

сообщения обьединенного ииститута ядерных исследований
 аубна

309

G.S.Popov

ASYMPTOTIC BEHAVIOUR
OF THE SCATTERING PHASE
FOR NON-TRAPPING METRICS

1. INTRODUCTION

The aim of this article is to study the asymptotic behaviour of the scattering phase $s(\lambda)$ related to an elliptic second order formally self-adjoint operator H, defined either in R^{n} or in an unbounded domain Ω with Dirichlet or Neumann boundary conditions. Recently, this problem was investigated by many authors. In ref. ${ }^{4 /}$ Buslaev announced a result about the asymptotic of $\mathrm{s}(\lambda)$ as $\lambda \rightarrow \infty$ for differential operators in R^{n}, as well as in the obstacle case with Dirichlet boundary conditions. The perturbed operator H, considered in ref: ${ }^{4 /}$, has a principal symbol with constant coefficients and O is not an eigenvalue of H. Later, the same problem was studied by A.Majda and J.Ralston ${ }^{14 /}$. They proved the existence of an asymptotic expansion and computed the first three coefficients when $s(\lambda)$ is the scattering phase of the Laplacian with Dirichlet boundary conditions on a convex obstacle, and when $s(\lambda)$ is the scattering phase of the Laplace-Beltrami operator for a non-trapping metric on R^{n}, which is Euclidean in a neighbourhood of ∞. The authors conjectured that the same asymptotic expansion holds for any non-trapping obstacle. This conjecture was proved in ref! ${ }^{18}$ by V.Petcov and the author for the Laplacian with Dirichlet or Neumann boundary conditions.

For the Schrödinger operator $\mathrm{H}=-\Lambda+\mathrm{V}, \mathrm{V} \subset \mathrm{C}_{0}^{\infty}\left(\mathrm{R}^{\mathrm{n}}\right)$ and $\mathrm{n}=3$, the asymptotic behaviour of $s(\lambda)$ as $\lambda \rightarrow \infty$ was investigated by Colin de Verdiere ${ }^{\prime 5 /}$, and for any n-odd by Guillope ${ }^{\text {/7/ }}$. Recently, an asymptotic expansion of $s(\lambda)$ related to a first or second order elliptic operator on a Hermitian bundle over an odd dimensional Riemannian manifold was announced by V.Ivrij and M. Shubin ${ }^{19 /}$.

In this paper, both cases, n-even and n-odd, are considered, as well as the case when $\lambda=0$ is an eigenvalue of the perturbed operator H. The asymptotic behaviour of the scattering phase $s(\lambda)$ as $\lambda \rightarrow \infty$ is investigated for arbitrary second order elliptic, formally self-adjoint differential operators H in a domain $\Omega \subset R^{n}$, satisfying a non-trapping condition and such that $\mathrm{H}=-\Delta$ in a neighbourhood of ∞. The self-adjoint extension of H in $L^{2}(\Omega)$ with Dirichlet or Neumann boundary conditions on $\partial \Omega$ when $\Omega \notin R^{n}$ is bounded from below but it allows to have a finite number of non-positive eigenvalues in contrast to refs.$^{14,18 /}$. Therefore there is not always a good rate of local decay for $H_{a c}^{1 / 2} \sin \left(\mathrm{tH}_{\mathrm{ac}}^{1 / 2}\right), t \rightarrow \infty$ essentially used in ref. ${ }^{18 /}$
where $H_{a c}$ is the absolutely continuous part of the operator H. In order to overcome this difficulty we study the asymptotic behaviour of the S-matrix at infinity.

Suppose K is a bounded domain in R^{n} with smooth boundary $\partial \mathrm{K}$ and $\Omega \approx \mathrm{R}^{\mathrm{n}} \mathrm{K}$ or $\Omega=\mathrm{R}^{n}$. Consider an elliptic, formally seldadjoint second order differential operator. P in Ω with Dirichlet or Neumann boundary conditions on ∂K, when $\Omega \neq R^{n}{ }^{n}$ and $P=-\Delta$ outside the ball $B_{R}=\{x ;|x| \leq R\}$. Without loss of generality assume that P has the form $P=-\Delta_{g}+h D+V$, where $V \in C_{0)}^{\infty}\left(R^{n}\right), h D=\sum_{j=1}^{n} h_{j}(x) D_{j}, D_{j}=-i \partial / \partial x_{j}$ and Δ_{g} is the Laplace-Beltrami operator for a Riemannian metric g,

$$
\Delta_{g}=\sum_{i, j=1}^{n} g^{-1 / 2} \partial j \partial x_{i}\left(g^{i j} g^{1 / 2}\right) \partial \partial x_{j}
$$

$g^{i j} \in C^{\infty}(\bar{\Omega}), g=\operatorname{det}\left(g_{i j}\right), g_{i j}=\left(g^{i j}\right)^{-1}$ and $g_{i j}=\delta_{i j}$ for $|x|>R$. The projections of the (generalized) bicharacteristics of P on $\bar{\Omega}$ are called (generalized) geodesics of $g^{/ 16}$.

Definition. The metric g is said to be non-trapping if there is $\mathrm{T}>0$ such that every (generalized) geodesics, beginning in B_{R}, leaves the ball B_{R} by the time T_{R}.

Let H_{0} and H be the self-adjoint extension of the free Laplacian $-\Delta$ in $L^{2}\left(R^{n}\right)$ and of P in $L^{2}(\Omega)$ with Dirichlet or Neumann boundary conditions on $\partial \mathrm{K}$ when $\Omega \notin \mathrm{R}^{\mathrm{n}}$. These operators generate groups of unitary operators $\exp \left(\mathrm{itH}_{0}\right)$ and $\exp (\mathrm{itH}) \oplus 1$ in $L^{2}\left(\mathrm{R}^{\mathrm{n}}\right)=\mathrm{L}^{2}(\Omega) \oplus \mathrm{L}^{2}(\mathrm{~K})$. The wave operators $\mathrm{W}_{ \pm}$are defined as follows

$$
W_{ \pm}=s-\lim _{t \rightarrow \mp \infty}\left(e^{i t H} \oplus 1\right) e^{-i t H_{0}} .
$$

It is well known $^{\prime 3 /}$ that $W_{ \pm}$are isometrics on $L^{2}\left(R^{n}\right)$ and Rang $\left(W_{+}\right)=$Rang $\left(W_{-}\right)$, so the scattering operator $S=W_{+}^{*} W_{-}$exists as a unitary operator on $\mathrm{L}^{2}\left(\mathrm{R}^{\mathrm{n}}\right)$. In the spectral representation of H_{0} on $L^{2}\left(R^{+}, L^{2}\left(S^{n-1}\right)\right)$ the scattering operator S can be considered as a function of unitary operators $S(\lambda)$ on $L^{2}\left(S^{n-1}\right)$ which is called a scattering matrix. Moreover, $S(\lambda)=I+K(\lambda)$, where $K(\lambda)$ is a trace class operator for $\lambda>0$. This enables us to define the function $\operatorname{det} S(\lambda): R^{+} \rightarrow S^{1}=\{z \in C ;|z|=1\}$ as a product of the eigenvalues of $S(\lambda)$. It was proved in refs. that there exists a continuous (even analytic) in R^{+}function s(λ), satisfying the equality

$$
\operatorname{det} S(\lambda)=\exp (2 \pi \operatorname{is}(\lambda)), \quad \lambda>0 .
$$

Such a function $s(\lambda)$ is called a scattering phase.

We 'shall prove the following results.
Theorem 1. Suppose the metric g is non-trapping in R^{n}. Then

$$
\begin{equation*}
s(\lambda)-\sum_{j=0}^{\infty} a_{j} \lambda^{n / 2-j} \quad \text { as } \quad \lambda \rightarrow \infty . \tag{1.1}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
& \left.a_{0}=(4 \pi)^{-n / 2}(\Gamma(n / 2+1))^{-1} \mid \operatorname{vol}_{g}\left(B_{R}\right)-\operatorname{vol}_{e}\left(B_{R}\right)\right\} \\
& a_{1}=(4 \pi)^{-n / 2}(\Gamma(n / 2))^{-1} \int\left(\frac{K / \sqrt{g}}{3}-\frac{\mid h_{g}}{4}+V(x)\right) d x
\end{aligned}
$$

where $\operatorname{vol}_{g}\left(B_{R}\right)$ and vol $_{e}\left(B_{R}\right)$ are the Riemannian and Euclidean volume of the ball B_{R}, $K(x)$ is the scalar curvature and $|h|_{g}=\sum_{i=1}^{n} g_{i j} h^{i} h^{j} \quad$ is the Riemannian length of the vector h.

In the case of the Schrödinger operator we prove
Theorem 2. Let $H=-\Delta+V, V \subset C^{\infty}\left(R^{n}\right), n \geq 3$. Then $s(\lambda)$ has the form (1.1) when $\lambda \rightarrow \infty$, where

$$
a_{j}=\int P_{j}^{n}\left(V, D V, \ldots, D^{\alpha} V\right) d x, \quad D^{a}=D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}
$$

and P_{j}^{n} are some universal polynomials. Moreover $P_{0}^{n}=0, P_{1}^{n}(V)=$ $=(4 \pi)^{-n / 2}\left(\Gamma\left(n^{\prime} 2\right)\right)^{-1} V$ and
$P_{j}^{n}\left(\lambda V, \lambda^{3 / 2} D V, \ldots, \lambda^{1+|a| / 2} D^{a} V\right)=\lambda^{j} P_{j}^{n}\left(V, D V, \ldots, D^{a} V\right), \lambda>0$.
In the obstacle case we prove
Theorem 3. Let $\mathrm{H}=-\Delta_{\mathrm{g}}+\mathrm{hD}+\mathrm{V}$ in $\mathrm{L}^{2}(\Omega)$ with Dirichlet or Neumann boundary conditions on $\partial \Omega$ and suppose the metric g is non-trapping in $\Omega \subset \mathrm{R}^{\mathrm{n}}, \mathrm{n} \geq 3$. Then

$$
s(\lambda)-\sum_{j=0}^{\infty} a_{j} \lambda^{(n-j) / 2} \quad \text { as } \lambda \rightarrow \infty
$$

and

$$
\begin{aligned}
& a_{0}=(4 \pi)^{-n / 2}(\Gamma(n / 2+1))^{-1}\left\{\operatorname{vol}_{g}\left(\Omega \cap B_{R}\right)-\operatorname{vol}_{e}\left(B_{R}\right)\right\} \\
& a_{1}= \pm \frac{1}{4}(4 \pi)^{-(n-1) / 2}\left(\Gamma\left(\frac{n+1}{2}\right)\right)^{-1} \operatorname{vol}_{g}(\partial \Omega)
\end{aligned}
$$

where $+(-)$ sign is used in the case of Dirichlet (Neumann)
boundary conditions and $\operatorname{vol}_{g}(\partial \Omega)$ is the Riemannian volume of $\partial \Omega$

The plan of the paper is as follows. In section 1 we prove that the point spectrum of the operator H is finite and investigate some properties of the scattering phase. In section 2 we study the behaviour of the scattering matrix at ∞ in order to find functions $s_{1}(\lambda)$ add $s_{2}(\lambda)$ such that $s\left(\lambda^{2}\right)=s_{1}(\lambda)+s_{2}(\lambda)$ and $s_{1}(t) \in \epsilon^{\prime}\left(R^{1}\right), \hat{s}_{2}(\lambda)=O\left(\lambda^{N}\right), N \in \mathbf{Z}, \lambda \rightarrow \infty$ for any $N \in \mathbb{Z}$ In section 3 we investigate the distribution $\hat{s}_{1}(t)$ using suitable trace formulas and prove a similar to theorem l result in the case of matrices of first order differential operators.

2. THE SCATTERING PHASE AND THE SPECTRUM OF H

We begin to study the spectrum of H in $L^{2}\left(R^{n}\right)$. First we prove that the point spectrum of H is finite. Since $H=-\Delta$ outside the ball B_{R} the Rellich's theorem and the unique continuation property of second order elliptic operators yield the absence of the positive point spectrum of H. Moreover, $H \geq-\epsilon \Delta+V_{1}$ for some $\epsilon>0, V_{1} \in C_{0}^{\infty}\left(R^{n}\right)$ when $\Omega=R^{n}$ and since the negative point spectrum of $-c \Delta+V_{1}$ is finite, so is those of H_{2}. In the case ${ }_{n}$ $\Omega \neq \mathrm{R}^{\mathrm{n}}$ we use the inequality $\mathrm{H} \geq \mathrm{H}_{1} \oplus \mathrm{H}_{2}$ in $\mathrm{L}^{2}\left(\Omega \cap \mathrm{~B}_{\mathrm{R}}\right) \mathrm{L}^{2}\left(\mathrm{R}^{\mathrm{n}} \cap \mathrm{B}_{\mathrm{R}}\right)$, where $H_{1}=H$ in $\Omega \cap B_{R}, H_{2}=-\Delta$ in $R^{n} B_{R}$ with Dirichlet boundary conditions on $\partial\left(\Omega \cap B_{R}\right)$ and ∂B_{R} respectively. Notice that both operators H_{1} and H_{2} have finite negative point spectrum. Moreover, the eigenvalue o has a finite multiplicity. Indeed, assume there exist infinitely many $\phi_{j} \in L^{2}\left(R^{n}\right),\left(\phi_{j}, \phi_{k}\right)=\delta_{j k}$ such that $\mathrm{H} \phi_{\mathrm{j}}=0$. Then $\Delta \phi_{\mathrm{j}}=(\Delta-\mathrm{H}) \phi_{\mathrm{j}}$ and $\phi_{\mathrm{j}}(\mathrm{x})=\int|\dot{x}-\mathrm{y}|^{\mathrm{h}+2}(\Delta-\mathrm{H}) \phi_{\mathrm{j}}(\mathrm{y}) \mathrm{dy}$. Let $n>4, \chi \in C^{\infty}\left(R^{n}\right), \chi \equiv 0$ on B_{R} and $\chi(x)=1$ for $|x|>R^{\prime}+1$. Then $\left|x \phi_{\mathrm{j}}(\mathrm{x})\right| \leq \mathrm{c}|\mathrm{x}|^{\mathrm{n}+2}$ and $\left\|\left(1+|\dot{\mathrm{x}}|^{2}\right)^{\epsilon} \phi_{\mathrm{j}}\right\|_{\mathrm{H}^{2}\left(\mathrm{R}^{\mathrm{n}}\right) \leq \mathrm{C}}$ for some $\epsilon>0$, $\mathrm{C}>0$. Now it is not hard to choose a Cauchy subsequence of ϕ in $L^{2}\left(R^{n}\right)$, which contradicts our assumption. When $n=3$ or $n=4$, we have $\int(\Delta-H) \phi_{j}(y) d y=0$ since $\mid \xi^{-2}(\Delta-H) \phi_{j}(\xi)=\hat{\phi}_{j}(\xi) \in L^{2}\left(R^{n}\right)$. Then $\phi_{j}(x)=\int(\Delta-H) \phi_{j}(y)\left[|x-y|^{-n+2}|\dot{x}|^{-n+2}\right] d y$ and the arguments given in the case $n>4$ can be repeated. Therefore the point spectrum $\sigma_{\mathrm{p}}(\mathrm{H})$ of H is finite and non-positive. Moreover, the continuous spectrum of H is absolutely continuous and coincides with R^{+}.

In the rest of this section we study the scattering phase $\mathrm{s}(\lambda) \quad$ related to the pair $\mathrm{H}, \mathrm{H}_{0}$. First consider $\mathrm{K}_{0}=\left(\mathrm{a}+\mathrm{H}_{0}\right)^{-1}$, $K=(a+H)^{-1}$ which are bounded, self-adjoint operators for a> inf $\left\{\sigma_{\mathrm{p}}(\mathrm{H}), 0\right\}=\lambda_{1}$. Moreover, the operator $\mathrm{K}^{\mathrm{p}}-\mathrm{K}_{0}^{\mathrm{p}}$ is a trace class one for $p>n$ (see ref. ${ }^{/ 2 /}$). Then the scattering phase $s\left(\lambda ; K^{p}, K_{0}^{p}\right)$ related to the pair K^{p}, K_{0}^{p} is defined as follows
and has the properties (see refs. ${ }^{13,7,10 /}$)
(i) $\mathrm{S}\left(\lambda ; \mathrm{K}^{\mathrm{p}}, \mathrm{K}_{0}^{\mathrm{p}}\right) \subseteq \mathrm{L}^{1}\left(\mathrm{R}^{\mathrm{n}}\right)$ and $\operatorname{supps} C\left[0,\left(\lambda_{1}+\mathrm{a}\right)^{-1}\right]$,
(ii) For any $\Phi \in C^{\infty}\left(R^{n}\right)$ the operator $\Phi\left(K^{p}\right)-\Phi\left(K_{0}^{p}\right)$ is a trace class one and
$\operatorname{Tr}\left\{\Phi\left(\mathrm{K}^{\mathrm{p}}\right)-\Phi\left(\mathrm{K}_{0}^{\mathrm{p}}\right)\right\}=\int \Phi^{\prime}(\lambda) \cdot \mathrm{s}\left(\lambda ; \mathrm{K}^{\mathrm{p}}, \mathrm{K}_{0}^{\mathrm{p}}\right) \mathrm{d} \lambda$,
(iii) $\operatorname{det} \mathrm{S}\left(\lambda ; \mathrm{K}^{\mathrm{p}}, \mathrm{K}_{0}^{\mathrm{p}}\right)=\exp \left(-2 \pi \mathrm{i} \mathrm{s}\left(\lambda ; \mathrm{K}^{\mathrm{p}}, \mathrm{K}_{0}^{\mathrm{p}}\right)\right), \lambda>0$,
where $S\left(\lambda ; \mathrm{K}^{\mathrm{p}}, \mathrm{K}_{0}^{\mathrm{p}}\right)$ is the scattering matrix for the pair $\mathrm{H}, \mathrm{H}_{0}$. The function $s(\lambda)=s\left((a+\lambda)^{-1} ; \mathrm{K}^{\mathrm{p}}, \mathrm{K}_{0}^{\mathrm{p}}\right)$ will ba called a scattering phase for the pair H, H_{0}. This notion is motivated by the property (iii) det $S(\lambda)=\exp (-2 \pi$ is (λ)) derived from (iii)' by the invariance principle. Using (i) and (ii) it is not hard to see, that (i) $\left(1+\lambda^{2}\right)^{-p} S(\lambda) \subsetneq L^{2}\left(R^{1}\right)$ for $p>n$ and supps C $C\left[\lambda_{1}, \infty\right)$. (ii) For any $\Phi \in \delta\left(R^{1}\right)$ the operator $\Phi(H)-\Phi\left(H_{0}\right)$ is a trace class one and

$$
\operatorname{Tr}\left\{\Phi(\mathrm{H})-\Phi\left(\mathrm{H}_{0}\right)\right\}=\int \Phi^{\prime}(\lambda) \mathrm{s}(\lambda) \mathrm{d} \lambda .
$$

Moreover, the function $s(\lambda)$ is analytic in R^{+}since the operator H has no positive point spectrum (see refs ${ }^{10,18 /}$).

Two special choices of the function Φ in (ii) are very useful for studying the asymptotics of $s(\lambda)$ at infinitely. Let $\Phi(\lambda)=\mathrm{e}^{-\lambda \lambda} \phi(\lambda) \quad, \phi \in \mathrm{C}^{\infty}\left(\mathrm{R}^{1}\right), \phi(\lambda)=1$ for $\lambda \subseteq[-\mathrm{a}, \infty)$ and $\phi(\lambda)=0$ for $\lambda \in(-\infty,-a-1)$. Then $\Phi \subseteq \delta\left(R^{1}\right)$ and

$$
\begin{equation*}
\operatorname{Tr}\left\{e^{-H 1} \oplus 0-e^{-t H_{0}}\right\}=-t \int_{-\infty}^{\infty} e^{-t \lambda} s(\lambda) d \lambda, \quad t>0, \tag{2.2}
\end{equation*}
$$

where $e^{-111} 0$ acts as $e^{-t H^{-2}}$ in $L^{2}(\Omega)$ and as 0 in $L^{2}\left(R^{n} \quad \Omega L_{2} D e^{-}\right.$ note $\Phi(\lambda)=\phi(\lambda) \int \cos (\sqrt{\lambda} t) \rho(t) d t \quad, \rho=C_{0}^{\sim}\left(R^{1}\right)$ and $B_{0}=V H_{0}$, $\mathrm{B}_{1}=\sqrt{\mathrm{H}_{\mathrm{ac}}} \oplus \mathrm{i}, \mathrm{H}_{\mathrm{p}}$. where H_{ac} and H_{p} are respectively the absolutely continuous and discrete part of H. Then $\Phi \subset \mathcal{E}\left(R^{1}\right)$ and it is not hard to see from (ii), that

$$
\begin{equation*}
\operatorname{Tr} \int_{-\infty}^{\infty} \rho(\mathrm{t})\left\{\cos \mathrm{B}_{1} \mathrm{t} \oplus 0-\cos \mathrm{B}_{0} t\right\} \mathrm{dt}=1,2 \int_{\Gamma}-\frac{\mathrm{d}}{\mathrm{~d} \mu}-\hat{\rho}(\mu) \tilde{\mathrm{s}}(\mu) \mathrm{d} \mu, \tag{2.3}
\end{equation*}
$$

where $\Gamma=(-\infty, \infty) U(-i a, i a)$ and $\bar{s}(\mu)=s\left(\mu^{2}\right)$ for $\mu \leftrightarrows(0, \infty)$ (ia, 0), $\widetilde{\mathrm{s}}(\mu)=-\mathrm{s}\left(\mu^{2}\right)$ for $u \subseteq(-\infty, 0) \cup(0, \mathrm{ia})$.

Remark. It turns out that the function $\overline{\mathrm{s}}(\mu), \mu \in \mathrm{R}^{1}$ is the scattering phase for, the wave equation in Lax-Phillips scattering theory (see ref.' ${ }^{18 /}$). Moreover, using (2.1) one can obtain the equality (see refs. ${ }^{15,7}{ }^{\text {Mor }}$)

$$
1 / 2 \int_{-\mathrm{i} a}^{\mathrm{ia}} \frac{\mathrm{~d}}{\mathrm{~d} \mu} \hat{\rho}(\mu) \tilde{\mathrm{s}}(\mu) \mathrm{d} \mu=\sum_{\lambda_{\mathrm{j}} \in \sigma_{\mathrm{p}}(\mathrm{H}) \backslash\{0\}} \frac{\hat{\rho}\left(\overline{\lambda_{\mathrm{j}}}\right)+\hat{\rho}\left(-\sqrt{\lambda_{\mathrm{j}}}\right)}{2} \mathrm{~s}\left(\lambda_{\mathrm{j}}\right) .
$$

3. DECOMPOSITION OF $\mathrm{s}(\lambda)$

In this section we construct functions $s_{j}(\lambda), j=1,2$ with the properties
(i) $s\left(\lambda^{2}\right)=s_{1}(\lambda)+s_{2}(\lambda)$.
(ii) $\left|s_{2}(\lambda)\right| \leq C_{N}(1+\lambda)-N^{2}$ when $\lambda \rightarrow \infty, N \in Z$,
(iii) The Fourier transform of $s_{1}(\lambda)$ is a compactly supported distribution.
To do this we use the equality

$$
-\frac{\mathrm{d}}{\mathrm{~d} \lambda} \mathrm{~s}(\lambda)=\operatorname{Tr}\left\{\mathrm{S}(\lambda) \frac{\mathrm{d}}{\mathrm{~d} \lambda} \mathrm{~S}^{*}(\lambda)\right\}, \quad \lambda>0
$$

as well as an explicit form of the scattering matrix. We are going to obtain a representation formula for the S-matrix. By the invariance principle we have $S(\lambda)=S\left((a+\lambda)^{-1} ; K^{p}, K_{0}^{p}\right), \lambda>0$. Moreover, the stationary approach/1,11,12/ can be applied to derive a representation formula for the s-matrix of the pair K, K_{0}. Denote by A the operator of multiplication by $\left(1+|x|^{2}\right)^{-\beta / 2}$, $\beta>n$ and let C be the operator given by $K=K_{0}+A C A$. Since H coincides with H outside the ball B_{R}, the operator C is a compact one from $H^{0, m_{1}}$ to $H^{0, m_{2}}$ for every $m_{1}, m_{2} \in R$. Hereafter $H^{\text {s,m }}$ will be the weighted Sobolev space with norm

$$
\|\mathrm{f}\|_{\mathrm{s}, \mathrm{~m}}^{2}=\int\left(1+|\xi|^{2}\right)^{\mathrm{s}}\left|\mathcal{F}\left[\left(1+|\mathrm{x}|^{2}\right)^{\mathrm{m} / 2} \mathrm{f}\right](\xi)\right|^{2} \mathrm{~d} \xi
$$

and \mathcal{F} stands for the Fourier transform $\mathcal{F}(f)(\xi)=\int e^{i x \xi} f(x) d x$. The operator $Q_{0}(\zeta)=A\left(K_{0}-\zeta\right)^{-1} A$ has the norm-continuous boundary values $Q_{0}^{ \pm}(\mu)$ for ${ }_{\mu} G: I=\left(0, \mathrm{a}^{-1}\right)$ as $\zeta \rightarrow \mu \pm$ io. Moreover, the compact operator $C Q{ }_{9}^{ \pm}(\mu)$ has no eigenvalue 1 in $L^{2}\left(R^{4}\right)$ since H has no positive point spectrum (see ref. ${ }^{111 / \$ 7 \text {). Fol- }}$ lowing Agmon, Kato, Kuroda $1,11,12 /$ one can prove that $Q^{ \pm}(\mu)=$ $=\lim \mathrm{A}(\mathrm{K}-\zeta)^{-1} \mathrm{~A}$ exists as a continuous function of operators bounded in $L^{2}\left(R^{\mathrm{n}}\right)$ for $\mu \in \mathrm{I}$. Moreover $1-\mathrm{CQ}{ }^{ \pm}(\mu)=\left(1+\mathrm{CQ}{ }_{0}^{\ddagger}(\mu)\right)^{-1}$ for $\mu \in \mathrm{I}$. The S -matrix for the pair $\mathrm{K}, \mathrm{K}_{0}$ can be written in the form

$$
\begin{align*}
\mathrm{S}\left(\mu ; \mathrm{K}, \mathrm{~K}_{0}\right) & =1-2 \pi \mathrm{i} \cdot \mathrm{~F}_{0}(\mu)\left[1+\mathrm{C} Q_{0}^{+}(\mu)\right]^{-1} \mathrm{~F}_{0}(\mu)^{*} \\
= & 1-2 \pi \mathrm{i} \mathrm{~F}_{0}(\mu)[1-\mathrm{CQ}+(\mu)] \mathrm{F}_{0}(\mu)^{*} \tag{3.2}
\end{align*}
$$

The operator $\mathrm{F}_{0}(\mu): \mathrm{L}^{2}\left(\mathrm{R}^{\mathrm{n}}\right) \rightarrow \mathrm{L}^{2}\left(\mathrm{~S}^{\mathrm{n}-1}\right)$ is determined by the equality $F_{0}(\mu) F_{0}^{*}(\mu)=-(2 \pi i)^{-1}\left[Q_{0}^{+}(\mu)-Q_{0}^{-}(\mu)\right]$. Denote by $\gamma(\lambda)$ the trace operator on the sphere with a radius $\lambda,(\gamma(\lambda) \mathrm{u})(\omega)=$ $=\mathrm{u}(\lambda \omega)$, $\omega \in \cdot \mathrm{S}^{\mathrm{n}-1}$ for $\mathrm{u} \in \mathrm{C}^{\infty}\left(\mathrm{R}^{\mathrm{n}}\right)$, where polar coordinates $\xi=\rho \omega$ are used. The operator $\gamma(\lambda)$ extends to a Hölder continuity with respect to λ function of bounded operators from $H^{\mathrm{s}, \mathrm{m}}\left(\mathrm{R}^{\mathrm{n}}\right)$ to $L^{2}\left(S^{n-1}\right)$ for any $s>1 / 2, m \in \cdot R^{1}$. Using the equality $\left(K_{0}-\zeta\right)^{-1}=$
$=-(1+z)-(1+z)^{2}\left(H_{0}-z\right)^{-1}, \quad \zeta=(a+z)^{-1}$ and the Hölder continuity of $y(\lambda)$ we obtain $F_{0}(\mu)=2^{-1 / 2}(1+\lambda) \lambda^{(\mathrm{n}-1) / 4} \sigma \cdot\left(\lambda^{1 / 2}\right) \mathcal{F}_{A}, \mu=(a+\lambda)^{-1}$. Then (3.2) and the invariance principle yield

$$
S(\lambda)=1-\pi i(1+\lambda)^{2} \lambda^{(n-1) / 2} G(\lambda)\left[1+(1+\lambda) V+(1+\lambda)^{2} V R\left(\lambda^{2}+i 0\right)\right] \mathrm{VG}^{*}(\lambda)
$$

for $\lambda>0$, where $G(\lambda)=\gamma\left(\lambda^{1 / 2}, \mathcal{F}, V=K-K_{0}\right.$ and $R(z)=(H-z)^{-1}$.
Remark 1. In the case $\Omega=R^{n}$ a more simple formula than (3.3) is known
$\mathrm{S}(\lambda)=1-\pi \mathrm{i} \lambda^{(\mathrm{n}-2) / 2} \mathrm{G}(\lambda)[\mathrm{V}-\mathrm{VR}(\lambda+\mathrm{io}) \mathrm{V}] \mathrm{G}^{*}(\lambda)$,
where $\mathrm{V}=\mathrm{H}-\mathrm{H}_{0}$ (see ref. ${ }^{13 /}$). This formula is also valid when H and H_{0} are matrices of differential operators and $G(\lambda)$ is suitably choosen.

Lemma 1. The S-matrix has the form $S\left(\lambda^{2}\right)=S_{1}(\lambda)+S_{2}(\lambda)$, where
(1) $\left(\frac{d}{d \lambda}\right)^{j} S_{2}(\lambda)$ is a trace class operator with norm

$$
\left\|\left(\frac{\mathrm{d}}{\mathrm{~d} \lambda}\right)^{\mathrm{j}} \mathrm{~S}_{2}(\lambda)\right\|_{\mathrm{Tr}} \leq \mathrm{C}_{\mathrm{N}}(1+\lambda)^{-\mathrm{N}}, \quad \lambda>0, \quad N \in Z, \quad j<\mathrm{n}-1
$$

(2) $\hat{S}_{1}(t)=\int_{0}^{\infty} e^{i t \lambda} S_{1}(\lambda) d \lambda$ has a compact support with respect to t .

Obviously Lemma 1 and (3.1) give together the desired decomposition of the scattering phase. In order to prove Lemma 1 we need the following assertion.

Lemma 2. The operator $V=K-K_{0}$ has the form $V=V_{1}+V_{2}$ where the distribution kernel of V_{1} is compactly supported and V_{2} : $H^{s, m_{1}} \rightarrow H^{0+N, m_{2}}$ is a bounded operator for each s, m_{1}, m_{2}, $N \in R^{1}$. Moreover $\operatorname{supp} V_{2} u \subset R^{n} \quad B_{R}$ for any $u \in H^{s, m}{ }_{1}$.

Proof. Let $\phi \in C^{\infty}\left(R^{n+1}\right), \phi(t, x)=1$ for $|x|<t+R, \phi(t, x)=0$ for $|x|>t+R_{+} 1$. Choose $\chi \in C_{0}^{\infty}\left(R^{n+1}\right), \chi \equiv 1$ on $B R$ and $\psi \in C_{0}^{\infty}\left(R^{1}\right)$, $\psi(t)=1$ for $|t|<1, \psi(t)=0$ for $|t|>2$. Using the finite propagation speed of $B_{j}^{-1} \sin t B_{j}$ we obtain

$$
\begin{aligned}
\mathrm{V} & =\int_{0}^{\infty} \mathrm{e}^{-\mathrm{t}} \psi(\mathrm{t}) \phi\left\{\mathrm{B}_{1}^{-1} \sin t \mathrm{~B}_{1} \oplus 0-\mathrm{B}_{0}^{-1} \cdot \sin t \mathrm{~B}_{0}\right\} \phi \mathrm{dt}+ \\
& +\int_{0}^{\infty} \mathrm{e}^{-t}(1-\psi) \chi\left\{\mathrm{B}_{1}^{-1} \sin t \mathrm{~B}_{1} \oplus 0-\mathrm{B}_{0}^{-1} \cdot \sin t \mathrm{~B}_{0}\right\} \mathrm{dt}+ \\
& +\int_{0}^{\infty} \mathrm{e}^{-t}(1-\psi)(1-\chi) \phi\left\{\mathrm{B}_{1}^{-1} \cdot \sin t \mathrm{~B}_{1} \oplus 0-\mathrm{B}_{0}^{-1} \cdot \sin t \mathrm{~B}_{0}\right\} \phi \mathrm{dt} .
\end{aligned}
$$

Denote the third integral by V_{2} and the sum of the first and
second one by V_{1}. Obviously the distribution kernel of V_{1} is compactly supported. Moreover $\operatorname{supp} V_{2} u \subset \operatorname{supp}(1-y) \subset R^{n} B_{R}$. Integrating by parts in the third integral and taking into account the inequality $|x| \leq t+R$ on $\operatorname{supp} \phi$ we claim that $\mathrm{V}_{2}: \mathrm{H}^{\mathrm{s}, \mathrm{m}_{1}} \rightarrow \mathrm{H}^{\mathrm{s}+\mathrm{N}, \mathrm{m}_{2}} \mathrm{is}$ a bounded operator.

Lemma 3. Suppose that the operators $W_{j} \in \mathscr{L}\left(L^{2}\right)$ have compactly supported distribution kerne1s. Let the metric g be non-trap-, ping in $\bar{\Omega}$. Then the operator $Q(\lambda)=W_{1} R \cdot\left(\lambda^{2}+i 0\right) W_{2}$ has the form $Q(\lambda)=Q_{1}(\lambda)+Q_{2}(\lambda)$, where
(i) $\left\|(d / d \lambda)^{k} Q_{2}(\lambda)\right\|_{\mathscr{L}_{\left(L^{2}(\Omega)\right)} \leq C_{N}(1+\lambda)^{-N}, \lambda \in R^{+}, N \in Z, k<n-1 .}$
(ii) $\hat{Q}_{1}(t)=\int_{0}^{\infty} e^{i \lambda t} Q_{1}(\lambda) d \lambda$ is compactly supported.

Proof. Consider the operators $P_{j}(t)=B_{i}^{-1} \sin t B_{j}, \quad j=0,1$. obviously $P_{0}(t)$ and $P_{1}(t)$ solve the problems

$$
\begin{array}{ll}
\left(D_{t}^{2}-D_{0}\right) P_{0}(t)=0 & \left(D_{t}^{2}-H\right) P_{1}(t)=0 \\
P_{0}(0)=0, P_{0 t}(0)=I & P_{1}(0)=0, \quad P_{1 t}(0)=I \\
& B P_{1}(t)=0,
\end{array}
$$

where $\mathrm{Bu}=\mathrm{u} / \partial_{\Omega}$ or $\mathrm{Bu}=\frac{\partial \mathrm{u}}{\partial \mathrm{n}} / \partial_{\Omega}$ and n is the outward normal to $\partial \Omega$. Let $\chi \in C_{0}^{\infty}\left(R^{n}\right), \chi \equiv 1$ on $\operatorname{supp}_{x, y} W_{j}(x, y), j, j=1,2 \quad$ and $\chi(x)=0$ for $x \notin B_{R_{1}}$ where $W_{j}(x, y)$ are the distribution kernels of W_{j}. Due to the non-trapping condition, there exist $T \geqslant 0$, such that every generalized null bicharacteristic of $D_{t-H}^{2}-H$ passing over $\operatorname{supp} \chi \bar{\Omega}$ at $t=0$ lies for $|t|>T$ completely over the set $\mathrm{R}^{\mathrm{n}} \mathrm{B}_{\mathrm{R}}$. Moreover the bicharacteristics of $\mathrm{D}_{\mathrm{t}}^{2}-\mathrm{H}$ are straight lines outside the ball $\mathrm{B}_{\mathrm{R}^{0}}$ The propagation of singularities for the distribution kernel $P_{1}(t, x, y)$ of $P_{1}(t)$ yield
$\operatorname{sign} \operatorname{supp} P(t, x, y) \chi(y) \subset\{(t, x, y) ; \| x|-t|<T\}, \quad T>R_{1}$.
Choose a cut-off function $\xi \in \mathrm{C}^{\infty}\left(\mathrm{R}^{\mathrm{n}+}\right)_{\text {such }}$ that $\xi \equiv 1$ on a neighbourhood of $\{(\mathrm{t}, \mathrm{x}) ;||\mathrm{x}|-\mathrm{t}|<\mathrm{T}\}, \quad, \quad \xi(\mathrm{t}, \mathrm{x})=0$ if $(\mathrm{t}, \mathrm{x}) \nsubseteq\{(\mathrm{t}, \mathrm{x})$; $||x|-t|<T+1\}$ and suppose ${ }_{x} \xi(t, x)=0$ for $t \in R^{1} \quad x$

Consider the operators $\mathrm{P}_{0 \chi}=\chi \mathrm{P}_{0}(\mathrm{t}) \chi, \mathrm{P}_{1 \chi}=\chi \mathrm{P}_{1}(\mathrm{t}) \chi, \quad, \mathrm{E}_{0}=$ $=\xi \mathrm{P}_{1}(\mathrm{t})_{X}, \quad, \mathrm{R}_{\chi}(\lambda)=\chi \mathrm{R}(\lambda) \chi$. Then we have

$$
W_{1} R\left(\lambda^{2}+i 0\right) W_{2}=W_{1}\left\{\chi \hat{E}(\lambda)+\left[R_{\chi}\left(\lambda^{2}+i 0\right)-\chi \hat{E}_{0}(\lambda)\right]\right\} W_{2}
$$

It is easy to see that the operator $\chi \mathrm{E}_{0}(\mathrm{t})$ has a compact support with respect to t.

So we need the following estimate

$$
\left\|D_{\lambda}^{j}\left[R\left(\lambda^{2}+i 0\right)-\chi \hat{E}(\lambda)\right]\right\|_{\mathscr{L}}(L(\Omega)) \leq C_{N}(1+\lambda)^{-N}, N \in Z, j<n-1
$$

where $\mathscr{L}\left(\mathrm{L}^{2}(\Omega)\right)$ is the space of bounded operators from $L^{2}(\Omega)$ to $L^{2}(\Omega)$. A similar to (3.6) estimate was obtained by Vainberg $/ 21 /$ and Rauch $/ 20$ / Our proof of (3.6) is close to that given in ref. ${ }^{\prime 20 /}$ and we only shall sketch it.

Consider the operator $F(t)=\left[D_{t}^{2}-H, \xi\right] P(t) X, F(t) \in \mathcal{Q}\left(L^{2}(\Omega)\right)$. It follows from (3.5) that the kernel $F(t, x, y)$ of $F(t)$ is a smooth function, supp $\vec{F} \subset\{(t, x, y) ; \quad T<||x|-t|<T+1\}$ and $\mathrm{F}^{(\mathrm{\ell})}(0)=0$ for any $\ell \in \mathbf{Z}^{+}$, since $\xi \equiv 1$ on supp x. Moreover

$$
\begin{align*}
& \left(D_{t}^{2}-H\right) E_{0}(t)=F(t), \tag{3.7}\\
& E_{0}(0)=0, \quad E_{0 t}(0)=\chi, \quad B E_{0}(t)=0,
\end{align*}
$$

where $\mathrm{Bu}=\mathrm{u} / \partial \Omega$ or $\mathrm{Bu}=\frac{\partial \mathrm{u}}{\partial \mathrm{n}} / \partial \Omega$. Let $\tilde{\mathrm{F}}(\mathrm{t}, \mathrm{x}, \mathrm{y})$ be a smooth function in $R^{1} \times R^{n} \times \Omega$ such that $\vec{F}=F$ for $x \in \Omega$ and $F(t, x, y)=0$ for $x \in K, t>2 T$. Consider the problem

$$
\begin{align*}
& \left(D^{2}-H_{0}\right) W(t)=\vec{F}(t) \tag{3.8}\\
& W(0)=0, \quad W_{t}(0)=0 .
\end{align*}
$$

Choose $\psi \in \mathrm{C}^{\infty}\left(\mathrm{R}^{\mathrm{n}}\right), \psi \equiv 1$ on $\operatorname{supp} \chi,, \psi(\mathrm{x})=1$ for $|\mathrm{x}|>2 \mathrm{~T}$. From (3.7), (3.8) and Duhame1's formula we have

$$
\begin{equation*}
W(t)=E_{0}(t) \oplus 0-P_{0}(t) \chi+\int_{0}^{t} P_{0}(t-s)\left(H_{0}-H \oplus 0\right)\left(E_{0}(s) \oplus 0\right) d s \tag{3.9}
\end{equation*}
$$

in $L^{2}\left(R^{\mathrm{n}}\right)$,

$$
\begin{equation*}
\mathrm{E}_{0}(\mathrm{t})=\psi W(\mathrm{t})+\mathrm{P}_{1}(\mathrm{t}) \chi+\int_{0}^{t} P_{1}(\mathrm{t}-\mathrm{s}) \mathrm{Q}(\mathrm{~s}) \mathrm{ds} \tag{3.10}
\end{equation*}
$$

in $L^{2}(\Omega)$, where $Q(s)=(1-\psi) F(s)+[H, \psi] W(s)$. Since $\chi \mathrm{E}_{0}$ has a compact support with respect to t, we can choose $T>0$ so that
$\therefore \quad \chi \mathrm{W}(\mathrm{t})=\mathrm{P}_{0 \chi}(\mathrm{t})+\int^{\mathrm{T}} \mathrm{P}_{0 \chi}(\mathrm{t}-\mathrm{s})\left(\mathrm{H}_{0}-\mathrm{H} \oplus 0\right)\left(\mathrm{E}_{0}(\mathrm{~s}) \oplus 0\right) \mathrm{ds}$.
The local energy decay of the operator $P_{0}(t)$, i.e.,

$$
\left\|D_{t}^{j} P_{0 \chi}(t)\right\|_{\mathfrak{L}}\left(H^{-8}, S^{s}\right) \leq C_{s, j^{t}}{ }^{-n}, \quad t>C
$$

and the smoothness of the kernel of $W(t)$ yield the estimate

$$
\left\|D_{t}^{j} \times W(t)\right\|_{\left.\mathfrak{L}_{\left(H^{-s}\right.}, H^{s}\right)} \leq C_{s, j}(1+t)^{-n} \quad \text { for } t \in \bar{R}^{+} .
$$

Using the equalities $\chi W^{(\mathcal{\ell})}(0)=0$ for $\ell \in Z^{+}$, we obtain

$$
\left.\left\|D_{t}^{j} \chi \hat{W}(\lambda)\right\|_{\mathscr{L}\left(H^{-s}, H\right.} s\right) \leq C_{N}(1+\lambda)^{-N} \quad \text { for } N \in Z^{+}, j<n-1
$$

Therefore

$$
\begin{equation*}
\left\|D_{\lambda}^{j} \hat{Q}(\lambda)\right\|_{\mathscr{Q}}\left(L^{2}(\Omega)\right) \leq C_{N}(1+\lambda)^{-N} \quad \text { for } N \in Z^{+}, \quad j<n-1 \tag{3.11}
\end{equation*}
$$

Moreover, the function $\hat{Q}(\lambda)=\int^{\infty} e^{i k t} Q(t) d t$ is analytic on the half-plane Imk>0 with values ${ }^{\circ}$ in $\mathscr{L}\left(\mathrm{L}^{2}(\Omega)\right)$ and it has a $\mathrm{C}^{\mathrm{n}-2}$ continuation on R. Multiplying (3.10) by χ and taking a Fou-rier-Laplace transform with respect to t we get

$$
x \hat{E}_{0}(\mathrm{k})-\mathrm{R}_{\chi}\left(\mathrm{k}^{2}\right)=\mathrm{R}_{\chi}\left(\mathrm{k}^{2}\right) \hat{\mathrm{Q}}(\mathrm{k})
$$

 in $\left\{k ; \operatorname{Im} k>0, R_{e k}>0\right\}$ since the functions $R_{\chi}\left(\mathbf{k}^{2}\right)$ and $\hat{G}(k)$ are analytical in this region with values in $\mathcal{L}\left(\mathrm{L}^{2}(\Omega)\right)$. Using (3.11) we obtain

$$
\begin{equation*}
\left\|D_{\lambda}^{j} R_{X}\left(\lambda^{2}+10\right)\right\|_{\mathfrak{L}_{\left(L^{2}(\Omega)\right)} \leq C \lambda^{p}, \quad \lambda \geq \lambda_{0}, \quad \mathrm{~J}<\mathrm{n}-1, . . .} \tag{3.12}
\end{equation*}
$$

for some p, and prove the estimate (3.6). So we complete the proof of Lemma 3 .

We are ready to prove Lemma 1. Using Lemma 2 and Lemma 3 with $W_{j}=V_{1}$ we can write $S\left(\lambda^{2}\right)$ in the form $S\left(\lambda^{2}\right)=S_{1}(\lambda)+S_{2}(\lambda)$, where

$$
\begin{aligned}
\mathrm{S}_{1}(\lambda) & =1+\pi \mathrm{i}\left(1+\lambda^{2}\right) \mathrm{G}\left(\lambda^{2}\right) \chi\left[\mathrm{V}_{1}+Q_{1}(\lambda)\right] \chi \mathrm{G}^{*}\left(\lambda^{2}\right) \lambda^{\mathrm{n}-2} \\
\mathrm{~S}_{2}(\lambda) & =\pi \mathrm{i}\left(1+\lambda^{2}\right) \lambda^{\mathrm{n}-2}\left\{\left(1+\lambda^{2}\right)^{2} \mathrm{G}\left(\lambda^{2}\right) Q_{2}(\lambda) \mathrm{G}^{*}\left(\lambda^{2}\right)+\right. \\
& +\mathrm{G}\left(\lambda^{2}\right)\left[1+\left(1+\lambda^{2}\right) \mathrm{V}_{1}+\left(1+\lambda^{2}\right)^{2} \mathrm{~V}_{1} \mathrm{R}(\lambda+\mathrm{i} 0) \oplus 0\right] \mathrm{V}_{2} \mathrm{G}^{*}\left(\lambda^{2}\right)+ \\
& \left.+\mathrm{G}\left(\lambda^{2}\right) \mathrm{V}_{2}\left[1+\lambda^{2}+\left(1+\lambda^{2}\right)^{2} \mathrm{R}(\lambda+\mathrm{i} 0) \oplus 0\right] \vee \mathrm{G}^{*}\left(\lambda^{2}\right)\right\}
\end{aligned}
$$

The operator $S_{1}(\lambda)$ sattisfies the second condition of Lemma 1. Indeed, the operator $\hat{Q}_{1}(t)$ has a compact support with respect to t in view of Lemma 3 and so does $G\left(\lambda^{2}\right)_{X}(t)$ with distribution kernel $\delta(t-x \omega)_{\chi}(x), \ldots \in C_{n}^{\infty}\left(R^{n}\right), \omega \in S^{n-1}$. In what follows we shall prove that $S_{2}(\lambda)$ satisfies the first condition of Lemmal.

1. First consider the operator $I_{1}(\lambda)=G\left(\lambda^{2}\right) Q_{1}(\lambda) G^{*}\left(\lambda^{2}\right)$. The kernel of $G\left(\lambda^{2}\right)$ is equal to $e^{i \lambda \omega x}$, therefore $I_{1}(\lambda)$ is an operator with smooth kernel $\mathrm{I}_{1}(\lambda, \omega, \theta)$ and

$$
\begin{aligned}
\left|\mathrm{I}_{1}(\lambda, \omega, \theta)\right| & =\left|\int \mathrm{e}^{\mathrm{i} \lambda \omega \mathbf{x}} \chi(\mathbf{x}) Q_{2}(\lambda)\left(\mathrm{e}^{-\mathrm{i} \lambda \theta \mathrm{y}} \chi(\cdot \mathrm{y})\right) \mathrm{d} \mathbf{x}\right| \leq \\
& \leq \mathrm{C}\left\|\mathbf{Q}_{2}(\lambda)\right\|_{\mathcal{L}_{\left(L^{2}(\Omega)\right)} \leq \mathrm{C}_{\mathrm{N}}(1+\lambda)^{-\mathrm{N}} .}
\end{aligned}
$$

Therefore $I_{1}(\lambda)$ is a trace class operator and

$$
\left\|I_{1}(\lambda)^{\dot{T}}\right\|_{\mathrm{Tr}} \leq \mathrm{C}_{\mathrm{N}}\left(1+\lambda_{0}\right)^{-\mathrm{N}}
$$

2. In order to estimate the other terms of $\mathrm{S}_{2}(\lambda)$ we use the inequality

$$
\begin{equation*}
\left\|R\left(\lambda^{2}+i 0\right)\right\|_{\left.\mathcal{L}_{\left(H^{0, n}, H\right.} 0,-n\right)} \leq C(1+\lambda)^{p} \text { for some p. } \tag{3.13}
\end{equation*}
$$

This estimate was proved for $\chi \mathrm{R}\left(\lambda^{2}+\mathrm{i} 0\right) \chi$ (see (3.12)). To derive it for $R\left(\lambda^{2}+i 0\right) \chi$ consider the resolvent equation $\mathrm{R}\left(\lambda^{2}+\mathrm{i} 0\right) \chi=\mathrm{R}_{0}\left(\lambda^{2}+\mathrm{i} 0\right) \chi-\mathrm{R}_{0}\left(\lambda^{2}+\mathrm{i} 0\right)\left(\mathrm{H}-\mathrm{H}_{0}\right) \times \mathrm{R}\left(\lambda^{2}+\mathrm{i} 0\right) \chi$. Using the 'inequality $\left\|D_{x}^{a} R_{0}\left(\lambda^{2}+i 0\right)\right\|_{\left.\mathcal{L}_{\left(H^{0}, n, H\right.} 0,-n\right) \leq C \lambda}$ for $|a| \leq 2$ we obtain (3.13) for $R\left(\lambda^{2}+i 0\right) X$ and repeating this argument we prove (3.13).

Consider the operator $I_{2}(\lambda)=G(\lambda) V_{1} R\left(\lambda^{2}+i 0\right) V_{2} G^{*}(\lambda)$. This operator has a smooth kernel

$$
-I_{2}(\lambda, \omega, \theta)=(i \lambda)^{-2 N} \int e^{i \lambda x \omega} V_{1} R\left(\lambda^{2}+i 0\right)\left(V_{2} \Delta^{N}\left(e^{-i \lambda y \theta}\right)\right) d x
$$

and Lemma 2 yields $\left(I_{2}(\lambda, \omega, \theta) \mid \leq C \lambda^{-2 N}\right.$. The other terms of $\mathrm{S}_{2}(\lambda)$ can be estimate in a similar way.

4. PROOF OF THE THEOREMS

In this section we show that the scattering phase has an asymptotic development at infinity and compute the coefficients. Denote by σ the distribution

$$
\langle\sigma, \rho\rangle=\operatorname{Tr} \int \rho(\mathrm{t})\left\{\cos \mathrm{B}_{1} \mathrm{t} \oplus 0-\cos \mathrm{B}_{0} \mathrm{t}\right\} \mathrm{dt}, \quad \rho \in \mathrm{C}_{0}^{\infty}\left(\mathrm{R}^{1}\right)
$$

Using the trace formula (2.2) we have

$$
\hat{\rho} \sigma(\lambda)=\frac{1}{2}: \int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} \mu}: \hat{\rho}(\lambda-\mu) \tilde{\mathrm{s}}(\mu) \mathrm{d} \mu+\frac{1}{2} \int_{-\mathrm{ia}}^{\mathrm{ia}} \frac{\mathrm{~d}}{\mathrm{~d} \mu} \hat{\rho}(\lambda-\mu) \tilde{\mathrm{s}}(\mu) \mathrm{d} \mu
$$

and the second integral is $O\left(\lambda^{-N}\right)$ for any N as $\lambda \rightarrow \infty$ The decomposition of $s\left(\lambda^{2}\right)$ obtained in Sect. 2 yields

$$
\hat{\rho} * \frac{d}{d \lambda} s_{3}(\lambda)=-2 \hat{\rho} \sigma(\lambda)+O\left(\lambda^{-N}\right)
$$

with $\mathbf{s}_{3}(\lambda)=s_{1}(\lambda) \quad$ for $\lambda>0$ and $s_{3}(\lambda)=-s_{1}(\lambda)$ for $\lambda<0$. For $\rho \in C_{0}^{\infty}\left(R^{1}\right)$ and ${ }_{\rho \equiv 1}^{1}$ on $\operatorname{supp} \hat{s}_{1}(t) \quad$ the last equality leads to

$$
\begin{equation*}
\frac{d}{d \lambda} \mathbf{s}\left(\lambda^{2}\right)=-2 \hat{\rho} \sigma(\lambda)+O\left(\lambda^{-N}\right), \quad N \in \mathbf{Z}^{+}, \quad \lambda>0 \tag{4.1}
\end{equation*}
$$

First consider the case $\Omega=R^{n}$. To study the right-hand side of (4.1), introduce the distribution kernels $v_{0}(t, x, y)$ and $v_{1}(t, x, y)$ of the operators $\cos B_{0} t$ and $\cos B_{1} t$. Obviously v_{0} and v_{1} are solutions of the problems

$$
\begin{aligned}
& \left(D_{t}^{2}-H_{0}\right) v_{0}=0 \\
& \left(\mathrm{D}_{\mathrm{t}}^{2}-\mathrm{H}\right) \mathrm{v}_{1}=0 \\
& v_{0 \prime \prime}^{\prime \prime}=0=\delta(x-y), \quad v_{0 t / t=0}=0 \\
& v_{1 / t=0}=\delta(x-y), \quad v_{1 t / t=0}=0
\end{aligned}
$$

and $\sigma(\mathrm{t})$ is equal to the distribution $\int\left[\mathrm{v}_{1}(\mathrm{t}, \mathrm{x}, \mathrm{x})-\mathrm{v}_{0}(\mathrm{t}, \mathrm{x}, \mathrm{x})\right] \mathrm{dx}$. Repeating the arguments in the proof of Corollary 1.2 in ref. ${ }^{6}$, one can prove that sing $\operatorname{supp} \sigma \subset\left\{\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\mathrm{j}}\right.$ is a period of a periodic geodesic of g$\}$. Since the non-trapping condition sing supp $\sigma=\{0\}$. Then (4.1) holds for any $\rho \in \mathrm{C}_{0}^{\mathrm{L}}\left(\mathrm{R}^{1}\right), \rho \equiv 1$ on a neighbourhood of $t=0$. Using the finite speed of propagation and applying a finite partition of unity, one can reduce the problem to the investigation of the functions

$$
I_{j}(\lambda)=\iint e^{-\mathrm{i} \lambda_{\mathrm{t}}} \rho(t) \phi(x) v_{j}(t, x, x) d x d t, \quad j=0,1
$$

with $\phi \in \mathrm{C}_{0}^{\infty}\left(\mathrm{R}^{\mathrm{n}}\right)$. It turns out that for $|\mathrm{t}|<\delta$ and δ sufficiently small, the distributions v_{1} and v_{0} are sums of oscillating integrals

$$
\begin{equation*}
v_{ \pm}(t, x, y)=\int e^{i \Phi_{ \pm}(t, x, y, \theta)_{a^{+}}(t, x, y, \theta) d \theta} \tag{4.2}
\end{equation*}
$$

where a^{\ddagger} are classical amplitudes, $a^{ \pm} \sim \sum_{i}^{\infty} c^{ \pm}{ }_{j}^{ \pm}, c^{ \pm}-$homogeneous of order -j with respect to θ. The phase functions $\Phi+$ have the form $\Phi_{ \pm}=\psi(x, y, \theta) \pm \operatorname{tg}(y, \theta)$ (see ${ }^{\prime} 6 /$), q^{2} is the principle symbol of H and ψ is a local solution of $\mathrm{q}(\mathrm{x}, \mathrm{d} \psi(\mathrm{x}, \mathrm{y}, \theta))$ $=q(y, \theta), \psi(x, y, \theta)=0$ when $\langle x-y, \theta\rangle=0$ and $d_{x} \psi(x, y, \theta)=\theta$ for $x=y$. Then the integral $I_{1}(\lambda)$ became

$$
I_{1}(\lambda)=\lambda^{n} \int \mathrm{e}^{\mathrm{i} \lambda_{\mathrm{t}}(1-\mathrm{q}(\mathrm{~g} \cdot \theta))} \phi(\mathrm{x}) \rho(\mathrm{t}) \mathrm{a}^{\mathrm{t}}(\mathrm{t}, \mathrm{x}, \mathrm{x}: \theta) \mathrm{d} \theta \mathrm{dx}+O\left(\lambda^{-\mathrm{N}}\right)
$$

Substituting

$$
\theta=\mathrm{r} \omega \quad \mathrm{q}(\mathrm{x}, \omega)=1, \quad \mathrm{r}>0, \quad \mathrm{~S}=\{\omega ; \mathrm{q}(\mathrm{x}, \omega)=1\}
$$

we have

$$
\mathrm{I}(\lambda)=\lambda^{\mathrm{n}} \iint_{0}^{\infty} \int_{\mathrm{S}}^{\mathrm{i} \lambda \mathrm{t}(1-\mathrm{r})} \rho(\mathrm{t}) \phi(\mathrm{x}) \mathrm{a}^{+}\left(\mathrm{t}, \mathrm{x}, \mathrm{x}, \lambda \mathrm{r}(\omega)|\nabla \mathrm{q}|^{-1} \mathrm{dS} d r d x d t\right.
$$

and applying the method of stationary phase we obtain

$$
\left.I_{1}(\lambda) \sim(2 \pi)^{-n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{\lambda^{n-j-k-1}}{k!} \iint_{S}\left(i^{-1} \frac{\partial^{2}}{\partial t \partial r}\right)\left[r^{n-1-j} c_{j}^{+}(t, x, x, \omega)\right]\right]_{\substack{t=0 \\ r=1}}^{\phi(x)} \frac{d S}{V q} d x
$$

This formula leads to (1.1) with

$$
\begin{align*}
a_{j} & =(2 \pi)^{-n} \iint\left[c_{j}^{+}(0, x, x, \omega)+\right. \\
& +\sum_{k=1}^{j}(n-j-1) \ldots(n-j-k)(k!)^{-1}\left(i^{-1} \partial / \partial t\right)^{k} c_{j-k}^{+}(0, x, x, \omega) \frac{d S d x}{|\nabla q|} \tag{4.3}
\end{align*}
$$

In order to compute the coefficients in the case of the Schrödinger operator $H=-\Delta+V$, observe that $\Phi_{ \pm}=\langle x-y, \theta\rangle \pm t|\theta| \nabla c_{1}^{+}=1 / 2$, and $c_{\ell}, ?>0$ solves the transport equation

$$
\begin{aligned}
& \partial c_{\ell}^{+}-<\theta, \nabla_{\mathrm{x}}>\mathrm{c}_{\ell}^{+}-i / 2\left(\partial_{\mathrm{t}}^{2}-\Delta+\mathrm{V}\right) \mathrm{C}_{\ell-1}^{+}=0 . \\
& \left.\mathrm{c}_{\ell}^{+}\right|_{t=0}=0 .
\end{aligned}
$$

Using (4.3) we prove inductively that a_{j} has the form prescribed in theorem 2.

The investigation of the asymptotic behaviour of $\hat{\rho \sigma} \cdot(\lambda)$ as $\lambda \rightarrow \infty$ in the obstacle case $\Omega=R^{n}$ for the Laplace operator with Dirichlet or Neumann boundary conditions was done in refs, ${ }^{18,18 /}$. It was proved, that $\hat{\rho} \sigma \cdot(\lambda) \sim \sum_{j=0}^{\infty} a_{j} \lambda^{(n-j-2) / 2}$ and the first three coefficients $a_{j}, j=0,1,2$ were obtained in the case $\mathrm{a}^{\mathrm{ij}}=\delta_{\mathrm{ij}}$. The method used in refs. $\&, 18 /$ by Ivrij, can be applied to the investigation of $\hat{\rho \sigma} \cdot(\lambda)$ for arbitrary second order differential operators in Ω with Dirichlet or Neumann boundary conditions. In order to compute the first two coefficient of $s(\lambda)$ one can use the trace formula (2.2) as well as the asymptotics of the right-hand side of (2.2) as $t \rightarrow+0$ given by Mc Keen and Singer (see ${ }^{15} \$ 4$ and $\$ 5$, formula (2)). Comparing the coefficients of the two sides of (2.2) as $t \rightarrow+0$ we get a_{0} and a_{1}.

The method used in the previous sections can be applied without change to study the asymptotics of the scattering phase related to systems of first order differential operators. Let $H_{0}=\sum_{j=1}^{n} A_{j}^{\circ} D_{j}, H_{1}=\Sigma_{j=1}^{n}: A_{j}^{1}(x) D_{j}+B(x)$ be self-adjoint opera-
 $A_{j}^{1} \in C^{\infty}\left(R^{n} ; R^{4 m^{2}}\right), A^{k}=\sum_{j=1}^{n} A_{j}^{k} \xi_{j}, k=0,1 ; H_{1} \approx H_{0}$ outside the ball B_{R}. Assume, that the eigenvalues $\lambda_{j}(x, \xi)$ of $A^{1}(x, \xi)$ are simple and

$$
\begin{equation*}
\lambda_{1}(x, \xi)<\ldots<\lambda_{m}(x, \xi)<0<\lambda_{m+1}(x, \xi)<\ldots<\lambda_{2 m}(x, \xi) \tag{4.4}
\end{equation*}
$$

Then the spectrum of H_{0} is absolutely continuous and $\sigma\left(H_{0}\right)=R^{1}$. The eigenfunctions of H_{1} in L^{2} corresponding to a non-zero eigenvalue are smooth and supported in B_{R} and so they are finitely many. Moreover, the eigenvalue $\lambda=0$ has a finite multiplicity. Thus $\sigma\left(\mathrm{H}_{1}\right)=\sigma_{\mathrm{p}}\left(\mathrm{H}_{1}\right) \quad \sigma_{\mathrm{ac}}\left(\mathrm{H}_{1}\right)$ and $\sigma_{\mathrm{p}}\left(\mathrm{H}_{1}\right)$ is finite, $\sigma_{\mathrm{ac}}\left(\mathrm{H}_{\mathrm{p}}\right)=\mathrm{R}^{1}$.

Consider the scattering phase $s(\lambda)$ related to the pair H_{1}, H_{0}. The function $s(\lambda)$ has the properties (i)-(iii) described in Sect.2. Choosing $\Phi(\lambda) \hat{\rho}(\lambda), \rho \in C_{0}^{\infty}\left(\mathrm{R}^{1}\right)$ in (iii) we obtain the following trace formula

$$
\begin{equation*}
\operatorname{Tr} \int \rho(\mathrm{t})\left\{\mathrm{e}^{\mathrm{itH}}-\mathrm{e}^{\mathrm{itH} H_{0}}\right\} \mathrm{dt}=\int \frac{\mathrm{d}}{\mathrm{~d} \lambda} \hat{\rho}(\lambda) \cdot \mathrm{s}(\lambda) \mathrm{d} \lambda \tag{4.5}
\end{equation*}
$$

Denote by $P_{j}(t), 1 \leq j \leq 2 m$ the projections of the bicharacteristics of $\lambda_{j}(x, \xi)$ on the x-space. We shall use the following non-trapping condition. There exists $T>0$, such that

$$
\begin{equation*}
P_{j}(t) \not \subset B_{R} \quad \text { for } t>T \quad \text { if } \quad P_{j}(0) \in B_{R} \tag{4.6}
\end{equation*}
$$

Theorem 4. Suppose that (4.4) and (4.6) are valid. Then

$$
s(\lambda) \sim \sum_{j=0}^{\infty}{ }_{\mathrm{a}}^{\mathrm{j}}{ }_{\mathrm{j}}^{ \pm} \lambda^{\mathrm{n}-\mathrm{j}} \quad \text { as } \quad \lambda \rightarrow \pm \infty
$$

and

$$
\mathrm{a}_{0}^{ \pm}=(4 \pi)^{-\mathrm{n} / 2}(\Gamma(\mathrm{n} / 2+1))^{-1} \int \operatorname{Tr}\left(\pi_{1}^{ \pm} A^{1}(\mathrm{x}, \xi)-\pi_{0}^{ \pm} A^{\circ}(\xi) \mathrm{dx} d \xi,\right.
$$

where $\pi_{j}^{+}\left(\pi_{j}^{-}\right)$is the projection on the positive (negative) eigenspace of A. The proof of theorem 4 is similar to that of theorem 1 and we shall only sketch it. In order to decompose $s(\lambda)$ as a sum of functions $s_{j}(\lambda), j=1,2$ with the properties (ii) and (iii) described in Sect.3, we use the formula

$$
S(\lambda)=1-2 \pi i G(\lambda)|V+V R(\lambda+i o) V| G^{*} \cdot(\lambda)
$$

where $\left.\lambda \in \mathrm{R}^{1} p_{, ~\left(\sigma_{\mathrm{n}}\left(\mathrm{H}_{1}\right)\right.} 0\right), \mathrm{V}=\mathrm{H}_{1}-\mathrm{H}_{0}$. Here $\mathrm{G}(\lambda)$ are bounded opera-
tors from $\mathrm{H}^{P}, \mathrm{~s}>1 / 2, \mathrm{P} \in \mathrm{R}^{1}$.to an auxiliary space \mathcal{H}. Denote by $\pi_{j}(\xi)$ the orthogonal projection onto the eigenspace of $A^{\circ}(\xi)$ corresponding to $\lambda_{j}(\xi)$. Then $\pi_{1}(\xi)$ is a smooth, homogeneous function of order one in $R^{n} \quad 0$. Let $S_{j, \lambda}=\left\{\xi \in R^{n} ; \lambda_{j}(\xi)=\lambda\right\}$ and $\mathrm{d} \mu_{\mathrm{j}}(\omega)=\left|\quad \lambda_{\mathrm{j}}(\xi)\right|^{-1} \mathrm{dS}_{\mathrm{j}}$, where $\mathrm{dS} \mathrm{S}_{\mathrm{j}}$ is the usual Lebesque measure on $\mathrm{S}_{\mathrm{j}, \lambda}$. Consider the trace operators $\gamma_{\mathrm{j}}(\lambda)$ on $\mathrm{S}_{\mathrm{j}, \lambda}$ defined by $\left(\gamma_{\mathrm{j}}(\lambda) \mathbf{u}\right)(\omega)=\mathbf{u}(\lambda \omega), \quad, \mathbf{u} \in \mathrm{C}^{\infty}\left(\mathrm{R}^{\mathrm{n}}\right)$, where polar coordinates $\xi=\lambda \omega$, $\omega \in S_{j, 1}$ are used. Denote $\gamma_{\lambda}=\sum_{j=1}^{2 m} \gamma_{j}(\lambda) \pi_{j}(\xi)$ and $H=\sum_{j=1}^{2 m} \pi_{j}(\lambda \omega) L^{2}\left(S_{j, \lambda}\right.$; $d \mu_{j} ; c^{2 m}$. It turns out that $G_{\lambda}=y_{\lambda} \mathcal{F}$. Moreover, the operator $\int_{e} i^{\prime} G_{\lambda} V d_{\lambda}$ has a compactly supprted distribution kernel and using an analogy of Lemma 2 we find the functions $s_{j}(\lambda) j=1,2$. From (4,5) we obtain $\frac{d}{d \lambda} s(\lambda)=-\hat{\rho} \sigma(\lambda)+\mathrm{O}\left(\lambda^{-N}\right)$;are $\quad \sigma(\mathrm{t})=\int\left[\mathrm{u}_{1}(\mathrm{t}, \mathrm{x}, \mathrm{x})\right]-$ $\left.-u_{0}(t, x, x)\right] d x$ and u_{j} are the fundamental solutions of the Cauchy problem for $D_{t}-H_{1}$ and $D_{t}-H_{0}$ respectively. Using a microlocal
parametrix for the Cauchy problem and the method of the stationary phase we complete the proof of theorem 4.

REFERENCES

1. Agmon S. Spectral Properties of Schrödinger Operators and Scattering Theory. Ann. Scuola Norm. Sup. Pisa, 1975, 11, p.151-218.
2. Birman M.S. Vestnik Leningrad Univ., 1962, 1, p. 22-25.
3. Birman M.S., Krein M.G. Dok1.Akad.Nauk SSSR, 1962, 144, p.475-478.
4. Buslaev V.S. Dok1.Akad.Nauk SSSR, 1981, 197, p.999-1002.
5. Colin de Verdiere Y. Une formule de trace pour 1 'operator de Schrödinger dans R^{3}. Ann.Scient.Es.Norm.Sup., 1981, 14, p.27-49.
6. Duistermat J., Guillemin V. Invent Math., 1975, 29, p. 39-79.
7. Guillipé L. Une formule de trace pair l'operator $^{\text {de }}$ Schrödinger dans R^{3}, thése. Universite Scient. et Medicale Grenoble, 1981.
8. Ivrij V. Dunc.Anal. i Pril., 1980, 14, p.23-34.
9. Ivrij V., Schubin M.S. Dokl.Akad.Nauk SSSR, 1982, p. 282-284.
10. Jensen A., Kato T. Comm. in P.D.E., 1978, 3, p. 1165-1195.
11. Kato T. Hadronic Journ., 1978, 1, p.134-154.
12. Krein M. Dok1.Akad.Nauk SSSR, 1962, 144, p.268-271.
13. Kuroda An Introduction to Scattering Theory Lecture Notes. Springer Verlag, 1980, p.51.
14. Majda A., Ra1ston J. Duke Math.J., 1978, 45, p.183, 196, p.517-536; 1979, 46, p.725-731.
15. McKean H., Singer I. J.Diff.Geometry, 1967, 1, p.43-69.
16. Melrose R., Sjöstrand J. Comm.Pure App1.Math., 1978, 31, p.593-617.
17. Petkov V., Popov G. C.R.Acad.Sc.Paris, 1981, 292, p.275-277.
18. Petkov V., Popov G. Ann.Inst. Fourier, 1982, 32, p. 123-162.
19. Popov G. Dok1. BAN, 1982, 51, p.168-172.
20. Rauch J. Comm. Pure Appl.Math., 1978, 31, p.431-480.
21. Vainberg B. Russian Math.Surveys, 1975, 30, p.1-38.

Received by Publishing Department on September 141982.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US s,

 including the packing and registered postageD13-11807 Proceedings of the III International Meeting on Proportional and Drift Chambers. Dubna. 1978. 14.00 Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes:

D-1 2965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979..
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980 2 volumes.

D4-80-572 N.N.Kolesnikov et al. "The Energies and N.N.Kolesnikov et al. "The Energies and
Half-Lives for the a - and β-Decays of Half-Lives for the a-

D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980

D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.
D1.7-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.

Попов Г.C.
 E5-82-669
 Асимптотическое поведеңие фазы рассеяния в незахватываюиих метриках

Рассмотрено асимптотическое поведение фазы рассеяния на бесконечности для зллиптического самосопряженного дифференцнального оператора H либо в \mathbf{R}^{n}, либо в области $\cap \subset \mathbb{R}^{\text {B }}$ с краевыми условиями Дирихле или Неймана. Oneратор H имеет вид $H=-\Delta_{g}+h D+V(x)$, где Δ_{E} - оператор Лaпласа-Бельтрамии римановой метрики g в $\Omega, h D=\sum_{j=1}^{n} h_{j} D_{j}, D_{j}=\frac{1}{1} \frac{\partial}{\partial z_{j}}$, Предполагается, что H
равен оператору Лапласа Δ в окрестности бесконечности и 4 то метрика \mathbf{g} не является ловушкой для лучей, т.е. все геодезические метрики уходят с лобого компакта в п через некоторое время, зависящее только от компакта. При этих ограничениях получено полное асимптотическое разложение фазы рассеяния $s(\lambda)$ для $\lambda \rightarrow \infty$. Найдены первые члены этого раяложения.

Работа выполнена в Лаборатории выиислительной техники и автоматизации Оияи.

Сообщение Обиединенного института ядерных исследовании. Дубна 1982

Popor G.S.
 E5-82-669
 Asymptotic Behaviour of the Scattering Phase for Non-Trapping: Metrics

The asymptotic behaviour of the scattering phase is considered at infinity for an elliptle, self-adjoint, second order differential operator H. defined either in $\mathbb{R}^{\text {II }}$ or in an unbounded doma in $\Omega \subset \mathbb{R}^{\mathrm{N}}$ with Dirichlet or Neumann boundary conditlons. The operator H has the form $H=-\Delta_{E}+h D+V$, where Δ_{g} is the Laplace-Beltraml operator related to a Riemannian metric g in $\overline{\mathbf{B}}, h D=\sum_{j=1}^{n} h_{j} D_{j}, D_{j}=1^{-1} \partial / \overrightarrow{x_{j}}$. Provided a non-trapping. hypothesis is fulfilled and H coincides with the Laplace operator Δ in a nelghbourhood of infinite, an asymptotic development of the scattering phase $s(\lambda)$ is obtained as $\lambda \rightarrow \infty$. The first coefficients in this development are found.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

