





It is easy to see that the number of elements of I in the
representation (1.1) equals the rank r of the ¢-projection
of A.

Now consider the trace of y on the subspace x.=x2.,Such
trace exists since (see, ref. /5/) the conormal bundle of the o
subspace x—-=x2%does not intersect A, as is easily seen from |
(1.1). We denote this trace by ulo, xf’) The singular spectrum
of u(e,x2) is contained in the Lagrangian manlfold A'CR2r £
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determined by the equatlons _ i [

x =F (x° £ : ' (1.3) ?

Thus the 5 -pro_]ectlon of A’ is one-to-one and u(o, x%) is
a pr1m1t1ve Lagranglan distribution. Take the symbol I.

g[u(o,;(_le)](x as defined in section 2 79/ . Here (xI,.gI)(.:.A'
and consequent’ly (1.3) holds. We denote ~ ’

[SN [u](x__,f )= [u(o,x OIF (x_,.f )s f )
and call 1t the modified symbol of u.
If u is the kernel K(x,y)of a pseudodifferential:operator
Av(x):fei(x‘y’f a(x, §) v(y) dédy, vec:,
then we can take >xI=y; XTEX,é-I:g,é--T:T] . The equations (1.1)
are :
y=% 7 =—§
and it is easy to calculate that
g [KI(x ) =a(x. ), o .

i.e., 1n this case the modified symbol of K 1s the usual sym—
bol of the pseudidifferential operator. .

2. CALCULUS OF SINGULARITIES

For a dlstrlbutlon ue £ it is possible to calculate

AFloC ] provided singspec u and Q[u] are given. o ¢

Theorem 2.1..If uc %y, then the following formula holds

;i,\g(,e) 2 1 i, ldl

asym L ug] (Af) = e Ly o2 el @), 9 (“)(g’(é)) $eGT 1,
Proof Let (x° £2)eA. By the Taylor formula we have
$(x)= 1 e e 3 1 (x—x°)B¢(B)(x°+(x ©)0(x)) - 3

| Bl =N+

Thus we get for (,6@10 =)

Huplaé®) =FlypugplAé)= X

—%—df‘" e 0 +
lal<n ©

l [_%H —1!—.F[(x—x°)al//u¢(a) (2 + (x-32)0(x)) ] (AEO) .

The last term may be represented in the form

1

FLx=2)% gug @ (24 (x- 1) 60 (1)1 0°), =

~FE-2 g Flg @ (24 (x-20) L) = [0 (0 AE-EN (,6)d,

(2.2)
where

e, §)—F[¢(“) (X +(z-2°)0(x))]1(£),
¥, @8 =Fl(z-x)%yul(§) .

U31ng 2. 6)9 and standard considerations it may be proved

that 52 .2) is an asymptotic ‘expansion 1ndeed According to
(2.3)

eeE%) Fl(z- ) yuln0) =(#i—)‘“[ ?

go(gi/\g(f”

Fulae)e

e y lal 9, Q[u](g’(f") £o). (2.3)

From (2.2) and (2 3) we get (2.1) and this completes the
proof.

‘Let u be a distribution from the class f of which we
know the singular spectrum and the symbol. How can we calcu-
late the symbol of Au, where A is a pseudodifferential opera-
tor? In order to answer this question we resort to a some-
what formal reasoning.

Let A be a gseudodlfferentlal operator from the class
‘I‘ma (see ref. ), 1-—p<8<p with symbol a(x £). Take
(x%, £°)e A, where A is a Lagrangian manifold, A> sing spec u
and let Yy €1y o (¥°). Then :

FlyAulré®)= e~ -Ax{° ¥ (x) Au(x) dx =

- fe-i/\x;§°
(2.4)
“fE 1 L e~ tr=0 5250 1) (xx0) e M5y x) andylu(y) dy =
—ixxé°
e

¢ @ e ™ ax nuy) dy dyl dx =

1" 3 _1_ Fact =) Y@l ) u)dy,

where A° is a pseudodifferential operator, whose symbol
o[A°] (3, 17) =3%a(x° ) doesn’t depend on y and belongs to
class S ,0 (see, ref.”5 ). We apply a well-known asymptotic
expansmn formula for pseudodifferential operators (see
ref. ) and obtain
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z=y

By the Leibniz formula (2.5)
DBlz-x) %y @l = £ (P)DPY (z-9)*D) v = |
2 y<B Y (2.6) N
z (B -—-———-—(z—x°)a_B+y Dy ().
Y<ﬁ Y {a-B+y) : |
We substitute (2.6) in (2.5) and then (2.5) in“(2.4) !

B R 1 x4 a‘Ba a(2, A E%) x
‘ h\ o (2.7)
Gl & o)~ B+y y‘//(Y) u(y)dy =

X X fe (y—x
7§ﬁ(a—,3+y)!(ﬁ-—y)!y! v

- 4
=" 33 =
a B y$Bla-B+PH(B-My!

a‘,?a‘: a(x-AE%) x
% feME (5 x0) B WD)y ) gy

For y>0 the 1ast 1ntegral equals zero asymptotlcally when :
Ao since: 4 Y@)»0 in a nelghbourhood of x°. For y=0 we get-
in view of (g 4)9 . '

ICREATEs u(y)¢(y)dy e :‘s[('y-ic’)"‘,ﬁ a1 £%50)

- P e e, - ew

§

Substituting (2.8) into (2.7) we get e

sLAl (=0, £%50) = €5 €7 Flypau] ouf°) -
sz 1t dylPly
a B (a-p)N B! A, :

We won't justify the above reasoning, but only state the
final result. »

(2 9)

~ (-1)° * e, -.\§°)ag ﬁS[u](g €°), £%50)..

Theorem 2.2. Let be a distribution from the class £,and A
be a pseudodifferential operator from the class ¥, 5,1-p<8<p
with symbol a(x,£). Then the symbol of Au is given by formula

(2.9)

3. HINTS ON APPLICATIONS

We will not consider any of the sophisticated and important
applications of "microlocal methods in different fields of

mathematics and physics, which are the subject of an overwhel-
ming torrent of papers during the last years. In this section
we only want to give a rough idea of how the previous con-
cepts might be used for exploring the singularities of solu-
tions to partial differential equations.

A most important problem in analysis is to determine the
singularities of the kernels of different operators connected
with differential equation problems — first of all the kernels
of the differential operators themselves and of their inver-
ses, i.e., the singularities of their fundamental solutioms.
We already saw that the sipgularities .of the kernel of a
pseudodifferential operator are characterized by the symbol
of the operator. What about the inverse operators? Consider
an example,

Let P be a hyperbolic differential operator of second
order. We are interested in the singularities of the Green
function of the Cauchy problem for P.If we denote x=(§yx1,"”ﬁ9=
= (xy. %) then the Green function 'G(zx;y’) satisfies

P.G(xy") =0,
‘G(x; y H =0,
96 (xy )1

aXO

3.1

=8(x‘—-y’).

We wanﬁ to détermine the singularity of 'G(x;y’) considered as
a distribution with respect toy’ depending on the parameter x.
Suffice it to calculate the local Fourier asymptotic
asym B[ G(x;y) b (y N7 We multiply by &(y) in 3.1
and cdrry out the Fourier transform w1th respect to ¥y’
y,‘[(3?5](/\71')“
Fy,pc¢]Qn)[xo= 0 =0
D’ .
9 F.IGH (7] Ly =T g
axo y X, =

(3.2)



If asymF_-['Gslan”) may be differentiated with respect to
xthen (3.2) .implies

'Px'asym F‘y— [GplAg) = 0,

asymF, - ['Gg 1An )| £g=0 ™ 0, . (3.3)

a N _iAx’n’ ’
b;o—asymFy, (Gl 1, o e. B (x).

But (3.3) means that asym F . [Ggl(Ap?) is an asymptotic so-
lution of the oscillatory Cauchy problem. We state thlS re-
sult 1n a slightly more general form.

Theorem 3.1. Let P be a differential operator and 'G(z,y) be
the Green function of the Cauchy problem for P. If ,
asymFy [G(x y) (M Ay ") is differentiable with respect to
x then it is an asymptotlc solution of an oscillatory Cauchy
problem,

This .is the reason why asymptotic solutions characterize
the singularities of the Green function. Obviously if we
know the singularities of the Green function we can deduce:
“information about the singularities‘of the solutions. Using
the results of the previous section we can develop a techni-
que for calculatlon of the singularities of solutionms.
Let P be a differential operator and let ucf®, be a solu-

tion of the Pu=0. What relations will satisfy the singulari-
ties of u, i.e., the singular spectrum and the symbol of u?

Theorem 3,2, Let .P= a (x)D? pe a differential operator.De-
. Ia <m @ :

note

P, (x, f)—‘? a (¢ P [ f)— 2a (x) £°

-m
Let ue £o , singspec uCA= {(x £): x—g (rf)l
symbol of uw has the asymptotic expansion

Suppose that the

sl 0w e 3 BED e A,
)\ k=0 Ak
if .PU =0 _ and slul # 0 then

1. Py(g(€),8)=0,

characterlsuc set P o(% f)-—

, i.e., A is contained in the
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. T g
B, ™~ o>

2. TQ, Tqyoee satisfy the following relations
. 1 a ’
- x,£)=0
Hp o+ (P - o oF afj)r°( ¢ (3.4)
; 1 9% ) o "
‘ -— r, (%, £) +Brg(x, ) =0,
ol'l(x.f)’r(P 51 ax] af] 1( é‘ 2(

where Hp is the Hamiltonian field of Po and B is a dif-

ferent1a1 operator of second order.

The proof of this theorem is a direct appllcatlon of the
results of the previous section.

APPENDIX 1
ASYMPTOTICS

We recall here some well known notions and facts about
asymptotics. The proofs may be found in refs./4?/

Let f and g be two functions R -V, where V is a topological
vector space. We say that f and g .areV-asymptotically equal
at infinity (and note f}\g g) iff for every N>0 we have ‘

LHmAN (£ - gO)) =

This is obv1ous1y an equlvalence relation in the set of fun-
ctions R /»V and we call the equivalence classes ‘V-asympto-
tics (or +V—asymptot1c classes). Denote by (V) the set of
all V-asymptotics. We note by ‘

v

g\sym f . _
the“class to which f belongs and call it V-=asymptotic of f.

Let “the topology of V is determined by a set of functio-
nals {F, lx@l in the sense that

1
u Yoy o= F, (u. -u) R, ie1.
: ~R+-> Vv, g: R+

asymf 4 asym g

' we say that -

iff
Fy (f(A)) = o(F, (gW), iel.

A 4o

We define operations with asymptotlcs. ajta,,a a,, etc.

A sequence of asymptotlcs {a o= aAsymo, I, n=1,2,... is called
asymptotu: scale 1iff apy14de,, n= 1,2, - and for each N
there is an n such that «  Qasym ()\—N) )




Example: a1=asym)\m, a2=asymxm‘P , ag= asym)«m"'zp,...
If {anl is an asymptotic scale, then

a1+ (12+-n
is called an asymptotic series. :
Let {a ;] be an asymptotic scale and a be an asymptotic

such thgt
a-j-nzlan {ay ‘ for each N .

In that case we say that a is the sum of the asymptotic
series aq(+aogt.. or that ay+ag+.. is an asymptotic expansion
of a and note

a=a1+a2+... .
Theorem 1. Any asymptotic series has a sum and this sum is '
unique.

Theorem 2. Let a4, a,,... be an asymptotic scale. An asymptotic

a may have not more than one asymptotic expansion of the form

a ==01a1+ 02a2+...-, .
where ci,co, ... are numbers.

* APPENDIX 2
LAGRANGIAN MANIFOLDS

Some elementary facts concerning Lagrangian manifolds will
be enumerated. The proofs may be found in refs./1'3'4'5'8/,
Consider R2n=R 1 xR2 provided with the differential 2~
form x '

W= dflz\dx1+...+d§n/\ dx,,
which is non-degenerated.

An n -dimensional manifold ACR® is called Lagrangian
manifold iff ol =0.

A Lagrangian manifold A may be represented locally by a
single function of n variables. For instance if A projects
one-to-one on the § -space, then there exist a function

N

g€ 4.0 &) SO that A is representeq by the equations
x =95
AT m
.8
n afn'

In the general case the following theorem holds:

8

Theorem 1..Let A be a Lagrangian manifold and (x°, £°)€ A.There
exists a neighbourhood UCR®*Mof (x° £°) and a function:
g(§i yenes Ei Xj e X ) so that AnUis represented by the

1 3 1 . : .

In—~k
equations
x" ='._a_g__,
11 agll | £ R :
e e N ¢))
X. ='—_ag -y =
Tk .agik,
dg
£ ==
Y 6x“
dg
A S
Jn—xk ox,
. n—k

where (i, iks jlyeen in=k ) is a permutation of (1,2,....n).

The next theorem enables us to reduce the general case (1)
to the special case (1) by a suitable change of local coordi-
nates.

Theorem 2. Let A be a Lagrangian manifold and (X, £°) € A. There

exists a neighbourhood UCR2n of (x°,£°) and a change

of the x —coordinates X=«(y),so that if we perform in U the
canonical change

X=x(y),

Dk*{=7q,
then ANU has a one-to—-one projection on the #-space.

There is a close connection between Lagrangian manifolds
and Hamiltonian systems in classical mechanics. Roughly
speaking any Lagrangian manifold may be foliated into Hamil-
tonian  paths.
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