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INTRODUCTION 

This paper is a slightly modified record o f the lecture s 
on "Microlocal analysis" given by the author at a seminar on 
mathematic; l problems of physics at the University of Sofia. 
Our approach is somewhat different from the approaches in 
refs. 11,2 ,41. A new concept is introduced - that of the (to­
tal) symbol of a distribution and a slightly different calcu­
lus of singularities is developed. Before starting the formal 
exposition we briefly sketch the main ideas and consider se­
veral simple but suggestive examples. 

The purpose we pursue is to introduce appropriate mathema­
tical objects characterizing the singularities of distribu­
tions and to develop a relevant calculus so that we could,for 
instance, explore the singularities of solutions to partial 
differential equation problems, when the singularities of the 
data are given. Let us recall that we conside r C"" -singula­
rities, that means we say that the distribution has a singula­
rity in a point if there is no neighbourhood of that point in 
which the distribution coincides with a C

00 -function. The 
~ell known connection between the regularity of a function 
and the growth at infinity of its Fourier transform will play 
a fundamental role. To characterize the singularities of a 
distribution uE1)'(Rn) locally, i.e., in the neighbourhood 
of a point x E Rn , we consider the asymptotic at oo of the 
"localized Fourier transform", i.e., (see Appendix) 

asym F [ u ¢ ] ( A O , 
A ➔oo 

(0. I) 

where F is the Fourier transform, ¢ f c;( Rn) is supported in 
a small neighbourhood of x , A ER! and (,l 0.Let us consider 
several examples of distributions u for which the asymptotics 
(0.1) may be easily calculated. 

Example U=o(¾-x~). 

Here n., 2 and the stationary phase method gives 
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where a1 and a 2 denote derivatives with respect to the first 
and the second argument. We see that the asymptotic may be 
considered as depending on two variables x and ( (as a dis­
tribution on x, depending on the. parameter· ( ·). It is vanishing 
everywhere except the set of points 

J:' 2 
2 2. !,1 f1 

A=l(x,()€ R xRc Xi=--, X2=-, f2,/0 I, 
X 2(2 _.4(2. 

(0.2) 

This set ("support" of the asymptotic (O.J)) is a two dimen­
sional manifold in the four-dimensional space Ri x R l . Its 
projection on the x-plane is the parabola. x 2-x2=0, ·which 
represents. exactly the singular support of · u. If 

1 
(x 1,x 2) is 

fixed on th~ parabola, then the set of points ((1,(2)such that 
(x, 0 f A is a straight line, normal to the parabola at the 
point (x1,x 2). For any. ((1,(2), ( 2 =10 there is a single x such. 
that (x,()f A and the projectioi::_i. of A on the (-plane is a dif­
feomorphism. We agree to present A graphically in the follow-
ing way. t · · · 
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We draw the projection of A on the x-plane and then through 
any point x of :that projection we draw a dotted line consist­
ing of all ( su_ch that (x, fl€ A, provided that the (-plane 
has been laid on the x-plane with the origin at x and the 
( -axes parallel to the .. x-axes. 
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where the dots·represent the further terms of the asymptotic 
expansions, containing derivatives of 8. We see that in this 
example the '!support". A. of the asymptotic is again a two-di­
mensional manifold in RtxRi , giv~n _by the relations 

-{ 1 112 -( 1 3/2 
x1=±(3e-/· x2=±<3e-/· f1f2 ~o. f21'0. (0.3) 

Its projection on the x-plane 
lar support of u and if ( x1 ,x 2) 
the normal at ( x 1 ,x 2 ). 

• 3 • h . 1.s x 2-x 1=0, i.e., t e s1.ngu-
is fixed, ((1'( 2) runs along 
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However there is an essential difference between examples 1 
and 2. The formulas (0.3) do not determine (x1 ,x 2)uniquely when 
given (f1.,fa). When ( 1 /, O there are two points on A with the same 
projection on the (-plane. For ( 1=0 these two points coincide 
but in no vicinity of such a point the proj~ction of A on the 
( -plane is biunique. When a point (x1 ,x2 ) runs along the curve 
x2 - x~ =0, the normal at this point turns and covers twice the 
shaded angle on Fig.2. The rank of the projection of A on the 
( -plane changes being 2 at the points with f 

1 
;,t O and l when 

[ 1=0, In addition the asymptotic is given by two different 
expressions for ( 1 ,/. O and for g 

1 
= 0~ 

Example 3· 

Another example are the Schwartz kernels of.the differenti­
al operators. Take-for instance the ortl'inary differential ope­
rator 

d2 d . 
L = 3n(x)-- + a 1(x) -+ a fx), 

dx2 · dx• 2' 
xERl 

Its _kernel 

K(x,y) = 3o(x) o "(x-y)'+ a 1(x)o' (x-y)+ alx)o(x-y); y E R1, 
It is easy to calculate that 

F [ K(x,y)q, (x,y)] (,\ f . .\71) .. 

~ ~[ a0(x)(iA()2 ~- a_1(x.) (i.\ () ~ • a2 (x)] o(x-y)-i:-[ 2a0~x)(iAf} + a/x)(i>..~18,'(x-y)+ 

"" ~ + 3n(x)o" (~-y),q,> for (+71 = 0 

0 · for (+ 71 =I O. . 
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The "support" of this asymptotic is 

A=l(x,y;(,71): x-y=0, f+11 =0 I. 

Thus A is the direct product of 
(the singular support of K(x,y) 

the diagonal x-y=O in Rzx,y) 
) and the "other" diagonal 

f+ 71 = 0 in R(i,7/) · 

'j 1 

X. 

Fig.3 

' 

The rank of the projection on the ((,71)~plane at each point of 
A is 1, i.e., constant but less than 2. We remark (and this 
is important for our approach) that if in the asymptotic expan­
sion we put together all the terms which do not contain deriva­
tives of q, we get as a coefficient (the coefficient before 
o(x-y)) exactly the symbol of the operator L. 

Example 4 
Finally consider the distribution U=o (x-a) where xc;; R

2
, ac;;R

2
• 

We immediately see that 
i.\(. a iA:t •( 

F[uq,](>..() .. e •q,(a)= < e o(x-a).~(x)>. 

This asymptotic vanishes everywhere except X = a and arbitrary 
(. thus the "support" is 

A•l(x,(}:x=a, gc;;-R2 1. . g 
It is again a two-dimensional set in the four-dimensional 
space R; x Ri and is represented graphically by 
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The examples we considered suggest the following co.nclu­
sions: 

I. The asymptotic (0.1) may be considered as depending on 
two variables x and /; in the Zn-dimensional space R:x Rf , 
but it does'nt vanish only on an n-dimensional manifold A, · 
the projection of A, on the x -space being the singular sup­
port of u.That fact plays a fundamental role in all further 
considerations. Working in the (x, /;) -space instead of the x -
space is a most impor'tant feature of the methods we are ,study­
ing. , 

2. The rank of the projection of A ori the /;-space may· 
change and accordingly changes the expression.for the asymp­
totic. 

3. If singsupp u is a manifold, then A is the normal bundle, 
hence the relations 

n 
~ I; k dxk IA"" 0, 

k=l 
consequently 

n 
~ d/;k A dx j = 0 

k=l k A 
are fulfilled. Thus 
dix 2). 

A is a Lagra~&ian manifold (see Appen-

4. The asymptotic (0.1) is a sum of derivatives of¢ multi­
plied by some coefficients depending on /;.The coefficient of¢ 
is expected to play an important role, being in example 3, the 
symbol of the differential operator., 
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In the rest of the paper we consider a class of distribu-' 
tions generalizing the examples above. We define for them 
appropriate "support of the asymptotic" A and study first the 
case when _the /;-projection of A is one-to-one., In this cal>e 
the notion of symbol of a distribution is• introduced, ,as sug­
gested by example 3. The general case of variable rank• of the 
/; -projection of A is, so to say, rediiced to the case of one­
to-one projection by· a standard geometric canst.ruction. Ac;_ 
cording to a well known property of.Lagrangi'an manifolds ·there 
is a covering IUa,1 of A and local coordinates (x(a),ta>), x<a>=K (x) 
so that in these coordinates A nUa has a one-to-one 1;<a) - a 
projection. Thus we can define the symbol of the·local repre­
sentation ua,= u o Ka of u and then find out how the symbol 
changes when local coordinates are changed. We get some tran­
sition formulas which define a fibre bundle over.A.The sym­
bol o.f u is then defined as a section .. of. this bundle whose 
repre.sentations in local coordinates are the symbols of ua.· 

The manifold A and the symbol characterize the-singulari­
ties of the distribution and an appropriate calculus is deve­
loped. Finally some applications are considered. 

I. SINGULAR.SPECTRUM OF A DISTRIBUTION 

We start with a precise definition of the asymptotic (O.I) 
of the introduction.• 

Let X be an open in R0 and u -be a distri~ution from il'(X). 
Consider the distribution valued function e-iAx•/; u of the pa­
rameters ,\GR+ and /;GRn!O 

Definition l. I. The il'(x) asymptotic (see Appendix 1) 
1J'-<X>-ii\x/; . 

asyme •UE ff(il'(x)) 
A➔ .oo · · 

is caiied iocai Fou:r>ier asymptotic of u and is denoted by ' 
AF loc[u]@t . ; 

According to Appendix I, AF 10c[ul(/;) is a class of distri­
bution valued functions•a(x;/;,,\) off a!1d ,\ and 

. . 1)• .. 
I ~X) -iA~ · 

a(x;/;,A)G'AF oc[u](/;)= asyme <=> 
. . -iAv/; oo 

<=:>.<a(x;/;, ,\),¢(x)> ,-<e •U,¢> =F[uef>]{,\/;),.vrf>1:C
0

<=> 

<=> <a(x;/;, ,\),rf,(x)>E asym F[uef>](,\c;), v ¢ E- C~ 

*such asymptotic has been considered by Brychkov Yu.A. 
(see ref. 161 ) • 
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loc R 1 "" 
Thus AF [u](~ is determined by. asym F[ ucp] (,\,;), cl> r;; C

0 
• 

Now we shall define precisely the "support" of the asymp-
·totic (0.1) mentioned in the introduction. · 

Definition 1.2. The singular speatrum of·u,denoted by 
smgspec u ( Ol' wave fl'ont of u, denoted by WF(u) ) is the_ set 
of points of Xx(Rn IO) with the following p1'ope1'ty: a point 
(x0 ,e 0 )E Xx Rn'-o does not belong to singspec u iff thel'e· exist 
a neighboUl'hood u oCXof x0 and a aonia neighboUl'hood f'eoof e0 

suah that asymF[u¢,](A0=0 fol' aU eETeaand aU ¢,t;_ c;(Uxo ). 

Lemma 1.1. If ¢,E c; and (x.~)q.singspec ufol' any xE supp¢, 
then asym F[u4>](,\f0

) = 0. 

The proof is left to the reader. 
The examples in the introduction suggest to consider dis~ 

tributions whose singular spectrum is contained in a homoge­
neous Lagrangian manifold A; Such distributions.will be called 
Lagl'angian distl'ibutions. Moreover we shall suppose at first 
that A has the form · · 

A=l(x,fl .;-R:XRe : X=g'(fl, fE,Oel, (I. I) 

where g is a homogeneous function of degree I and Of is an 
open cone inRl. Thus A has ,J. one-to-one projection on the 
(-space. Lagrangian distributions, for which (I.I) is ful­
filled, will be calles pl'imitive Lagl'angian distl'ibutions; 

2. SYMBOL OF A PRIMITIVE LAGRANGIAN DISTRIBUTION 

Let u be a primitive distribution,i.e., singspecucA and A 
is given by (I.I). If (x0,t0 )EA then, because of (I.I), xi x0 . 

implies (x,f0 ),i; A. Thus, if ¢, :J x0
, then (x.~)<tA (and conse-

quently (x,t0)q' singspec u) for any xr;;supp¢ .Hence, according to 
lemma I. I asymF[ucp](,\t0 )=0.It follows that asymF[u1P](,,\t~)forlPE Co 
depends only on the term of IP in x0

• Thus if ,IPr;; C
0
"' and 1P(X)= 1 

for x in some neighbourhood of x 0 (we shall denote the set 
of such functions by l~(x0 ) ), then asymF[u1P](,\e}does not 
depend on IP. The fact warrants the following definition. 

Definition 2.1. Let u be a pl'imitive Lagl'angian distl'ibu­
tion and singspec u c A; whel'e A is given by ( 1.1) • The funation 
§ [u]: A ➔ <t(R') . . . · 

"'[ ] iA·x0
•~ ~ u (x0,g0 )= e asymF[ U1P ](,\~0 ), ( x~t0 ).E-A 

whel'e IP E,1a°'tx0
) is aaZZed the total symbol of n. 
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We shall denote by s(x.e;,\) the elements of the asymptotic 
class §[u](x, fl and we introduce also the function 

· a(x,O= s(x,
1
~; la) 

which doesn't depend on A. Obviously 
ixf 

a (x,f) =- e F[ UIP ](t) 
lei ➔"' 

and 

s( x,g; ,\)=a (x,,\fl. (2. I) 

The singular spectrum and the symbol characterize complete­
ly the singularities of the distributions, i.e., 

Theor~m 2. I. If u and v are pl'imitive distl'ibutions and 
singspecu=singspecv, §[ul=§[v] then u-vEC"'. 

Proof. It follows from the conditions of the theorem that 
singsuppu = singsuppv. Let x 0 E singsupp u. Take 1PE10(x'),The condi­
tion ~[ul=§(v] implies 

asym F[(u-v) IP l ( At) = 0 (2.2) 

for all points g,; Ri IO for which (x0 ,0G singspecu.If (x0 ,flGsfogspecu 
then (2.2) is true in virtue of the definition of singspec u. 
Thus (2.2) is true for any g.; Rn\o.and consequently (u-v)1P 
is C':' That means u -v is C"' in some neighbourhood of any point 
x 0 G sing supp u = sing Obviously u-v is C"' in'.the neighbour-

hood of all points x0
,; sing supp u and the proof is finished. 

Now we are going to impose some additional restrictions on 
the distributuons we consider, which guarantee that their sin­
gularities are not very "exotic". If x0 G sing supp u then obvious­
ly (x-x0 fu(x), lal>O ( a,- multiindex) is not "more singular" 
than u at the point x 0

• We shall require, it to be "less singu­
lar". Let u be a primitive Lagraogian distribution and let us 
study the singularities of(xrxj')u(x) at x 0

, provided the singu­
larity of u is given. Take 1PE 1~(x0

). If (x0 ,t) l· singspecu 

then, of course, (x0
, () q'sing spec[(xj- xf)u] neither. Let 

(x0
, e0 )¢sing specu C A .. Then X 

0 =g'(t 0
) and since g is homoge-

neous of degree I, ( .g'(fl=g(f). Thus · 

j,\go, XO j,\ g(go,) a 
e F[(x.-x'?)u1P](,\f0 )=e r(i-' -g'(t0 ))F(ur,',](11)l 

J J a11. 1J=At0 

J • 
(2. 3) 

i a iAg(cf°) . , 
= - -!.-(e F[u 1P](,\go)). ,\ ae~ 

J 
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(<) , i,\g(~) • 
Let us suppose that 1:j[u](g (~.()=asyme Ffoi{l](,\fl may be diffe-
rentiated with respect to f, i.e., that if s 1[u](x,c;;,\) and 
siu](Jt,( ;,\) are two functions from the same asymptotic class 

§[u]{,x,fl, where (x,f).;A, then ~Tj s 1[u](g'W,(;,\t:,%i _s2 [u](g'(~_.(; ,\). 

Under this assumption it follows from (2.3) th~t 

§[(xj ... xj )u](xo,(o) = ~. a~~ §[u](g'((o), to). 
"'J . 

(2.4) 

This condition may also be written in the form 

a[(x. -x".)u](g'(~.() - i--;u{u](g'W,() 
J J I J:1. a c.. <,J ... 00 • J 

(2.5) 

setting(=,\( 0 and taking into account (2.1) and the homogenei-
ty of g. . 

As we already mentioned we shall require (x-x0 f u(x), to be 
"less singular" than u at x0 and thus following relations to 
be fulfilled 

F[(x-x0
) ui{I] (,\(.0) = o (F-c[u!/J] (,\ (.0)), 

i.e., 

asym F[ (x-x0 r ui{I 1( ,\(0
) -< asym F[u !/J] ( ,\ ( 0

) 

and consequently 

§[(x-x°rul(Xo,(O) -( § [U](Xo,(o). 

(2.6) 

In view of (2.3) the last relation may be written in the form 

c~Ja'a;O§[u](g'((O),fo).( § [u](g'((o),fO) 

or 
a, 

·ar[u](g'(()_, O = o(a[u](g' (0, fl), ,~ ➔ oo. 

This condition will be certainly fuliilled if we suppose that 
there exist m ~ R1. · and p> 0 such that 

· a, . - m-pla\ 
at1{u](g'a),fl=0(lfl ), j(l ... oo, ,~nf (2. 7) 

for any multi index a. Thus we came up to the following defini-
tion. 

. 
, _ Definition 2.2. The class £0 consists of aU distributions 
u with the following properties: 

1) u is a primitive Lagrangian distribution, i.e.1 singspecucA 

A=l(x,O:x=g'(fl, (E·il• 
where g is homogeneous of degree 1 and n is a conia open in R!. 

· 10 

2) §[u] (g'(e),fl may be differentiated with respect to, ( and 
there exist m .;R- 1 and p>O such that for any mul.tiindex a, 

a;a[uJ(g'(f},O=O<lflm-plal), 1(1 ➔ 00 • f.;n, 

where a{u ,kx,() is any function such that a{u](x, ,\fl~ §[u ](x, (). 

3. CONSTRUCTION OF DISTRIBUTION WITH GIVEN SINGULAR 
SPECTRUM AND SYMBOL 

In the previous section we saw that the singular spectrum 
and the symbol determine the singularities of a distribution. 
Now the question arises how to construct a distribution when 
its singular spectrum and symbol are given. 

Let A be a Lagrangian manifold and §(x,() be an associated 
symbol satisfying the conditions of definition 2.2. Take a(x,fl 
such that a(x,,\fl~§(x,(). We want to find a distribution u such 
that 

i,\x,( t: e ·· F[ui{I](,\(} ,. a(x,,\r,) (3. I) 
,\ ... oc 

fori{l;:;l~(x),(x,(),;A, But(x,()~A meansx=g'((},thi'.is (3.1) turns 
to be· 

· -i,\(.g'<(). -iAg(() . • 
F[ui{l](,\(),..e a(g'((),,\()=e. a(g-:;((),,\() (3.2) 

because· of the homogeneity of g. Let us write.71=,\( and replace 
the sign .. by=.Then instead of (3.2) we get 

-ig(71) 
F[u!/J](71)=e a(g'(71),71). (3.3) 

If u satisfies (3,3.), then of course, it will satisfy (3.2). 
Now (3.3) implies 

u!/J(Y)= f e iy•T/ e-ig~T/) a (g'(71),71)d11 

Taking y = x we get (since i{l(x) = 1 ) 

-i( x-71- g (7/)) • 
u(x)= f e a(g'(71),71)d71. (3.4) 

These considerations suggest that we may expect the distribu­
tion (3.4) (the integral being regularized, see refs/1 ,51 · ) 

to have symbo 1 a • Before proving it we shall write (3. 4) in 
another form -· as an integral on the manifold A. The manifold A 
is given by y=g'(77) and·, since g is homogeneous of degree I, 
g(77)=77•g'(71)=71•y,when(y,71)~-A. We write in (3.4) y instead of 
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g'(T/), and .T/. y instead of g(T/) and get 

i( X·Y)T/ 
U(X)= fe-a(y,T/)dT/. 

ACR 2n 
Y,T/ 

(3.5) 

Theorem 3. 1. Let A be a Lagrangian manifoul and §(x,fl = 
= asyma(x,.\t)an associated symbol, satisfying the conditions of 
the definition 2.2. Then the distribution determined by the 
formu.1-as (3.4) or (3.5) (the integral being regul-arized) be­
Longs to the cl-ass £ o and has for symbol §(x,f). 

We omit the proof which is a straightforward, but tiresome 
application of the statio~ary phase method. 

4. THE SYMBOL OF A LAGRANGIAN DISTRIBUTION 
IN THE GENERAL CASE 

In this section we roughly sketch some ideas of how to de­
fine the symbol of a Lagrangian distribution when the condi­
tion of A to project one-to-one on the f-space is not ful­
filled. 

Let A be an arbitrary homogeneous Lagrangian manifold in 
R2n and u - a distribution for which sing spec u c A . According 
to a well known property of Lagrangian manifold (see Appen- , 
dix 2) we may find a covering IUa.l of A ( Ua, are open inR;,n.;) 
and local coordinates Ka, in Rn s.o that the image Aa of 
A • X a 

a;=·Uan A by the mapping 

(a) 
x =Ka (x), g<a) = (DKa* j""1 g . 

is represented by x<a) = ~ ff(a) ) with . &:z · homogeneous of degree 1 • 
Denote uaa-=(Ka,(DK*)- 1)U , A t1"u nuQn A, Aaa=(K ,(DK* )- 1)A f3 

(3 · a a a/J a ,_., a/J a a a 

\ 13 =(Kf3'(D1Jr
1

)Aa~ -Then A:/3 is represented by x<a>=g~a.(a)and 

Af3 . by j/3) =g' (((/3) ). 
· a't>enote ua:=U~K; 1 ,Then ua. is a primitive Lagrangian distribu­
tion, so § lual is defined.~Consider the symbols §[uaJ and 
§[u13] which map A~: resp. A13 into U'(R1). The question we 
ask is: how does the symbol change when lpcal coordinates are 
changed,' in other words how §[ual!Aa, and §[u!31!Af3 are con-
nected, a/3 af3 

._ Suppose that the distributions ua,are not only primitive 
but belon~ to the class £0 • -Take functions ua (x(a), ( (a)) such 
that aci,(x<a ~la))~§[ua J. According to the previous section 

. (a). . . 
u (x<a) )= ( e i(x T/ -,ga(T/)) •u· (g'(T/),T/) dT/. 
a. a, a, 
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Then for urr= ua O Ka O Kf3 . we get the expression 

f3 i(K(x</3)), -,,-_IT/)) ( ( ) ) r 11 ca ' ( , I ) )d u13 x = e ·aa- g a'T/ ,T/ T/ 

where we denote K =Ka° Kfj1 • For simplification of the notation 
we shall write (z,() instead of (x<&,l;(f3JJ. Take a point (z0,(0 ).;Af\r 
The1: z0 =g~(( 0

). Let if; G l~(z 0
). We have to calculate the asymp! 

totic 

F[ u13f](,\(o)".' (fe -'--iA(o. z e i{K(z)·T/-ga(T/H,ua(g~(T/),71),fl(z)dz~ 

(4. I) 

= l ((e iA (K (z) T/-(o. z - ga(71)) aa (g~ (T/), ,\ T/) if,( z)dzdT/. 

Let us apply the stationary phase method. The stationary points 
(z,71) satisfy the equations 

( K , ( Z)) * T/ -, o = 0 

K(Z)-g~(71)=0 

hence 
. -1 
T/ = ( K ' ( z) * ) ( 0 

-1 
K ( z) = g' { ( K ' ( z) * ) ( ) . 

a 0 

(4.2) 

a 
As was already mentioned ~{3 
the otherhand the mappi~g 

is represented by x<a>=g'(faj.On. 
. a . 

x<a)=K(Z) • -g<a)=(DK*f 1( 

(3 a, f3 
tran_sforms Aaf3 into \,B•hence Aa{3 is represented by 

, * -1)'. K(Z)=ga<(DK ) .,). (4. 3) 

We see from (4.2) and ~4.3) that if (z,T/) is a stationary point 
of (4.l), than(z,(0 )GAraand consequently Z=gti(i::-°)=Z 0

• Thus 
there is a single stationary point (z 0 ,T/ 0

) where T/ 0 =(K'(z0 r+:,1(0. 
Denote by Ho the Hessian at (z0 ,T/ 0

) of the, phase function 

cfi(z,T/) =K (Z)•T/-( 0
• Z-&7,(71). 

(Prove that Ho is nonsingular!)· The s tatioilary phase method 
gives us the following formula for- the asymptotic of (4.1) 
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-iAz0
• /;° 

e arJ<z0
., 

0
)., F[ u13t/J W,C)"' 

n/2 -½ TT ] 
=-(2rr,\) \detH

0
\ ·expli[A<l>(z 0 ,71°)+ 4 sgnH0 Ix (4. 4) 

xi (~t2Y (D T/ H~1 oz.,.,ha (g~ (71).~71)t/J(z)ll o· ,\-j, 
j=O J ! · z, , a a ~::.,.,Zo 

This relation'may be differentiated with respect to z 0 ,71°. 
Denote by Sa the suit of all the derivatives Dµ aa(x~),A,;Ja)) 

of aa (x(a) _g(a)) with ·respect to (ia) , ta)) taken in the point (xt>. 

AiJa>) and by S13 similarly for af). Here (x<g),,;◊a)) is the image 
of (z0 ,1;°) by (K ,(DK *)-1). Then (4 .4) and its derivatives give us 
a relation of the form 

. 813= Ta,Bsa.•. (4 .5) 

where Ta/3 is some linear mapping of an infinite product ff
00

= 
= ff(R1)x U(R 1)x ... into itself .Now consider a fibre bundle 1(A) 
with base A, fibreff 00 and transition formulas (4.5). The sym­
bol of u is defined as a section of 1(A) which in local coor­
dinates is given by aa and its derivatives. 
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