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1 • INTRODUCTION 

The problem that we.encounter in the experimental data 
analysis is the calculation of the integral transformation: 

cf>(x') = f f(x)p(x,x')dx, . 
. G 

where, e. g., f(x) is a spectrum calculat.ed within some theore-
tical model, which we suppose to describe the data, f(x) > 0 , 
p(x,x') is the apparatus function which defines the. proba-. 
bility that an event .with the coordinate x will be detected 
as an event with the coordinate x', 0 ( p(x,x')dx,.= 1, . cP (x') 
is the distorted by a set~up model· spectrum which'will.be com-
pared with the measured experimental spectrum. · 
. Usually, we are interested not in th~ 'function cP (x) but in 
its integrated channel content · 

I = f x (x')cf>(x' )dx.' = ff x(x' )f(x) p(x,x ') dxdx ', (1) 

where 
0 00 

x(x')• I ~ in the subregion of G . that 
corresponds to the channel, 
in other parts of the re~ . 
giori G. 

The analytical expression for f(~ is often very complica
ted, and the explicit expression for p(x,x ') is unknown 
completely; in these cases the Monte-Carlo method 111 is the 
only method for the calculation of the integral (1 Y. 

Choose the density p(x) so that 

of p(x)dX=l. 
Define a random trajectory in the regionG 

T =(<lo .. q1 ), 
where the point <lo has the density p(~ and the density of the 
point .q 1 ~or a given q0 is equal to P(Qu ,x) .. 

Let 0 denote the ra.ndom variable · · 
o = [ r ( q o )/p ( qo)l x ( q t ). 

The function W=f(qJ!p(q0 ) is called ~sually the_weight. 

Theorem t/11 The expectation vaiue of 0 equals t~e integ-. 
ral I 

EO .. I. 
' 
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::::,::Ptib!X ~1ccn:- co.:~.;t--

6~5n~OTEKA 



This theorem allows us to construct the Monte-Carlo method 
for estimating the integral I. So, if we play N trajectories 
T and for each of them calculate(), we obtain for large 
enough N 

l N 
i .. IN;,_ S, {} .• 

N i=-1 1 

The varianceof the estimation IN is 

· ..L '..L r ~q > 2 DIN"''NDfJ=N[ffx(q1) 0 p(q
0

;q )dadq -1 ] .• 
. .. GG p ( qO ) 1 "'0 . 1 .. (2) 

In practice, the unbiased estimation for'the variance is used 
N. . 2 

DIN'" -L. ~ [fJ.- IN] .• 
.. N(N-1) i=-1 1 

There are cases when the variance is large and we can reach 
the needed a'ccuracy in calculating the integral. I, only by 
increasing N. This would require a lot of the computer time, 
therefore one could not realize this 'method. ,. 

The time of genera don of events by th'e low p(x, X') (tra
cing) is usually much larg~r than th~ .tim~ for. the generation 
of events by the low p(x), therefor'e it is reasonable to trace 
events with the largest.weight rather than all events in.suc
cession. 

Let the ratio f(x)/p(x) 
the .l~rJiJSt weight events 
method • 

be limited byan upper bound. Than 
.can be separated by the geometric 

So, let M be an arbitrary constant 
f(x) /p(x) ~ M. 

Define the ra~dom variable e<l) •l { _,.. 

(1) . • 
fJ =-g(q 0 .y)x(q 1)M, 

where J • 

. ;. 

g (q ,y) = 1 I ~or y < f(q 0 )/!p(q0 )Ml; 
O 0 Ln the opposLte case 

and y is the random nu~ber. The expe~t~ti~n value of the ran
dom variable oO> equals the integral I 

E () O>,; I. 
This fact allows us to obtain'tqe estimation for,the integ-

ral · 
(1) 1 N (1) 

I "' I = - ~ fJ. • (3) 
N N 1=1 1 

The Monte'-Carlo method based on the estimation (3) may be cal
led the method with constant weights; while the first one, 
the method with variable weights. 

2 
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·In the Monte-Carlo method with constant weights the total 
time for tracing decreases because of a lower number:of events 
with nonzero weights~ which only should be traced. 

The variance of the estimation I~) '.is the following 
(1) . . . . . 

DIN =If DO (1)= ~ [MjJ x(q 1)f(q0 )p(q0,q
1
)dq0dq 1 - 12 } ·=~ [MI-I 2

) i 

it is larger tha~ the .variance of. the estimation IN in the· 
variable-weight method 

DIO>>· DI 
N -• N 

In many cases the first method is nonrealizable and the 
second one gives the unsufficient accuracy for _the same 
values of N. 

Below we propose a generalization of the constant weight 
method that allows us to achieve a reasonable compromise, 
to calculate the integral with the acceptable accuracy, 
ha~ing a rather small number of events with nonzero weights. 

2. METHOD WITH FRACTIONAL WEIGHTS 

For every k =I , 2, • • • introduce the random variable 

o<k>=l.., ~ f<qo·rr>x(q1)M, 
• k ~'= 1 . • , WLth Yi•· .. , Yk random numbers. The expectatLon value of -the 

random variable fJ(k) is equal to the integral l 

Eo<k>= r 
which allows us to obtain the estimation of the integral 

N 
1 .. y<k>.= .1. ~ o<k> . 

N N i=t 1 , · 
The variance of the estimation I~) in the fractional-weight 
method is 

DI~>=J..oo<k>=..l(DO+ D0(1).;..D(J ). 
N .. N k 

(4) 

We see that· as k ... .., the accuracy of the fractional-weight 
method tends·to the accuracy of.the method with variable 
weights, and for k=l this method coincides with the constant 

. weight method~ · 
The efficiency of a Monte~Carlo method can be characteri

zed by the labour content quantity T /1/ 
T=tDlJ• 

where Dij is the variance of the random variable ij for which 
we calculate the expectation value, and t is the time for 
calculating of one value of ij• 
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The_c~lculation time needed·for reaching a given accuracy· 
is propordonal to the labour content111.' . . ' 

It is natural in the fractional weigh't me'thod .to ,use s\Ich 
that the labour .content· T(k) be minimum~ · · ' k 

• . ' I ., 

3. ·oPTIMIZATION OF THE. LABOUR CONTENT 

Let t 0 is the time for calculating q 0 and f(q 0)/p(q0 ), t 1 
is .. the .time ~or .calcula,t;,ing q 1 and .x(q 1} and t 2 .is the time 
for calculat1ng ~(CJo ,y). . . . ·. · 

Then the calculation time of 0 (k) · on 'the avera'ge is equal 
to· (k) . k ' ' 

. t ,.,t 0 +[1-(1-g) ]t 1 + kt 2 
where 

·. g = E 1 f(q 0)/[ p(q0)M1t ... tr b f(x) dx 

is -the average probability. of the event [ ~ (q0 , 'y)=1L 
the labotir ·content of the fractional weight :method is 
following: · . 

k · DO (1) -DO 
T(k)dlt 0+[1-(1-g) 1t 1 +kt 2 11DO+- . I. 

Thus, 
the· 

The value· of k corresponding to t:;he minimum of the labour con
tent ca~ be found from the equaVon: 

dT(k2 = 0. 
dk' (5) 

In practice, t 2 « t0 , t 1 and g« 1 ;· in that case the solution 
of eq. (5) reads 

. ' 1 oo<1)_DO to 'h. 
k=(-g· DO -·7;"). (6) 

An example of the calculation of, an ,optimum k for a c~n
crete problem will be presented at the end of this paper. 

4. THE FRACTIONAL-WEIGHT METHOD. WITH THE"SELECTION 
BY THE SAMPLING .MAXIMill1 

I~ those cases when the upper bound for the weight .. 
f(x)/p(x) . i~ unknown, we .can calculate the integrai I by . 
the fractional - weight method using the sampling maximum of 
the weights. Let qt;l1 , ~··· q ON ,be the points. independentiy dis
tributed with dens1ty p(x) •. L_et us find the maximum value of 
the weight reached on this set of points 

- . f(qoi> 
M(q. , ... ,q )= max [-]. 

01. . ON ·. 1S:i.$,N p(qOi) 

. ! ~ 
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Let O~k) denote the random variable 
.l 'k . . .. - .. ·' 

- (k) .. 1 . . . ' . . ' • 01 • =ye;
1 
~ (qoi •Y¥1' >x<qu >.r-1· ..: ;·. -~ \ 

where 
\.. ,, 

.·· ~-

~ (qOi •Yfi 
) = S I for y<: f(~oi )./[p(q 01.· )M]t 

~ 0 in the 9pposite case. 1. 

L' ' ' -I (k) d h . . f h . 1 . et N enote t e est1mat1on o t e 1ntegra · 
-(k) 1 N -(k) . . . 
IN = -n-• .!. 0 i · 

l'i . 1=1 . 
Theorem 2. The expectation 
equal to the. integral 

{ ' . ..[ . 
. ' •' .. ·' -(k) 

value of the e~timation ,IN. 

-(k) .. ,· . : ' .. ,. 
EIN =I. .. 

is 

Proof. For proving let us calcuia.te this expectation value 

-(k) N k -
. EIN ""~i:\e:1E[~(qo·i,yP-i )x(qh)M] .... _ 

1 N k. 1 I. ' - . ,. 

= -·.!. !. ff ... ff f ~(q Oi •Yo. )x (q 1i)M(q01''"''q ON ) X 
Nk 1=1 f=1 GG GG 0 . L1 -N 

xp(q01 ) ... p(qON)p(q~l'qli )dq01 ... d'\JNdqlidyfi ": I. 

' ~.· ~ . ' :·· ; ~ 

c .. ,_ 

Thus,. theorem 2 grounds the tfonte-Carlo method with fractional 
weights, ~here the upper bound M is changed by the sampling 
maximum of the weights.' . . . . . 

Theorem 3. The random variables 8)1> and ep>. i ,l j do not 
correlate. 

Proof. For proving we calculate the exp'ectation' value for 
the product of these_ random.variables 

.. i 

··-(i)-(1) ',' ., .. 11 . ' ' ' .. ·'··· 
E01 OJ = [( ... ((.( f f ~(a .. ,y. )~(q 0 .• y: )x.(q 11. )x 

. . . GG GGG 0 0 "0 1 1 J J ' 
·. -~· ·. ~ ' '··. ~' ' ... ·· . 

,. 

'. - N , ·. .. ..• . .. . ' . . . . .. 
:. xx(q1j)M(qo~·: .... qo·~)p(qo1) ... ~(qoJP(q~i ·~1~)~(qo'j ~.qu ~·x ... 

_f. 

xdq0 i ; .. d%rflqu dq Udyidyj· ;i 

=·rr' ... r'r'r, f(q(li )f(qo·)r . ... . J . . ',• 
·aa aoaP(q .)p(q )x(q1·i)x(q. :_)~ 
- .Ol . Oj. · · 1J· · 

.. N. · ' ·.:c 
:··;·_ 

,. 
.. t 

~ ~ ~ 

2 
x P(%1 ) ... p(%N)P(%i ,q 1i )P(%j ,q 1j)dq01 ... d%Ndq1i dq lj =I 

<;:. (: . . 

{_" ~ .. ' .. -:.' 

,:.-

:-;, 
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From the absence of correlation of o'fl~ and 0~ 1 ) it follows 
that the variance of the estimation I ~1) is. 

·-(1) 1 ... (1) 1 - . 
DIN = if'DO 1 ... N.[ Jf ... ff X (qll) f(q01)M(~Jo1 ·····%N )x 

. , . GO GG . 
·.· .. "'fr". .· 2 

x p(q02) ••• p(qON)p(q01'q11)dqOt"'dqONdq11-l} 

and the variance of the estimation I 
-<k> 1 -<k> 1 D0~1> -De 

Dl N •_-rT' DO 1 =--*-(DO + .). (7) 
!'f N k . 

From the absence of correlation -it follows also that the 
sampling variance.is the unbiased estimation of the variance 

(k) 1 N -(k}· ..:.(k) 2 
DIN .. . }; [0 1 ·-IN ·1 

N(N-1) i=l . 

Comparing the expression for the variance in the simple 
method of fractional weight (4) with those'in its latter mo
dification (7) we see that for the same N and k 

DI(k} "' D l(k) 
N '"' N 

beca_use always 

M(qor•· .. ,qON )~. M' 
Thus, this method provides a better accuracy than the simp

le fractional weight method.· .The· shortcoming· of the ·latter is 
that it is necessary to.storage all points q

01
, ••• ,q

0
N with 

their weights during the calculations. 

5. A PRACTICAL EXAMPLE OF THE APPLICATION 
OF THE FRACTIONAL WEIGHT METHOD 

This work was initiated by the n'~cessity to calculate the 
background from electromagnetic three~muon events (tridents) 
in analysing multimuon spectra measured in an experiment on 
deep inelastic mumi-nucleon scattering 12/, For calculations 
of the background we. generated 468 312 events with their 
weights using 'the program TRIDENT t.v; The accuracy in the defi
nition of the'total cross section of the trident production 
is equal to 1.3%. It is impossible to process 468 312 eve~ts 
through programs of tracing 14- 61 because for tracing of one · 
event one needs, on .the.~ . .average, .... 2.5 s at CDC-6500.At k =1 the 
number of events with the nonzero weight is equal to 520 which 

. gives 4.8% accuracy of the total cross section. The calcula
tion of the optimum k was done by the approximate formula (6). 

In fflr case 
DO Loo · 520- - -s to 

na_ ... 13 • g =- .. 1.1.1() , -,. 0 009 
Ll{]· 468312 t 1 • 

so that k ... to. 
6 

d<l 
dM 

d6 
dM 
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dM 
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M 

Fig. The spectra ?f.effective 
dimuon masses calculated 
a) . in the'' variaole:.:.weight' me
thod, b) in the constant-weight 
method, c) in the fractional
weight,method. 

.I If we take the labour content 
of the.variable weight method ' 
equal to I: T( oo) =1 then T(1) = 
=0. 14 and T(lO) =0;05, and the 
ratio T(oo )/T (10) .. 20. The num-

.ber of events with rionzero weights 
is not yet very large and is equal 
to 4113 what provides the accura-
cy 2%. · 

In the figure'we presented the 
spectra of effective dimuon masses 
from electromagnetic tridents 
calculated in the variable weight 
method(a), 'in the constant-weight 
method (b), and in the fractional
weight method, k =10(c). Some 
geometrical cuts simulating the 

.set-up. were applied,. the dimuon 
·mass was calculated using the 4-
momentum--of IL:- .and f..Lt with the 
lowest momentum • 
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