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The finite-dimensional irreducible representations of the 
classical Lie superalgebra (LS's) are nowadays fully classi­
fied111. In the physical applications, however, it is often 
important to have explicit formulae for the matrix elements 
of the generators in a certain basis of the representation 
space. Although some results in this direction are availab­
le12·81, the problem as a whole remains unsolved. In the pre­
sent paper we give also a partial answer to the same problem. 
We write down formulae for the representations of the special 
linear Lie superalgebra sf(l,n) induced by finite-dimensional 
irreducible representations of the linear span of the even 
part gf(n) and all positive root vectors. The corresponding 
induced sf(1, n) -modules are always finite-dimensional, but are 
not necessarily fully reducible. The representations of s~L ~ 
realized in the irreducible induced modules are the typical 
representations qf the Lie superalgebra 111 . 

We were led to the present investigation from a study of 
a noncanonical quantization 191 • The position operators q1 , ••• ·,:qn 
and the momentum operators p1, ... , Pn span in this case a basis 
1n the odd part ot sr{l,n) and generate 1t. 1ne proo1em t:o ae­
t=rmine the representations ?f all qi, pi is the same one as 
tJ construct the representations of sr(1, n)The last problem 
is of independent mathematical interest; the answer to it may 
be relevant in several branches of the theoretical physics. 

We consider sf(1, n) as a super algebra of the general linear 
LSf(l,n). As a homogeneous basis in e(1,n)we choose the gene­
rators eAB' A,B=O,l, ... ,n. In the defining representation eAB is 
an (n+1) x(n+l)matrix with I in the A-th row and the B-th co­
lumn and zero elsewhere. The odd and the even parts are ~1(1,n)= 
=lin. atv.·!e0., e 10 li = 1, ... , nl andf0 (1,n)=lin.env.le00 ,e 1i[i,j=l, ... ,nl, 
respectivefy. As a subalgebra of f(1,n) the LSii(l,n) reads: 

"(1 ) 1· I 'tA 1 B 0 ··· ·· 1 nl Its even sub-St ,n = m.env. e00 + eii , eAB 'F = , ... ,.n, 1= , ... , . 

algebra Go=lin.env.IE 1i =8 1J e 00 +e 1i !i,j=1, ... ,nl is isomorphic 
to the general linear Lie algebra ge(n). Since [Eij .~e]=8ikE1~­-ae. Ek. , E .. are the Weyl generators of gf(n). 

L J lJ • 
et 0+ be the l1near span of e01 , ... , e 0 . Here we compute 

the representations of li(l, n) induced b/ the subalgebra P = 
=00 +0+ .The latter are defined as follows 111. Let V0 (L) be 
a finite-dimensional simple 00 -module with the highest weight 
L. Ext:..,nrl it to a P-module putting G+V0 (L)=O.Denote by U and Up 
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the universal enveloping algebras of sf(1,n) and P, correspon­
dingly. Then the induced sf (l,n)-"*module 

V(L) =In d~( 1 ,n) V0 (L) 

is the factor-space 

V(L) = TJ "V 0 (L)/I 

(I) 

(2) 

of the tensor product of U and V0 (L) with respect to the 1i­
near span I of all elements of the form gp "v- g" p(v) , g r;;TJ, 
p r;; Up and vr;;VO(L);I':he space V(L) is equipped with a structure 
of an sf(1,n) -module in a natural way: 

g(U"V)=gU®V,· gr;; sf(1,n), u r;; U, vr;; V0 (L). 
As a basis in V(L) we choose the vectors 

&-1 On 
111

1 
, ... ,On; m> = (e 10 ) ... (enO) em; Oi = 0,1; m r;; r(L). (3) 

The restriction ei =0 or I is a consequence of the fact that 
(e iO )

2 = 0 in U.: r(L) is the set of all Gel' fand-Zetlin pat­
terns for gf(n) in V0 (L);its elements m=(m iP) span a basis in 
V0 (L) ; ffijp are in general complex numbers, such that 
Re(mjp-mj,p-f')and Re(mj,p-1-mj+1,p )are nonnegative integers 

and all mjp have the same imaginary part. The highest weight 
L is determined uniquely by the first row (m1n, .... :n\u) ,which is 

the same for everv pattern m r;;T(I,)The re!lrespnt::~ti nn,:: rnrr<><>­

ponding to different n -tuples (m , ... , m ) f, (m
1
' , ... , m' ) 

· · 1 * 1n nn n nn are ~nequ~va ent . 
Since the generators e A A+ 1 and eA+ 1 A determine through the 

LS-product all other generators, here Je write down the trans­
formation properties of the basis vectors (3) only with res­
pect to these generators. To this end we introduce first the 
following notation k k-1 

II (fp k-1 -~- k -1) II (fl. k -1 -eq k ) 
j = 1 • 1• j = 1 ' ' 

1/2 

k • 1 jf, q ih 
B (m) =c(p-q) -------~-~-~-~-------~---~------pq 

'(4) 
k-1 k 

II (fpk- 1 -f 1.k_ 1 -1) II (f.k-f k) 
j = 1 ' ' j = 1 J, q, 

j f, q 

*This is not the case for the representations of se(n) . .The 
ge(n) -modules V0 (mln, ... ,mnn)and V 0(mln''"'m~n)are alsosf(n)­
irreducible, however, they give the same representation of 
se(n) if min-mi+1,n =min -mj+1,n for all i=1, ... ,n-1.· 

2 

il 

if 

l 

~ 

k 
b i (m)== 

...; k 
b i (m) == 

d ~(m)=-
1 

d ik(m) = 

k-1 
II (e 1· k- 1 - e i k > 

j == 1 • ' 

-------------------k 
II (f · k -.f i k ' - 1 J, • 

J ~­
J 7 1 

k 

1/2 

_II u i k- 1 - e J. k - 1) 
j:Z: 1 , t 

k-1 
II ce 1· k-1- e J. k- 1 - 1) 
j= 1 , • 

k-1 
II Cf·k-1-f·k-l) 

J!.L~ _____ ::..___ 
k 

.II1<ei.k- ei,k-t > 
J= 

1/2 

1/2 

k 
II ce . k - e . k - 1 > 

112 
j"" 1 J. 1, 

-k-1 -----

jl!,1(f j,k-c ei,k-1 > 
j ~i 

(5) 

(6) 

(7) 

(8) 

1, X >0 
where fik"'rnik- i, c(X) = ~-l,X~Qand it is understood that when-

ever some of the multiples in the above expressions are not 
defined (as, for instance, the numerator of b }Cm)) then they 
have to be replaced by I; moreover, if the denominator of the 
rught-hand side of some of the above equalities (4)-(8) is ze­
ro, then the corresponding coefficient in the left-hand side 
has to be replaced by 0. 

In terms of this notation the generators e A,A+ 1 and e A+1,A, 
A., O, ... ,n, transform the basis vectors (3) as follows: 

e 10 I e 1 , ... ,en ; (m iP )> == (1 -e 1 >It, e 2 , ... , e n; (m ip>>. 

e k+1,k I ... , e k• ek+1' (m iP )> 

~ b k(m)b~+ 1 (m)l ... , ek' ek+1 ' 
i== 1 1 1 

(m iP - 8 ji 8 pk )> + 
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+ () k (1 - () k+ 1 )I ... , () k- 1, 8 k+ 1 + 1, ... ; (m jp )> , 

n 
e 01 18 1 , ... , 8n; (m jp)> = e1 (m 11 - j:

2 
8 j )IO. e 2 , ... ,8 n; (m jp)> + 

n-1 J 2 
+ I ~ I 

s = 1 i1=1 i 2= 1 

s 81+ ••• +()s 1 2 

ii=l(Js+l-1) b i l(m)B i1i 2(m) x 
s 

B 3 s -s+l() x . . (m) •... B. . (m)b . m x 
1213 1s-1•1s Is 

xI() 1 , •.• ,() s ' 0 ' () s+ 2' ••• , () n ; (m jp-
s 

I o .. o )>, 
r = 1 Jl r pr 

e k , k + 1 I · · · ,() k ,() k + 1 ' · · · ; ( m j p )> = (9) 

k k -k+1 
_I d i (m)d i (m)l .•. ,8k, 8k+ 1, ... ; (m jp+ o ji o pk)> + 
I= 1 

+ 8k+p-ek)l ... ,ek+ 1,8k+1 -1. ... ;(miJ>. 

We omit tQe derivation. The proof that the above relations 
give a representation of the LS sf(l.~ can be carried out in 
a straightforward way. 

p .... ,.....,...,",....;.,:..;,.....,.... T'h .... ..;.,....~n ........... ..t .... Oii -'. -- ... L-1- T.-;/T' --.!.a-1-. _ L!_, ___ ..._ 
- --r-----~··· -··- -··------ ......... , ... , ..... , .. u .................... -. "\~) "" .... '"' .... '""' ..... ~5'" ... '-<.J~r.... 

weight L corresponding to (m 1n, ... , m nn> is irreducible if and 
only if min li-1 for all i = 1, •.• , n. 

Proof. One can show in a straightforward way that all mo­
dulesc:orresponding to m inl i-1, i =1, ... ,n are irreducible. It 
is not simple, however, to prove the inverse. Therefore, we 
shall use a Aeneral criterion for irreducibility (Proposition 
2.9 in Ref. 11 ). First we introduce the notation and list the 
properties of se'(l.n) we need (for more information see Ref: 81). 

Define by means of the diagonal matrix (g AIJ with 1 = 
= -g oo=g 11= •.. g nn a non-degenerate bilinear form of the Car tan 
subalgebra H' = lin.env. {e AAI A=O •... ,n l of r (1,n): 

(eAA' eBB)= 2(n-l)gAB (IO) 

On the Cart an subalgebra H = lin.env. {E ii IE ii =e 00 + e ii , i =1. ... , n l 
of se (1,n) the form ( 10) coincides with the Killing form of 
se(1, n). Choose as an ordered basis in H' the vectors e 

00 
, 

e 11 , ... , enn and let e O~e 1, ... ,en be the conjugate basis 
in the dual to H' space H', i.e., eA(eBB)=o~.Then the bili­
near form on H ', induced from (IO) reads 

4 

i~ 

} 

(eA,eB) = 
gAB 

(I I) -----. 
2(n - 1) 

Since [h,eAB] =(eA-eB)(h)eAB• h <=:-H, the correspondence between 
the root vectors and their roots is eAB ->eA-:e B.Therefore, 
1'1 +0 =I e 1

- e 1 ji < j, i,j = 1, ... ,nl and 1'1 ~ = { e 0 - e 1 li=1, ... ,nl are the 
even and the odd positive roots of sr(1,n), correspondingly. 

The induced sf(l,n) -module V(L) is irreducible if and only 
if Ill 

(L+p,eO-ei),fQfor all = l, ... ,n' (I 2) 

where p is the half sum of the even positive roots minus the 
half sum of the odd positive roots, 

n o 1 ~ . i 
p = - -e + - .:.. (n - 21 + 2)e 

2 2 i= 1 
( 13) 

and L is the highest weight of the gr(n) -module V 0 (L).From 
the Gel#fand-Zetlin formulae for gr(n)l101 one derives that 

any Cartan element 
vector m L E- V~L)as 

n . 
h = I e 1E .. acts on the highest weight 

i=1 11 

n i n i n i 
hm L = I e E . . m L = I e m . m L = ( I m . e )(h )m L • 

i"'1 11 i=1 In i=1 In 

* Therefore, as an element from H'L 

n ' 
L = . 2. mine . 

I= 1 

reads 

~ llf) 

Inserting (13) and (14) in (12) and using (II) one obtains~ 

(L + p, e o - e i ) = m in- i + 1 
(I 5) 

2(1 - n) 

The right-hand side differs from zero if and only if min-i+1o/O, 
which completes the proof. 

By definition the representations of the LS sr(1,n)realized 
in the irreducible modules V(L) are typical. Thus, the rela­
tions (9) give expressions for the generators of the typical 
representations. In order to classify them we recall Ill that 
the finite-dimensional irreducible representations of sf(1,n) 
are labelled with the eigenvalues (a 0 , a 1 , ... ,an-t of the Cartan 
element~ h A..:' eM -gAAe A+l.A+l, A=O,l, ... ,n-1 on the highest weight 
vector L <=:- V(LJFrom (9) one is easily convinced that the simple 
positive root vectors ei-1,i and hence all positive root vee-

~We consider always the case n > 1. Otherwise sf(l.n) is not 
simple and its Killing form is degenerate. 
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tors e ij, i <j, annihUate 10 , ••• ,O;L>. Therefore, L= !O .... ,O;L> in 
the typical modules V(L). Since 

h 0L =m 1nL• hi L =(min -m i+l,n )L, i"' l, ••• ,n-1, (16) 

we conclude that the typical representations are characterized 
with the set of all n-tuples 

(m ln' m ln -m 2n' •·•• m n-t.n- m nn ), m tn,fO, m 2n,f l, •.• ,mnn ,fn-1,17) 

To construct the rest of the finite-dimensional irreducible 
representation, i.e., the non-typical representations, one 
has to overcome one essential difficulty, Qamely to determine 
the maximal invariant submodules I(L) in V(L) and then write 
the relations (9) in the factor-modules V(L)"' VCL)/I(L). 
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