

, s> 1/2 , P ~ R1 .to an auxiliary space J{. Denote 
by 77j (() the orthogonal projection onto the eigenspace of A0 (f) 
corresponding to A/0· Then 77 1 (() is a smooth, homogeneous 
function of order one in Rn 0. Let S j, A • { ( ~;;. R n; ,\/"f)- A ! and 

dJ.tj (w) ~I Aj (()j- 1dSj, where dSJ.is the usu~l Lebesque -~easure 
on S j,A. Consider the trace operators y. (A) on S j A defined by 
(y j (A) u )(w) = u(,\,w), , u G C""(R n) ,where poiar coordinates ( = Aw, 

2m 2m 
wGS 1· 1are used, Denote y,= I 1y. (A)rrj (,;) and }{=.I "J (Aw)L 2(S. ,; 

• 1\ J~ J J=l j,/\ 

dll j ; C
2

11). It turns out that G A ""YA ~.Moreover, the operator 
fe iAt ·QA VdA has a compactly supprted distributi'on kernel and 

using an analogy of Lemma 2 we find the functions s j (A) j = 1,2. 

From (4,5) we obtain ~ s{A)=-pu(A)+O(A-~;:2re a(t)=f[u
1
(t,x,x)] 

- u0 (t, x,x)]dx and u j are the fundamental solutions of the Cauchy 
problem for Dt -H1 and Dt -H 0 respectively. Using a microlocal 
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parametrix for the Cauchy problem and the method of the statio
nary phase we complete the proof of theorem 4. 
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nonoa r.c. ES-82-669 
AcHMnTOTH4ecKoe noaeAe~He ~aaw pacceRHHR a Heaaxaarw8a~x MeTPHKax 

PaccMOTpeHo acHMnTOTH4ecKoe no8eAeHHe ~aw pacceRHHR Ha 6ecKoHe4HOCTH 
AflR 3MHnTH4ecKoro caMOconpJ'IlKeHHoro AHCII«<lepeH4Ha11bHoro oneparopa H J1H6o 
B R0

• J1H6o B o6naCTH a c R 0 c KpaeBWMH YCJ108HJIMH llMPHXJle HJ1H Hei1MaHa. One
parop H HMeer 8HA H --.1-g + bD + V(x) , rAe .1. g - oneparop nannaca-6en~>TpaMH 

o a 
PHMaHOBOH MeTpHKH g 8 a , bD - I b J D J • D' - _1.1 -a • npeAnonaraeTCJI, 4TO H 

J-1 J:j 

paaeH oneparopy nannaca .1. a oKpecTHOCTH 6ecKoHe4HOCTH H 4TO MeTpHKa g He 
RaJ1ReTCR noayWKOH AflJI 11y4ei1, T,e, ace reOAe3H4eCKHe MeTPHKH YXOART C 11o6oro 
KOMnaKTa 8 Q 4epea HeKOTOpoe apeMR, aaaHCR~ee TOJlbKO OT KOMnaKTa. npH 
3THX orpaHH4eHHRX nony4eHo nonHOe acHMnTOTH~ecKoe pa3110*eHHe ~aw pacceR
HHR ·s(.\) AflR .\ ..... Hai1AeHw nepawe 411eHw aroro paano•eHHR. 

Pa6ora awnonHeHa a na6opaTOPHH aW4HCJ1HTeJ1bHOH TeXHHKH H aBTOMaTH3a-
4HH OHRH. 

tooe.eHMe O~~HeHHOrO MHCTMTyTa RAePHWX MCCJ1eAOBaHMH, ~HB 1982 

Popov G.S. ES-82-669 
Asymptotic Behaviour of the Scattering Phase for Non-Trapping Metrics 

The asymptotic behaviour of the scattering phase Is considered at infi
nity for an elliptic, self-adjoint, second order differential operator H, 
defined either In R0 or in an unbounded domain acR0 with Dirichlet or 
Neumann boundary conditions. The operator H has the form H•-.1-g+ bD+V, 
where .1-g is the Laplace-Beltrami operator related to a Riemannian metric g 

- 0 -1 
in a , bD. I bJ DJ , o 1.t a/az.J .1-'rovlded a non-trapping hypothesis 

J-1 
is fulfilled and H coincides with the Laplace operator .1. In a neighbour
hood of infinite, an asymptotic development of the scattering phase ·s(.\) 
is obtained as .\ .... · .The first coefficients In this development are found. 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation, JINR. 
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