$p-17$

сообщения объвдинеиного ииститута ядерных исследовании

дубна

$$
14 / v-82
$$

E5-82-54

T.D.Palev, ${ }^{*}$ O.Ts.Stoytchev*

TYPICAL REPRESENTATIONS

OF THE LIE SUPERALGEBRA sl($1, n$)

[^0]The finite-dimensional irreducible representations of the classical Lie superalgebra (LS's) are nowadays fully classified ${ }^{1 / 1}$. In the physical applications, however, it is often important to have explicit formulae for the matrix elements of the generators in a certain basis of the representation space. Although some results in this direction are availab$1 \mathrm{e}^{\prime 2-8 /}$, the problem as a whole remains unsolved. In the present paper we give also a partial answer to the same problem. We write down formulae for the representations of the special linear Lie superalgebra $s \ell(1, n)$ induced by finite-dimensional irreducible representations of the linear span of the even part $g \ell(n)$ and all positive root vectors. The corresponding induced $s l(1, n)$-modules are always finite-dimensional, but are not necessarily fully reducible. The representations of $s \ell(1, n)$ realized in the irreducible induced modules are the typical representations q f the Lie superalgebra/1/.

We were led to the present investigation from a study of a noncanonical quantization ${ }^{\prime 9 /}$. The position operators $q_{1}, \ldots, ; q_{n}$ and the momentum operators p_{1}, \ldots, p_{n} span in this case a basis in the odd part of $s t(1, n)$ and generate $1 t$. The probiem ro ae$t \supseteq r m i n e ~ t h e ~ r e p r e s e n t a t i o n s ~ o f ~ a l l ~ q_{i}, p_{i}$ is the same one as $t)$ construct the representations of $s \ell(1, n)$ The last problem is of independent mathematical interest; the answer to it may $b=$ relevant in several branches of the theoretical physics. We consider $s \ell(1, n)$ as a superalgebra of the general linear $\operatorname{LS} \ell(1, n)$. As a homogeneous basis in $\ell(1, n)$ we choose the generators $e_{A B} A, B=0,1, \ldots, n$. In the defining representation $e_{A B}$ is an $(n+1) \times(n+1)$ matrix with 1 in the $A-t h$ row and the $B-t h$ column and zero elsewhere. The odd and the even parts are $\ell_{1}(1, n)=$ $=$ lin. env. $\left\{e_{0 i}, e_{i 0} \mid i=1, \ldots, n\right\}$ and $\ell_{0}(1, n)=\operatorname{lin}$.env. $\left\{e_{00}, e_{i j} \mid i, j=1, \ldots, n\right\}$, respectively. As a subalgebra of $\ell(1, n)$ the LS $S \ell(1, n)$ reads: $s \ell(1, n)=$ lin.env. $\left.\left\{e_{00}+e_{i i}, e_{A B}\right\} A \neq B=0, \ldots ; n ; i=1, \ldots, n\right\}$. Its even subalgebra $G_{0}=$ lin. env. $\left\{E_{i j}=\delta_{i j} e_{00}+e_{i j} \mid i, j=1, \ldots, n\right\}$ is isomorphic to the general linear Lie algebra $g \ell(n)$. Since $\left[E_{i j}, E_{k} \ell\right]=\delta_{j k} E_{i} \ell^{-}$ $-\delta_{\ell} \mathrm{E}_{\mathrm{kj}}, \mathrm{E}_{\mathrm{ij}}$ are the Weyl generators of $\mathrm{gl}(\mathrm{n})$.

Let ${ }^{k j} G_{+}$be the linear span of $e_{01}, \ldots, e_{0 n}$. Here we compute the representations of $\boldsymbol{S l}(1, n)$ induced by the subalgebra $P=$ $=\mathrm{G}_{0}+\mathrm{G}_{+}$. The latter are defined as follows ${ }^{\prime 1 /}$. Let $V^{\circ}(\mathrm{L})$ be a finite-dimensional simple G_{0}-module with the highest weight L. Extond it to a P-module putting $G_{+} V^{\circ}(L)=0$. Denote by U and U_{P}
the universal enveloping algebras of $s \ell(1, n)$ and P, correspondingly. Then the induced $s l(1, n) \rightarrow$ module

$$
\begin{equation*}
\bar{V}(L)=\operatorname{In} d_{P}^{s f(1, n)} V^{\circ}(L) \tag{1}
\end{equation*}
$$

is the factor-space

$$
\begin{equation*}
\overline{\mathrm{V}}(\mathrm{~L})=\mathrm{J} \otimes \mathrm{~V}^{\circ}(\mathrm{L}) / \mathrm{I} \tag{2}
\end{equation*}
$$

of the tensor product of U and $V^{\circ}(L)$ with respect to the linear span I of all elements of the form $g p o v-g \otimes p(v), g \in U$, $p \in U_{p}$ and $v \in V^{\circ}(L)$ The space $\bar{V}(L)$ is equipped with a structure of $a n s \ell(1, n)$-module in a natural way:
$g(u \otimes v)=g u \otimes v, \quad g \in s l(1, n), \quad u \in U, \quad v \in V^{\circ}(L)$.
As a basis in $\bar{V}(L)$ we choose the vectors

$$
\begin{equation*}
\left|\theta_{1}, \ldots, \theta_{n} ; m\right\rangle=\left(e_{10}\right)^{\theta_{1}} \ldots\left(e_{n 0}\right)^{\theta_{n}} \otimes m ; \theta_{i}=0,1 ; m \in \Gamma(L) 。: \tag{3}
\end{equation*}
$$

The restriction $\theta_{i}=0$ or 1 is a consequence of the fact that $\left(e_{i 0}\right)^{2}=0$ in $U .: \Gamma(L)$ is the set of all Gel fand-Zetlin patterns for $g l(n)$ in $V^{\circ}(L)$;its elements $m \equiv\left(m_{j p}\right)$ span a basis in $V^{\circ}(L) ; m_{j p}$ are in general complex numbers, such that
$\operatorname{Re}\left(m_{j p}-m_{j, p-1}\right)$ and $\operatorname{Re}\left(m_{j, p-1}-m_{j+1, p}\right)$ are nonnegative integers and all m_{jp} have the same imaginary part. The highest weight L is determined uniquely by the first row ($m_{1 n}, \ldots, m_{1 n}$), which is the same for every pattern $m \in \Gamma(I) T h e$ representations corrocponding to different n-tuples $\left(m_{1 n}, \ldots, m_{n n}\right) \neq\left(m_{1 n}^{\prime}, \ldots, m_{n n}^{\prime}\right)$ are inequivalent*.

Since the generators $e_{A, A}$ and $e_{A+1, A}$ determine through the LS-product all other generators, here we write down the transformation properties of the basis vectors (3) only with respect to these generators. To this end we introduce first the
following notation

[^1]\[

$$
\begin{align*}
& b_{i}^{k}(m)=\left|\begin{array}{l}
\prod_{\substack{k=1 \\
j \neq 1 \\
j \neq i}}^{k}\left(\ell_{j, k-1}-\ell_{i, k}\right)
\end{array}\right|^{1 / 2} \tag{5}\\
& \ddot{\bar{b}}_{i}^{k}(m)=\left|\frac{\prod_{j=1}^{k}\left(\ell_{i, k-1}-\ell_{j, k}-1\right)}{\left.\prod_{j=1}^{k} l_{1, k-1}-\ell_{j, k-1}-1\right)}\right| 1 / 2 \tag{6}\\
& d_{i}^{k}(m)=\left|\frac{\prod_{j=1}^{k-1}\left(\ell_{j, k-1}-\ell_{i, k}-1\right)}{\prod_{j=1}^{k}\left(\ell_{j, k}-\ell_{i, k}-1\right)}\right| \tag{7}\\
& \tilde{d}_{i}^{\mathbf{k}}(m)=\left|\frac{\prod_{j=1}^{\mathbf{k}}\left(\ell_{j, k}-\ell_{i, k}-1\right)}{\prod_{\substack{j=1 \\
j \neq i}}\left(\ell_{j, k-1}-\ell_{i, k-1}\right)}\right|^{1 / 2}, \tag{8}
\end{align*}
$$
\]

where $\ell_{i k}=m_{i k}-i, \quad \epsilon(x)=\left\{\begin{array}{c}1, x \geq 0 \\ -1, x<0\end{array}\right.$ and it is understood that whenever some of the multiples in the above expressions are not defined (as, for instance, the numerator of $b \frac{1}{1}(\mathrm{~m})$) then they have to be replaced by 1 ; moreover, if the denominator of the rught-hand side of some of the above equalities (4)-(8) is zero, then the corresponding coefficient in the left-hand side has to be replaced by 0 .

In terms of this notation the generators $e_{A, A+1}$ and $e_{A+1, A}$, $A=0, \ldots, n$, transform the basis vectors (3) as follows:

$$
\begin{aligned}
& e_{10}\left|\theta_{1}, \ldots, \theta_{n} ;\left(m_{j p}\right)\right\rangle=\left(1-\theta_{1}\right)\left|1, \theta_{2}, \ldots, \theta_{n} ;\left(m_{j p}\right)\right\rangle \\
& e_{k+1, k}\left|\ldots, \theta_{k}, \theta_{k+1}, \ldots ;\left(m_{j p}\right)\right\rangle= \\
& =\sum_{i=1}^{k} b_{i}^{k}(m) \vec{b}_{i}^{k+1}(m)\left|\ldots, \theta_{k}, \theta_{k+1}, \ldots ;\left(m_{j p}-\delta_{j i} \delta_{p k}\right)\right\rangle+
\end{aligned}
$$

$$
\begin{align*}
& +\theta_{k}\left(1-\theta_{k+1}\right) \mid \ldots, \theta_{k}-1, \theta_{k+1}+1, \ldots ;\left(m_{j p}\right)>, \\
& \mathrm{e}_{01}\left|\theta_{1}, \ldots, \theta_{\mathrm{n}} ;\left(\mathrm{m}_{\mathrm{jp}}\right)\right\rangle=\theta_{1}\left(\mathrm{~m}_{11}-\sum_{\mathrm{j}=2}^{\mathrm{n}} \theta_{\mathrm{j}}\right) \mid 0, \theta_{2}, \ldots, \theta_{\mathrm{n}} ;\left(\mathrm{m}_{\mathrm{jp}}\right)>+ \\
& +\sum_{\mathrm{s}=1}^{\mathrm{n}-1} \sum_{\mathrm{i}_{1}=1}^{1} \sum_{\mathrm{i}_{2}=1}^{2} \cdots \sum_{\mathrm{i}_{\mathrm{s}=1}^{\mathrm{s}}}^{\mathrm{s}} \theta_{\mathrm{s}+\mathrm{i}^{(-1)}} \theta_{1^{+}+\ldots+\theta_{\mathrm{s}}}^{\mathrm{b}_{\mathrm{i}}^{1} 1_{1}(\mathrm{~m}) \mathrm{B}_{\mathrm{i}_{1} \mathrm{i}_{2}}^{2}(\mathrm{~m}) \times} \\
& \times B_{i_{2}{ }_{3}{ }^{3}}^{3}(\mathrm{~m}) \ldots \mathrm{B}_{\mathrm{i}_{\mathrm{s}-1}}^{\mathrm{s}}, \mathrm{i}_{\mathrm{s}}(\mathrm{~m}) \overrightarrow{\mathrm{b}}_{\mathrm{i}_{\mathrm{s}}}^{\mathrm{s}+1}(\mathrm{~m}) \times \\
& \times\left|\theta_{1}, \ldots, \theta_{\mathrm{s}}, 0, \theta_{\mathrm{s}+2}, \ldots, \theta_{\mathrm{n}} ;\left(\mathrm{m}_{\mathrm{jp}}-\sum_{\mathrm{r}=1}^{\mathrm{s}} \delta_{1} \delta_{\mathrm{ji}} \delta_{\mathrm{r}} \delta_{\mathrm{pr}}\right)\right\rangle, \\
& \mathrm{e}_{\mathbf{k}, \mathrm{k}+1} \mid \ldots, \theta_{\mathrm{k}}, \theta_{\mathbf{k}+1}, \ldots ;\left(\mathrm{m}_{\mathrm{jp}}\right)>= \tag{9}\\
& =\sum_{i=1}^{k} d_{i}^{k}(m){\underset{\mathrm{d}}{i}}_{\mathrm{k}+1}(\mathrm{~m}) \mid \ldots, \theta_{\mathrm{k}}, \theta_{\mathrm{k}+1}, \ldots ;\left(\mathrm{m}_{\mathrm{jp}}{ }^{+} \delta_{\mathrm{ji}} \delta_{\mathrm{pk}}\right)>+ \\
& +\theta_{\mathrm{k}+1}\left(1-\theta_{\mathrm{k}}\right) \mid \ldots, \theta_{\mathrm{k}}+1, \theta_{\mathrm{k}+1}-1, \ldots ;\left(\mathrm{m}_{\mathrm{jp}}\right)>.
\end{align*}
$$

We omit the derivation. The proof that the above relations give a representation of the LS $s \ell(1, n)$ can be carried out in a straightforward way.
 weight L corresponding to ($m_{1 n}, \ldots, m_{n n}$) is irreducible if and only if $m_{i n} \neq i-1$ for all $i=1, \ldots, n$.

Proof. One can show in a straightforward way that all modules corresponding to $m_{\text {in }} \neq \mathrm{i}-1, i=1, \ldots, n$ are irreducible. It is not simple, however, to prove the inverse. Therefore, we shall use a general criterion for irreducibility (Proposition 2.9 in Ref. $/ 1 /$). First we introduce the notation and list the properties of $s \ell^{\prime}(1, n)$ we need (for more information see Ref ${ }^{\prime 8 /}$).

Define by means of the diagonal matrix (g_{AB}) with $1=$ $=-g_{00}=g_{11}=\ldots g_{n n}$ a non-degenerate bilinear form of the Cartan subalgebra $H^{\prime}=\operatorname{lin}$.env. $\left\{\mathrm{e}_{\mathrm{AA}} \mid \mathrm{A}=0 . \ldots, \mathrm{n}\right\}$ of $\ell(1, \mathrm{n})$:

$$
\begin{equation*}
\left(e_{A A}, e_{B B}\right)=2(n-1) g_{A B} \tag{10}
\end{equation*}
$$

On the Cartan subalgebra $H=$ lin.env. $\left\{E_{i i} \mid E_{i i}=e_{00}+e_{i i}, i=1, \ldots, n\right\}$ of $s \ell(1, n)$ the form (10) coincides with the Killing form of $s \ell(1, n)$. Choose as an ordered basis in H the vectors e_{00}, $e_{11}, \ldots, e_{n n}$ and let $e^{0} e^{1}, \ldots, e^{n}$ be the conjugate basis in the dual to H^{\prime} space H^{\prime}, i.e., $e^{A}\left(e_{B B}\right)=\delta$. Then the bilinear form on H^{\prime}, induced from (10) reads

$$
\begin{equation*}
\left(e^{A}, e^{B}\right)=\frac{g_{A B}}{2(n-1)} . \tag{11}
\end{equation*}
$$

Since $\left[h, e_{A B}\right]=\left(e^{A}-e^{B}\right)(h) e_{A B}, h \in H$, the correspondence between the root vectors and their roots is $e_{A B} \rightarrow e^{A}-e^{B}$. Therefore, $\Delta_{0}^{+}=\left\{e^{i}-e^{j} \mid i<j, i, j=1, \ldots, n\right\}$ and $\left.\Delta_{1}^{+}=A^{A B} e^{0}-e^{-i} \mid i=1, \ldots, n\right\}$ are the even and the odd positive roots of $s \ell(1, \mathrm{n})$, correspondingly.

The induced $s \ell(1, n)$-module $\bar{V}(L)$ is irreducible if and only if $/ 1 /$

$$
\begin{equation*}
\left(\mathrm{L}+\rho, \mathrm{e}^{0}-\mathrm{e}^{\mathrm{i}}\right) \neq 0 \text { for all } \mathrm{i}=1, \ldots, \mathrm{n}, \tag{12}
\end{equation*}
$$

where ρ is the half sum of the even positive roots minus the half sum of the odd positive roots,

$$
\begin{equation*}
\rho=-\frac{n}{2} e^{0}+\frac{1}{2} \sum_{i=1}^{n}(n-2 i+2) e^{i} \tag{13}
\end{equation*}
$$

and L is the highest weight of the $g \ell(n)$-module V^{0} (L). From the Gel- fand-Zetlin formulae for $g(f) / 10 /$ one derives that any Cartan element $h=\sum_{i=1}^{n} \xi^{\mathrm{i}} \mathrm{E}_{\mathrm{ii}}$ acts on the highest weight
vector $\mathrm{m}_{\mathrm{L}} \in \mathrm{V}^{0}(\mathrm{~L})$ as

$$
h m_{L}=\sum_{i=1}^{n} \xi^{i} E_{i i} m_{L}=\sum_{i=1}^{n} \xi^{i} m_{i n} m_{L}=\left(\sum_{i=1}^{n} m_{i n} e^{i}\right)(h) m_{L} .
$$

Therefore, as an element from $\stackrel{*}{H}^{\prime} \mathrm{L}$ reads

$$
\begin{equation*}
L=\sum_{i=1}^{n} m_{i n} e^{i} . \tag{14}
\end{equation*}
$$

Inserting (13) and (14) in (12) and using (11) one obtains ${ }^{x}$

$$
\begin{equation*}
\left(L+\rho, e^{0}-e^{i}\right)=\frac{m_{i n}-i+1}{2(1-n)} . \tag{15}
\end{equation*}
$$

The right-hand side differs from zero if and only if $m_{\text {in }}-i+1 \neq 0$, which completes the proof.

By definition the representations of the LS sl(1,n)realized in the irreducible modules $\overline{\mathrm{V}}(\mathrm{L})$ are typical. Thus, the relations (9) give expressions for the generators of the typical representations. In order to classify them we recall/1/ that the finite-dimensional irreducible representations of $s \ell(1, n)$ are labelled with the eigenvalues ($a_{0}, a_{1}, \ldots, a_{n-1}$ of the Cartan elements $h_{A}=e_{A A}-g_{A A^{e}} A+1, A+1, A=0,1, \ldots, n-1$ on the highest weight vector $\bar{L} \in \overrightarrow{\mathrm{~V}}(\mathrm{~L})$ rom (9) one is easily convinced that the simple positive root vectors $e_{i-1, i}$ and hence all positive root vec-

[^2]tors $e_{i j}, i<j$, annihilate $|0, \ldots, 0 ; L\rangle$. Therefore, $\overline{\mathrm{L}}=|0, \ldots, 0 ; \mathrm{L}\rangle$ in the typical modules $\overline{\mathrm{V}}(\mathrm{L})$. Since
\[

$$
\begin{equation*}
h_{0} \bar{L}=m_{1 n} \bar{L}, \quad h_{i} \bar{L}=\left(m_{i n}-m_{i+1, n}\right) \bar{L}, \quad i=1, \ldots, n-1, \tag{16}
\end{equation*}
$$

\]

we conclude that the typical representations are characterized with the set of all n-tuples

$$
\left(m_{1 n}, m_{1 n}-m_{2 n}, \ldots, m_{n-1, n}-m_{n n}\right), m_{1 n} \neq 0, m_{2 n} \neq 1, \ldots, m_{n n} \neq n-1(17)
$$

To construct the rest of the finite-dimensional irreducible representation, i.e., the non-typical representations, one has to overcome one essential difficulty, namely to determine the maximal invariant submodules $I(L)$ in $\overline{\mathrm{V}}(\mathrm{L})$ and then write the relations (9) in the factor-modules $V(L)=\vec{V}(L) / I(L)$.

REFERENCES

1. Kac V.G. Lecture Notes in Math., 1978, 676, p.597.
2. Pais A., Rittenberg V. J.Math.Phys., 1975, 16, p. 2062.
3. Scheunert M., Nahm W. J.Math.Phys., 1977, 18, p. 146.
4. Beânaf M. , Sachl V. J.Math. Phys., 1979, 20, p. 367.
5. Palev T.D. J.Math. Phys., 1980, 21, p. 1293.
6. Baha Balantekin A., Itzhak Bars. Representations of Supergroups. Yale University preprint YTP80-36.
 Irreducible Representations of $\operatorname{SU}(\mathrm{n} / 1)$. ICTP Preprint IC/81/4.
7. Palev T.D. J.Math. Phys., 1981, 22, p. 2127.
8. Palev T.D. JINR, E2-81-419, Dubna, 1981.
9. Gel fand I.M., Zetlin M.L. Dok1. AN USSR, 1950, 71, p. 825.

WILL YOU FILL BLANK SPaCES IN YOUR LIBRARY? You can receive by post the books listed below. Prices - in US 8. including the packing and registered postage
$\begin{array}{ll}\text { D9-10500 } & \begin{array}{l}\text { Proceedings of the Second Symposium on Collective } \\ \text { Methods of Acceleration. Dubna, 1976. }\end{array} \\ 11.00\end{array}$
D2-10533 Proceedings of the X International School on High Energy Physics for Young Scientists. Baku, 1976 .
D13-11182 Proceedings of the IX International Symposium on Nuclear Electronics. Varna, 1977.
D17-11490 Proceedings of the International Symposium on Selected Problems of Statistical Mechanics. Dubna, 1977.
D6-11574 Proceedings of the XV Symposium on Nuclear Spectroscopy and Nuclear Theory. Dubna, 1978.

D3-11787	Proceedings of the III International School on Neutron Physics. Alushta, 1978.	$\mathbf{1 2 . 0 0}$

D13-11807 Proceedings of the III International Meeting on Proportional and Drift Chambers. Dubna, 1978. 14.00 Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.
D1,2-12450 Proceedings of the XII International School on High Energy Physics for Young Scientists. Bulgaria, Primorsko, 1978.
D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerators
for Young Scientists. Minsk, 1979 .
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.
D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980 .
proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.

D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the a - and β-Decays of Transfermium Elements"
D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
D10,1i-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980

Orders for the above-mentioned books can be sent at the address: Publishing Departinent, JINR Head Post Office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index Subject

1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Палев Ч. А., Стойчев 0.4 . Типичные представления супералгебры Ли sl($1, \mathrm{n}$)

Найдены явные Формулы для класса конечномерных неприводимых представлений, называемых типичными представлениями, специальной линейной супералгебры Ли s!(1,n).

Работа выполнена в Лаборатории теоретической физики оИяИ.

Сообщение объериненного института ядерных исследований. Дубна 1982

Palev T.D., Stoytcher O.Ts.

E5-82-54
Typical Representations of the Lie Superalgebra se ($1, n$ n)
Explicit formulae for the class of finite-dimensional irreducible representations, called typical representations, of the special linear Lie superalgebra si($(1, n)$ are written down.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: * Institute of Nuclear Research and Nuclear Energy, Boul. Lenin 72, Sofia, Bulgaria.

[^1]: * This is not the case for the representations of sl(n). The $g \ell(n)$ modules $V^{\circ}\left(m_{1 n}, \ldots, m_{n n}\right)$ and $V^{\circ}\left(m_{1 n}^{\prime}, \ldots, m_{n n}^{\prime}\right)$ are also $s \ell(n)-$ irreducible, however, they give the same representation of $s \ell(n)$ if $m_{i n}-m_{i+1, n}=m_{i n}^{\prime}-m_{i+1, n}^{\prime}$ for all $i=1, \ldots, n-1$.

[^2]: ${ }^{\mathbf{x}}$ We consider always the case $\mathrm{n}>1$. Otherwise $\mathrm{s} \ell(1, \mathrm{n})$ is not simple and its Killing form is degenerate.

