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I. INTRODUCTION 
The Stark effect in atomic physics has played an important 

role in the development of the theory of spectral concentra­
tion for self-adjoint operators. After the pioneering work by 
Titchmarch on the Stark effect in hydrogen a general theory 
of spectral concentration has been built up (see ''.notes to 
Chap. XII.5 for details). When applied to the Stark Hamilto-
nian, this general theory readily gives the first order spect­
ral concentration(refZ1 Chap.XII.5).Unfortunately,the situa­
tion is not the same for higher orders. The fact that the Stark 
Hamiltonian meets the conditions of the abstract theory, im­
plying spectral concentration of arbitrary order, has been 
verified by Riddell'2' and by Conely and Rejto / 3 / for the hyd­
rogen atom and by Rejto' 4 , 5' for the helium atom, but to the 
best of our knowledge, no similar results exist for more comp­
lex situations. 

On the other hand, recently, the complex and powerful ma­
chineries of dilatation analyticity.translation analyticity 
and complex scaling have been used to obtain a remarkable de­
tailed description of the Stark effect in hydrogen 6' 9. More­
over similar results for arbitrary atoms are announced 9 .The 
price one has to pay ia that the proofs are far from being 
simple and depend on some peculiar (and remarkable) properties 
of the concrete Hamiltonians involved (e.g., the fact that 
— - — н ( x has empty spectrum for Ime / 0 ). 

dx2 

In this paper which is the first in a series we shall take 
a somewhat complementary point of view:the proof of the exis­
tence of pseudo-eigenvalues and pseudo-eigenvectors of arbit­
rary order (see , 1 > 2 / a n d Def.1 below) should not depend on the 
very concrete form of the Hamiltonians involved. For, one must 
look for an abstract theorem, powerful enough to readily give 
the spectral concentration of any order, when applied to the : 

Stark Hamiltonians atomic physics: atoms and molecules, impu­
rity states in solids, relativistic hydrogen atom, etc. Such 
a result is provided by the Theorem 1 in Section 2. A slight 
modification in the proof of Theorem I gives also a refined 
form of the adiabatic theorem of quantum mechanics generaliz­
ing a recent result of the author' 1 0' as well as some results 
of Lenard / U /. 
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On the technical side, in the proofs of Theorems 1 and 2, 
there are no essentially new ideas besides those already ap­
peared in /l°.l2/> vie shall give here the proofs in an abstract 
form to emphasize their simplicity and the fact that both the 
spectral concentration phenomena and the adiabatic theorem, 
are facets of a new way of performing the perturbation theory. 
Moreover, for the sake of simplicity we shall not state and 
prove the results in the most general possible case. Some of 
the simple extensions are pointed out in Remarks. 

Section 3 contains applications of the general theory to 
the Stark effect and to the barrier penetration phenomena. 

2. THE GENERAL THEORY 
We shall start with the following definition. 
Definition 1. Let H , P £ ,e>0 be families of self-adjoint 

operators and orthogonal projections, respectively, in a Hil-
bert space, K, satisfying the conditions; 

i. Йш || P £ -P 0|| = 0. (2.1) 
€-0 

ii. Let p be a positive integer. There exist о < «. , f p>0 
and bounded self-adjoint operators B € defined for (C[0, < } 
such that 

| | B € | | < c p < P + 1 ( 2 . 2 ) 

and P H are invariant subspaces of H e+ B f. Then the family 
P f H of subspaces is said to be an asymptotically invariant 
family of subspaces of order p for He . 

Remarks 
1. The definition requires that P 0 И is an invariant 

subspace of H 0. 
2. For f sufficiently small, dimP( = dimP0. The case 

dimP,, ̂  ~ appears naturally in some problems of solid state 
physics • *-• . 

The connection of the above definitions with the spectral 
concentration is given by the following proposition (for de­
finitions see 2 ). 

Proposition 1. Suppose that 
i. H 4 has an asymptotically invariant family of subspaces 

of order p, with P 0 corresponding to an isolated finitely de­
generated eigenvalue, Л. 
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ii. H ->H0 in the strong resolvent sense as <-,0. Then in 
every isolating interval for Л the spectrum of H f is concen­
trated to order p. 

Proof. For < small enough <JimPt ^dimP 0 * ™ and then 
ехр(-ЦН£ iB ( )t)P(JU-P ( H implies that there exist ЛЛс) , .Aj(r) , 
j - \,2 dimPQ , \фА<), d>. («)) = 8.. <i.(f)^'X(Hf), t</).!c)l1

lUmf'» 
is a basis in P, H , and 

(H f .f B(),!> .и)^\.и)фЛс). (2.3) 

Then (2.1), (2.2) imply that | сД, (t)t t ° is an asymptotic 
basis of order p (see й Definition 2.5) and the spectral con­
centration is implied by the easy part of the main result of 
Riddell (ref.'2/ Th.2.7). 

As expected, P t H are almost invariant under the evolution 
given by H f . 

Proposition 2. Suppose H f has an asymptotically invariant 
family of subspaces, P H, of order p. Then 

||(l-Pf)exp(-iH t)PJ|<c f p + 1t, € G [0, t p ] . (2.4) 
The proof is easy and we shall omit it. In particular if P f 

is one-dimensional, then due to (2.4), <£f has, for small t , 
a rather long life-time. This, together with the fact that 
lim || P -P 0|| = 0, says, in the language of physicists, 
that <b( describes a metastable state. 

Suppose now that H e is of the form H f = H 0 +<X 0, where H Q, 
X 0 are self-adjoint operators in H. The problem is to find 
conditions on the pair H 0, X 0 under which one can prove the 
existence of asymptotically invariant subspaces for H r . The fol­
lowing heuristic discussion gives a hint. Let rt (X0 ;:.)be the 
automorphism of S(H) (the Banach algebra of bounded opera­
tors in H ) given by 

r t ( X 0 ; A ) = e 1 X o t A e ~ i X o t (2.5) 

and adX 0 its generator. Suppose that H 0 G keradX0 in the 
sense that (H 0-z) _ 1e ker adX 0 for all ztp(H 0). Then all 
the invariant subspaces of H 0 are invariant subspaces of H f . 
On the other hand, if X 0 is bounded, i.e., the domain of adX 0 

is the whole 3>(JO, then for an arbitrary H 0, the usual per­
turbation theory provides convergent sequences of asymptoti­
cally invariant subspaces of H £.By some rearrangements of the 
perturbation series one can see that objects like (adX 0) p(H 0-z) -

appear. The above extreme situations suggest that, when X 0 is 
3 



unbounded, one may still hope that some sort of perturbation 
theory can be performed if (H 0-z) - 1 fe $ ((adX0)p ), p=l,2 
That this is indeed the case says Theorem 1 below. Before 
stating the theorem let us remark that (H0-z)-1e J((adXo)p) 
is equivalent with the fact that rt (X0;(H0-z)-1) is p times 
norm differentiable with respect to t. 

Theorem 1. Suppose that: 
i. H f = H 0 + fX 0 is essentially self-adjoint on $(Hg)n!C(X0). 
ii.rt (X 0;(H o + i) - 1 ) isp+ltimes norm differentiable. 
iii. There exist, -~<Aj<A 2< ~ , such that the spectrum 
n0 of Ho has the properties: o0 = °\ и o£ aJC[Aj,A 1, 
dist Ц*,а|) = а > О. 
Let P<)be the spectral projection of H 0 corresponding to a'. 

Then H f has asymptotically invariant families of subspaces, 
of order q,P4H, q= 0,1 p, with P g = P 0 . 

Proof. For simplicity, and having in mind the examples 
in Section 3, we shall consider the case p = <». The proof is 
by construction, and is divided in a series of steps. 

1 . We shall start with the following, almost obvious lemma. 
Lemma 1. Let HQ(t) be defined by H0(t) = e 1 < x°' Н 0е" 1 € Х°* , 

R0(t;z) = r f t (X0;(H0- г ) - 1 ) be its resolvent and P0(t) = 
= r (X 0;P 0) its spectral projection corresponding to CTJ. 
Then R0(t;z) ; гб-р(Н0), P 0 (t) are indefinitely norm differen­
tiable, and there exist finite constants b n„(z), c n„ ; 

* u,mч ' ' u,m 
m=l,2,... such that 

H-A^-R 0<i ; Z)|| = ||t^R 0(t; Z)l t = 0|| < b 0 m < Z ) , - (2.6) 

Proof. For z= + i (2.6) holds by hypothesis. For arbitrary 
zg„(Hn),one has to use the identity 

R0(t;z)~R0(t;z0)U+<z-z0)R0<t;z0)]-1 . (2.8) 

Finally, (2.7) follows from (2.6) and the usual formula re­
lating the resolvent and spectral projections. 

2 . We shall use the following construction, which has been 
given by Kato / 1 3 i l 4 /. 

Lemma 2. Let P(t) be a norm differentiable family of orthogo­
nal projections, with norm continuous derivative. 
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i. If К(tJ is defined by 

K(t) = i(l-2P(t))-i-P(t) (2.9) 
dt 

then K(t) is self-adjoint. 
ii. The equation 
i — A(t) = K(t) A(t) ; A(0) - 1 (2.10) 
dt 

has a unique solution satisfying A - 1 (t)=A*(t) and 

P(t) =-. A(t)P(0) A*(0 . (2.11) 

3 . Let K0(t),A„(t) be given by Lemma 2 applied to P0(t) 
and 

В 0 ^ < " 1 К о ( 0 ) . (2.12) 

Note that ||BJ|<c _ . Consider now the self-adjoint operator 

X1,= X 0 4 B 0 ; £(X,) - I( X 0 ) . (2.13) 

By the Stone theorem, for all ft £(X n) 

i l i e ^ - ' e - " ! 1 ) .K n(t)e i f X"' е~иХ ^ 
dt u 

which together with Lemma 2 implies 
i(X„t -i(X,i , 

A 0(t)-e ° e ' . (2.14) 
From (2.11) and (2.14) one has 

if X <t ~ - i f X . t 
P 0 " e * P o e ' • (2.15) 

which implies that for f &• $(X 0) n £(K n ) 

P 0 ( H 0 + ( X j )f-(H 0 +tX 1)P of=0, (2.16) 

Since H 0 + f X 1 = H ( + f B 0 i s e s s e n t i a l l y s e l f - a d j o i n t on 
S(X„)"S; (H 0 ) i t follows t ha t 

0 , exp(-HH f 4 < B 0 ) t ) ] = 0 , (2.17) 

which says that P ° - P„ is asymptotically invariant of order 
zero for H f . 



4 . C o n s i d e r now H* ( t ) g i v e n by 

H j O ) = A * ( t ) l H 0 ( t ) - K 0 ( t ) ] A 0 ( l ) . ( 2 . 1 8 ) 

Note t h a t 

l l j ( i ) - expOcXjOH j e x p M f X , ! ) ; H , - " n " , B 0 ' ( 2 . 1 9 ) 

From t h e i d e n t i t y ( v a l i d f o r d i s t (?. . о 0) ' < 11 B f l | | ) 

R j ( t ; z ) - A * ( t ) R 0 ( t ; z ) [ l - K 0 ( t ) R 0 ( t ; z ) ] _ 1 A n ( 1 ) ( 2 . 2 0 ) 

and Lemma 1 it follows that R,(t;z) is indefinitely norm dif-
ferentiable. 

5 . For <• < 0 d/2||Bj| the spectrum of Hj is still separated 
and we can perform again the construction from the 3rd point. 
Obviously, one can continue this process indefinitely, the va­
lues of < for which the q+1 step can be done, being 

<<< -d/2 I ||B,|| • (2.21) 

At the step q, if P {
4 is the spectral projection of 

q-i 
H - H n - t S В . 
4 ° i = o j 

corresponding to the part of the spectrum which coincides with 
cr* in the limit f-»0, then 

[P f
4, exp(-i(Hf +<B )t)] = 0 (2.22) 

so the only thing we have to do, in order to finish the proof 
of the theorem is to obtain bounds on ||B J]. 

6 . The needed bounds are consequences of the following 
Lemma which is the main (and only) technical point of our pa­
per. 

Lemma 3. Let'" be a contour (of finite length) surrounding 
a 1, satisfying dist(Г, a0) = d/2. Then there exist constants 
b P m » Cp.m ' P=0,1,...; m = 1.2,.... such that for ^ ' < p_, (by 
definition <_. - ~) and z 6- Г 

11-5— R (f.z)|| <b„ с m (2.23) 
d t in P " - P." 

\ \ J * 1 1 . |> (Г.!1 • c , P-tm . (2.2'И 
' dt,;' "' p , m 

•. 



Proof. The proof is by induction over p. The case p=0 is 
contained in Lemma 1, Suppose (2.23), (2,24) be true for p-1. 
Then (2.23) forp follows from a formula similar to (2.20) 
relating R (t;z) and Я j(t;z) and the induction hypothe­
sis. For (2.24) the following observation/I0/ is crucial. From 

Pp_1(t)=Ap_1(t)Pp_1(0)A;_1(t 
it follows that Pp_j(0) is the spectral projection of 
A* t(t)H t(t)A j corresponding to a^,, for all tGR. Then 
one can write 

Pp(t)-Pp_! (0) = (2я1)_1 A*_t(t) x 
(2.25) 

*l / (Н
р-,(1>-К

г,-Л1>-2>"1 К р - 1 ( , ) Н р - 1 ( 1 ; ' ) й 1 А И ( , ) -

Now, (2.25) and the induction hypothesis implies (2,24) for p 
to be true, and the proof of the lemma is finished. 

7 . From the definition of Kp(t) and (2.24) for m=l it 
follows 

l | B p | | < o p f l c P , « < c p _ t (2.26) 

which finishes the proof of the Theorem 1. 
Remarks 
3. One can relax the condition that aQ be bounded, but 

then one needs that || R (t;z)|| have sufficiently rapid 
dtm u 

decrease for dist(z,<r0) -» « in order to assure the conver-
A m gence of integrals appearing in p (t) . 
dt" 0 

4. The whole proof works for H f of the type 
H 6 = H 0 + X 0 U ) 

as far as R 0(t;z) =r t(X0(e) ;(H0-z) ) is indefinitely norm 
differentiable and satisfies (2.6). 

5. The assumption ii of Theorem 1 already implies that 
$(H 0) n 5 ( X 0 ) is dense inH. In fact we suspect that it 
implies assumption i. The assumption i. has been used to ob­
tain (2.17) from (2.16). If H € = H 0 + £ X 0 has several self-
adjoint extensions and dimP0< ~ then (2.16) implies (2.17) 
for any self-adjoint extension of Н 0+«гХ 0. 

Formally, the recurrent construction in the proof of Theo­
rem 1 is the following 
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В = (1 -2P q)[P 4, X 1 ; Р°= Р„ 
f f " £ ° (2.27) 

V ^ V V Н
Ч +1= НЧ- е В

Ч-
The observation in (2.25) is nothing but 

[P£
4 , X q ] = [ P f

q - P f 1 , X ql. (2.28) 

If X 0 is H0
-bounded, one expects that the recurrent con­

struction (2.27) converges. 
Proposition 3. Suppose that 
i. X Q is H0-bounded. 
ii.H0 satisfies the spectrum condition iii. of Theorem I. 
Let Г be the contour in lemma 3, b = -j-j- sup ЦХ 0(H Q-z) _ 1 \\ 
к = -J— /|dz| , a =4bk/d. 

&T p u 

Then for 
с < d 3/2 8ka n = t , (2.29) 

— О С 
l|B n||<W2< c) n a Q . (2.30) 
Proof. The proof is by induction. Note that ||B0jj <a Q. 
Denoting a n =||Bn||,using R n=R 0[l-e( 2 B^Rgland the fact 

that b<a 0, we have from (2.28) i = 0 

a <8«fkd~2a„ , (l-2fd"in£" а; Г 2 "1 a t; n=l,2,... (2.31) 

as far as 

2fd~in2 as < 1 . (2.32) 
i = 0 

Then (2.30) follows from (2.29) and (2.31) by induction. 
Remarks 
6. Proposition 3 shows that, for regular perturbations, 

the construction in Theorem 1 is nothing but a different way 
to perform the petturbation theory. Moreover, in the general 
case, Theorem I implies that the formal perturbation theory 
for isolated finitely degenerated eigenvalues is finite to 
any order, and coincides with the Taylor expansions of 4>t , 
Ke (see Proposition 2), 

7. Using (2.27) and (2.28) one can give a "time indepen­
dent" proof of Theorem 1. We preferred the above proof since 

8 



with few modifications it gives also a rather general form of 
the adiabatic theorem in quantum mechanics,which in some sense 
is the generalization of Theorem I to time-dependent Hamilto-
nians(see Theorem 2 below).Here we shall state and prove the 
adiabatic theorem only for bounded Hamiltonians.in order not to 
obscure the simplicity of the proof. In the second paper of 
this series we shall consider the general case of unbounded 
time-dependent Hamiltonians, where some technical point related 
to the possible nondifferentiability of the unitary propaga­
tors arise (ref. l 5' Chap.X.12). 

8. Under the conditions of Theorem 1, one cannot expect to 
obtain bounds on с . in (2.26), as a function of p. In the 
third paper of this 'series we shall explore the consequences 
of replacing the condition ii. of Theorem I, by the following 
stronger one: RQ(t;z) is, as a function of t, analytic in the 
strip | Imt | < a for some a> 0, or in other words ( H Q - z ) - 1 is 
an analytic vector for (adX Q). 

Theorem 2. Let H(s), s€l=[0,S] be a norm continuous fami­
ly of bounded self-adjoint operators satisfying the conditions 

i. CT(H(S)) = CTJCSJU <r2(s) 

inf dist(</j(s), o2(s)) = d > 0 (2.33) 
её I 
ii. R(s; ±i) = (H(s) + i ) - 1 are indefinitely norm differenti-

able. 
Let Vf (s) be the unique solution of the Schrodinger equa­

tion 
dU (s) 

i«— e —-=H(s)U (s); U (0)=1 (2.34) 
ds f e 

and P 0(s) be the spectral projection of H(s) corresponding 
to <?j (s). 

Then, for every positive integer q, there exist cq'®' \ < r " 
and orthogonal projections P { (s) defined for 0<<<t such 
that Ч 

lim !|P 6 (s) -P n(s)|| = 0 (2.35) 
£->0 q - ' ° 
II U f (s)P< (0)-P^(s)U{ (s)|| < a q e

q s ; s e l . (2.36) 

Proof. Let H 0(t) be defined by H 0(t) = H(et). The construc­
tion in the proof of Theorem 1 gives H (t) , P (t) , К (t) , 
A (t) and the existence of a q, e 4 such that 
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l |K q ( t ) | | < 1 ( ' и ; t 4 [ O . t - 1 S]; 0 < f < f q ; q = 1,2 (2.37) 
q-1 

Denote Z (t) = 11 A . ( t ) . q=l ,2 , . . . 
1 i = 0 ' 

B 0 ( t ) - K 0 ( t ) ; B q ( t ) = Z q ( t )K q ( t )Z* q ( t ) (2.38) 

and 

H ' ( t ) - H 0 ( t ) + 4 S В (t) . (2.39) 

By cons t ruc t ion 

H q ( t ) = Z * ( t ) H q ( t ) Z q ( t ) . (2.40) 

Let Pf
q(t) be the spectral projection of Hq(t) corresponding to 

the part of the spectrum which coincides with Uj(t) ki the li­
mit £-»0. Obviously 

Pc'(t)-Zq(t)Pq<t)Z*(t). (2.41) 

Let U(t), Vq(t) , Wq(t) be defined by 

U(t)=U fUt), tfr[0,< - IS]. (2.42) 

iJLv (t)=A*(t)H (t)A (t)V (t); V (0) =1, (2.43) 
dt ч q « q q ч 

U(t) = Z (t)A (t)V (t)W (t). (2.44) 
q Ч Ч Ч 

By construction, since P (
q (0) = P q(0) 

[A*(t)Hq(t)Aq(t). PQ(0)] =0 
wherefrom 

[Vq(t), P q (0)1=0. (2.45) 
By construction 
i _aT wq ( t ) = - у ; ( 1 ) А * , ( 1 ) к

ч

( 1 ) \ ( 1 ) У 1 ) я

ч

й 

which toge ther wi th (2 .37) g ives 

l |W q ( t ) -HI < t a q f

 4 + 1 . (2 .46) 
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On the other hand from (2.41) and (2.45) 
Z q (t) A q (t) V q (t) P 4 (0) г- рЧ (t) Zq(l) Aq(t) V q (t) 

which together with (2.44) and (2,46) implies 

||P/4t)U(t)-U(t)P4 (0)|| < ta f Ч-» 1 (2.47) 

which is nothing but (2.36) with the identifications (2.42) 
and P ( (s) - РЧ (£t) . 4 f 

Remarks. 
9. Suppose that H(s) is constant in some neighbourhoods 

of 0 and S.Then P0(0) - Р^(0), P0(S)=P4P(S) for all p and 
in this case (2.36) for s-S reduces to an infinite-dimensio-

18/ 
nal generalization of Lenard's results (see alsoref. ' for 
related results in classical mechanics). 

3. APPLICATIONS 
M 

1. Let M be a positive integer and а='си^1~-[ b e a real, 
strictly positive MvM matrix. Consider in the Hilbert space 
L 2 ( R M ) the operators T, V , X 0 defined by 

i = l M (3.1) 

(3.2) 

,CjS-R (3.3) 
j = 1 J J - ... J 

on t h e i r na tu r a l domains. Suppose t h a t V i s T -bounded with 
r e l a t i v e bound l e s s than one, so t h a t T + V i s s e l f - a d j o i n t 
on f (T) ( ( r e f / 1 5 / Chap.X.2). 

P ropos i t ion 4 . The opera to r s H 0 = T + V and X 0 defined by 
( З . ' ) - ( З . З ) s a t i s f y the cond i t ions i , i i of Theorem 1. 

Proof. For condi t ion i see ( ref . ' Th. X.38) . For c o n d i t i ­
on i i . remark that 

H 0 ( D - expd. X o nH 0 exp( - i<X 0 t ) -

M 
1! « ( P < <<• t ) ( P 4 €V 1 ) 4 V 

i . i - i ' • ' ' ' .i i 

M 
T - £ « . . P P . ; P ( =- i<9/^x j ; i 

( V f ) ( x ) = V(x ) f (x ) x f r R M , 

( X n f ) ( x ) - ( 2 c , x , 

i i 



wherefrom the verification is straightforward. Obviously, this 
example covers the Stark effect in arbitrary atoms and mole­
cules (see for example the form of the Hamiltonian in Zhis-
lin's theorem (ref. 1 / Th.XIII.7)) . For M=3, a..=-l—S.. , 
- 'J 2m "J 

V(x) = Vj(x) + Vg(x), where Vj is periodic and locally L 2 (see 
ref.'1' Th.XIII.96) and V 2 €- L Z(R 3) + LP(R3) 2<p< - the above 
example describes the Stark effect for impurity states in so­
lid state physics. 

2. (The Dirac Eq.). The Hilbert space of the problem is 
(L2 <R 3 )) 4, 

3 
T= 1 a P + fim, (3.5) 

i - l i > 

where « f , ft are the Dirac 4x4 constant matrices, 

(V0), (x) = 1 Vu(x) 0. (x) ; V (x) = V H (x) =V (x) (3.6) 

and 

(X o0). (x) -( S c.x.)0. (x). x-(x rx 2,x 3). c.^R. (3.7) 

Again we shall suppose that V is T -bounded with relative 
bound less than one so that T + V - H 0 is self-adjoint onf(T). 

Proposition 5. The operators H 0 , X 0 defined by (3.5)-(3.7) 
satisfy the conditions i,ii of Theorem 1. 

Proof. For i see ref. 1 6 For ii see the proof of proposi­
tion 4. 

3. (Barrier penetration (for details see ref. , 7 )). 
Consider in L 2(R 3) the operators 

H f — Л + V("x) + X„(<) = H 0+X 0(<) (3.8) 

with V e l A R 3 ) and 

(X 0 Wf)(x)=K(exp(-* |x | ) - l ) f (x) ; К > 0, <>0 . (3 .9) 

Suppose that I)'0 has eigenvalues in (-K.0) For all e >0, (-K.0) 
is contained in the continuum spectrum of H( . As <->0 the 
spectrum of H ( contained in (-K.0) shows arbitrary order spect­
ral concentration. In this case the self-adjointness problem 
is trivial. Concerning the condition ii in Theorem 1 see Re­
mark 4. 
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