


INTRODUCTION

This paper is a slightly modified record of the lectures
on "Microlocal analysis" given by the author at a seminar on
mathematical problems of physics at the University of Sofia.
Our approach is somewhat different from the approaches 1in
refs, 124/ A new concept is introduced - that of the (to-
tal) symbol of a distribution and a slightly different calcu-
lus of singularities is developed. Before starting the formal
exposition we briefly sketch the main ideas and consider se-
veral simple but suggestive examples.

The purpose we pursue is to introduce appropriate mathema-
tical objects characterizing the singularities of distribu-
tions and to develop a relevant calculus so that we could,for
instance, explore the singularities of solutions to partial
differential equation problems, when the singularities of the
data are given. Let us recall that we consider C™-singula-
rities, that means we say that the distribution has a singula-
rity in a point if there is no neighbourhood of that point in
which the distribution coincides with a C™-function. The
well known connection between the regularity of a function
and the growth at infinity of its Fourier transform will play
a fundamental role. To characterize the singularities of a
distribution ue D" (R") locally, i.e., in the neighbourhood
of a point x &€ R", we consider the asymptotic at =~ of the
"localized Fourier transform'", i.e., (see Appendix)

?wnF[u¢KAf), (0.1)

where F is the Fourier transform, ¢c;C§(R“) is supported in
a small neighbourhood of x ,)«GRl and ¢#£0.Let us consider
several examples of distributions u for which the asymptotics
(0.1) may be easily calculated.

Example 1 - 5 (%~ x?).
Here n=2 and the stationary phase method gives



Flugl(A )= 52
— ii’-—sgnfz ;{E‘ 1 - 9c 3 _t5 2k &y 12
\/?\lfgle o | 161 ¢2 ety ) 2, 4e2 |
=) for{z;éO
0, for £2=0. 51#—’0
= sgn{:z / iAnéx 2 2 £2
_ s L 2 9, Ks(x + 2L x — 1),
\/Mfgle , k:i)k'(m)\fz)(f fz?) (x+ szz 4}55

B(X.%X) >, for__fquo _
0, for £,0, £,40, :

where 0; and d, denote derivatives with respect to the first
and the second argument. We see that the asymptotic may be
considered as depending on two variables x and ¢ (as a dis-
tribution on % depending on the_parameter ¢ ). It is vanishing
everywhere except the set of points
2.
A=I(x,&)¢e R2xR§: Xy == E—l- X, = f
’ ‘ x 2{:2 . 4f

This set ("support' of the asymptotlc (0. l)) is a two dimen-
sional manifold in the four-dimensional space. sz xR¥ . Its
projection on the x-plane is the parabola. x,-x2 =0, ~which
represents exactly the 81ngu1ar support of u. If (x,x,) is
fixed on the parabola, then the set of points (f L€ )such that
(x,6)e A 1s a straight 11ne, normal to the parabola at the
point (Xy,xp). For any (¢, 62) 6240 there is a single x such
that (x,§)€ A and the pro_]ectlon of A on the ¢-plane is a dif-
feomorphlsm We agree to present A graphlcally in the follow-
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We draw the projection of A on the Zx-plane and then through
any point x of that projection we draw a dotted line consist-
ing of all ¢ such that (x,£)€ A, provided that the ¢-plane -

has been laid on the x-plane with the origin at x and the

¢ —axes parallel to the ..x-axes. ‘ '

Example 2 u=95 (’Jiz—'— xf)
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where the dots’ represent the further terms of the asymptotlc
expansions, containing derivatives of §.We see that in this’
example the "support" A, of the asymptotlc is again a two-di-
mensional manifold in R fo p g1ven by the relations

-1 12 ' 61 3/2 v
Xy =2 Xy =%( £, €, 0, £,40. (0.3)
1- 62 2 3,;‘:2 2 2
, . . : s
Its pro_]ectlon on the x—plane is xz—x =0, i.e., the 51ngu—
lar support of u and if (X,,Xp) is flxed (fl £,) runs along
the normal at (X;.X,).
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However there is an essential difference between examples 1
and 2. The formulas (0.3) do not determine (x, ,xz)uniquely when
given (£;,&;5).When £,# 0 there are two points on A with the same
projection on the ¢-plane. For £,=0 these two points coincide
but in no vicinity of such a point the projection of A on the
¢ -plane is biunique. When a point (x,,xy)runs along the curve
xz-x:i" =0, the normal at this point turns and covers twice the
shaded angle on Fig.2. The rank of the projection of A on the
¢ -plane changes being 2 at the points with fi;(o and 1 when
£,=0. In addition the asymptotic is given by two different
expressions for {40 and for £,=0. - : :

Example 3- . :

Another example are the Schwartz kernels of the differenti-

al operators. Take- for instance the ord'inary differential ope-

rator i

L = ao(i)_‘i.f +a (x).‘i...+'a‘2(x) xeR1
- O axe T ax T ’
Its kernel

K(x,y) = ag(%) 6 “(3=y)+ 3y(R5 (x-y)+ ag(R5(x-y), y R’
It is easy to calculate that ‘

FIKEy)$xyTAE,Ag)= _

<Lagm@réP + a, (0 (A€ )+ 3,(0)]8 (x-3) +[ 23(DAE) + 2 (YN (3-y)+
i gy(08” (x=y).g> for E4n =0

0 - for £+q S 0. a

The "support" of this asymptotic is
A={(xy:£,n): 2~y =0, &+ =0 L

] . . 2
Thus A is the direct product of the diagonal x—yfo in R%x.9)
(the singular support of K(xy) ) and the "ogther" diagonal

=0 1 2 .
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The rank of the projection on the ({£,7)-plane at each p01nt'of
A is 1, i.e., constant but less than 2: We remark (anc'l this

is important for our approach) that if in the asymptotic expan-
sion we pu‘t together all the terms which do ncft.contalp deriva-
tives of ¢ we get as a coefficient (the coefficient before
5(x-y)) exactly the symbol of the operator L.

Example 4 \

Finally consider the distribution u=5(x~a) where xcR%, acR®,
We immediately see that ' -

iAf a iAx-£ ]

Flugpl(ré) = e p()=<e 5(x—2), ¢ (x)>.
This asymptotic ‘vanishes everywhere except X =a and arbitrary
£, thus the "support" is

Awi(x,£): x=12, EG-RE}.
It is again a two-dimensional set in the four—dimensiongl
gpace RZx R"é and is represented graphically by

X



Fig.4

The examples we considered suggest the following conclu-
sions:

1. The asymptotic (0.1) may be considered as depending on
two variables x and ¢ in the 2n-dimensional space Rjx Ré‘ )
but it does’nt vanish only on an n-dimensional manifold "A,
the projection of A, on the x-space being the singular sup-
port of u. That fact plays a fundamental role in all further
considerations.’Working in the (x, £ ) -space instead of the x~-
space 1is a most 1mportant feature of. the methods we are .study-
1ng. - cg . . L .

2. The rank of the prdjection of A on the {-space may
change and accordingly ‘changes the expression for the asymp—
totic.

3. If singsupp u is a manifold, then Ais the.normal Bundle,
hence the relations ’

n

E =

k=x§kdxk|/\
consequently

E A& A dxy |, =0

gre f;lfllled Thus Alis a Lagranglan manlfold (see Appen—
ix 2

4. The asymptotic (0.1) is a sum of derlvatlves of ¢ multi-
p11ed by some coefficients depending on £.The coefficient of ¢
is expected to play an 1mportant role, being in example 3, the
symbol of the d1fferent1a1 operator. - ¢
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In the rest of the paper we consider a class of distribu-'
tions generalizing the examples above. We define for them
appropriate "support of the: asymptbtic" A and study first the
case when the £-projection of A is one-to-one. In this case
the notion of symbol of a dlstrlbutlon is- 1ntroduced, as sug-
gested by example 3. The general case of variable rank. of the
£ ~projection of A is, so to say, reduced to the case of one-
to-one projection by-a standard geometric construction. Ac—
cordlng to a well known property of. Lagrangian manifolds there
is a covering {U,} of A and local coordinates (x@),¢®), x(a)—,( (%
so that 'in ‘these coordinates A nU, has a one-to-one ¢ ay 7
projection. Thus we can define the symbol of the local repre-
sentation U, =u ° kg of u and then find out how the symbol
changes when local coordinates are changed. We get some tran-
sition formulas which define a fibre bundle over A.The sym- .
bol of u is then defined as a section.of.this bundle whose
representatlons in local coordinates are the symbols of u,

The manifold A and the symbol characterize the- Slngularl—
ties of the distribution and an appropriate calculus is deve-
loped. Finally some applications are considered.

1. SINGULAR SPECTRUM OF A DISTRIBUTION

We start with a.-precise definition of the asymptotic (O.1)
of the introduction. . ;

Let X be an open in R® and u be a dlstrlhutlon from D*(X).
Consider the distribution valued function e_lefl] of the pa-
rameters AR, and.£€R™|0 ‘ :

Definition 1.1. @The (%) asymptotw (see Appendix 1)
‘ . Xy s
a/\syu(le) ~iAxf ue QD (%) ‘
Zs called local Fourier asymptotw of u and s denoted by
AF lOc[u](a* X :
- According to Appendlx 1, AF °“[uu§) is a class of distri-
bution. valued functions: aoif A) of & and A and

' DX et
a(x; ¢, A)G AF‘1°°[u](§)= asym e ,Mx£<'=>
<> <a(xé, A, $(H> ~<e m{u.@ =FluglAé), v é€ Cq<=>

<= <a(x;¢€, A),d(X>€ asym Flugl(ré), v ¢ & Com

* Such asymptotlc has been considered by Brychkov Yu.A.
(see ref.”®/),



1 R1 %0
Thus AFoc[u](cf) is determined by asym Flugl (A &), ¢ Cy
Now we shall define precisely the "support” of the asymp-
-totic (0.1) mentioned in the introduction. : :

Definition 1.2. The singular spectrum of u, denoted by

singspec u (or wave front of u, denoted by WF(u) ) is the set

of points of Xx(R™ |0) with the following property: a point
(2°.£9)€ Xx R™0 does not belong to singspec u iff there exist
a neighbourhood U_oCXof x° and a conic nezghbourhbod Fé-o of ¢&°
such that asym F‘[uqsx]()\f) 0 for all e I"{_-oand all qSGC Uo).

Lemma 1.1. If ¢&€Cy and(x &) &.singspec ufOI" any . %S supp ¢
then asym Flugl(A€P)=10 .

The proof is left to the reader.

" The examples in the introduction suggest to consider dis-
tributions whose ‘singular spectrum is contained in a homoge-—
neous Lagrangian manifold A, Such distributions’ will be called
Lagrangian distributions. Moreover we shall suppose at first
t:hat A has the form

. —- n
={(x,¢&) R fo

where g is a homogeneous functlon of degree I and Qg is an
open cone inR2. Thus A has a one-to-one projection on the
¢ ~space. Lagrangian distributions, for which (1.1) is ful-
filled, will be calles primitive Lagrangian distributions.

2. SYMBOL OF A PRIMITIVE LAGRANGIAN DISTRiBUTION

Let u be a primitive distribution,i.e., singspecuCA and A
is given by (1.1). If (x5¢°&A then, because-of (1.1), x# x°.
implies (x,£9¢ ' A. Thus, if ¢ # x°, then (x,£°)€ A (and conse-
quently (x,£°)4 singspec u ) for any xCsuppé.Hence, according to

lemma 1.1 asymF[u¢]¢°)=0.It follows that asymF[ugl(A¢°)fory e Cg

depends only on the term of ¢ in x% Thus if y¢ CO°° and ¥ (x)=1
for x in some neighbourhood of x° (we shall denote the set
of such functions by 1 (x) ), then asymF[uy](A¢) does not
depend on y. The fact warrants the following definition.

Definition 2.1. Let u be a prurntzve Lagrangian distribu-
tion and singspecuC A; where A s gwen by (1.1). The function
.9 [ul: AsQR") , _

Q[U](X°§°) el)‘x -£° asymF [ uyr 1(A €°),

(xc’.£°)£-/\
where ¥ €15(x°) s called the total symbol of u.

i g

:x=g’(§),"§GrQ§},' (1.1

ol

We shall denote by s(x,£;A) the elements of the asymptotic
class 8ul(x, &) and we introduce also the function :

: £,
7 (%€= 5(x, 3 1€))

which do’esn’t ciepend on A. Obviously

a-(x.£>i - o™ Fluple)

~» 00

and
S(X,€:0)= o (X,AE). | ' 2.1

The singular spectrum and the symbol characterize complete-
ly the singularities of the distributions, i.e.,

Theorem 2.1. If u and v are primitive dzstmbutwns and
singspec u= singspecvs> Glul=§lv] then u-veC™ .

Proof. It follows from the conditions of the theorem that
singsuppu =-singsuppv. Let x°& singsuppu. Take tﬁél‘(’;’(x‘)The condi-
tion S{ul=8(v] implies

asymF‘[(u—v)gb](:\f)=0 ' 7 (2.2)

for all p01nts 133 Rsc |0 for which (x°,£)& singspecu.If (x°¢£)<singspecu
then (2.2) is true in virtue of the definition of singspec u.
Thus (2.2) is true for any ¢ € R"|0.and consequently (u-v)¢
is C7 That means u-~v is C™ in some neighbourhood of any point
x °C:singsupp u =-sing Obviously u~v is C™ in‘the neighbour-
hood of all points x°#singsuppu and the proof is finished.
Now we are going to impose some additional restrictions on
the distributuons we consider, which guarantee that their sin-
gularities are not very "exotic'". If x°Csingsuppu then obvious—
ly (x=x>)*u(x), |a|>0 ( a— multiindex) is not "more singular"
than u at the point x° We shall require, it to be "less singu-
lar". Let u be a primitive Lagrapgian distribution and let us
study the singularities of(xj~xj)u(x) at x° provided the singu-
larity of u is given. Take ¢ & 135(x°). If (x°,¢) ¢ sing spec u
then, of course, (x° f)q’smgspec[(x- x°)u]ne1ther. Let
(x%, £°)¢singspecu € A . Then x°=g” (£°) and since g is homoge—
neous of degree 1, £.g’(£)=g(&). Thus

1)\ ° 8¢ .
& F‘[(x ~uygl(re)=e e !)(ia’:-—g’(§°))F[uu’fl(n)*nf_)\§o = (2.3)
j o '
‘ Ag(f®y
,__._;..f_*_(e EC R luglago).

—.0



iAg() ' .
Let us suppose that §Glul(g’(§.é)=asyme gﬁmﬁ](/\f) may be d;ffe—
rentiated with respect to ¢, i.e., that if syful(x,£;A) and '
S [u](xf A) are two functions from the same asymptotic class
Glul(x,£), where (x,6)€A,then a-E-sl[u](g ), fl\;\;—-—g sz[u](g (E)E A).
Under this assumption it follows from (2.3) that

o o fo i d. . 2 (g0 (¢} .
Q[(xj Xl (x%, € )=—;;3£-;,— QIgI(g (£°), €. (2.4)
This condition may also be written in the form |
o[(x.-—x‘?)u](g’(f),f) o~ l—ﬁv{u](g €38 f) (2.5)
G| 200 ) -

setting {=A¢°and taking into account (2 1) and the homogenel—
ty of g. .
As we already mentioned we shall require (x~-x°)%u(x), to be
"less singular' than u at x° :and thus following relations to
be fulfilled ' S S :
Fl(x=x°) ugr 1(AE) = o (Fluy 1A £)), (2.6)
i.e.,
asym F[(x-x°)2 ug J(A¢°) < asym Fluy 1(A€°)

and consequently

Gl(x=x)*ul(x°, &)< § [U](X° f° . .

In view of (2.3) the last relation may be written in the form
: (—/{)[al got [ul(g” (§°) £°)< G lul(g’ (f") £°)

or

Gg[u](g £),6)= o(o{u](g (6),6)), 185w .

This condition will be certainly fulfilled 1f we suppose that
there exist meR' and p>0 such that

Solul e 0.6)-00¢" " ). 1w, £e, 2.7)

.for any multnndexa Thus we came ‘up. to the follow1ng defini-
- tion. .

.. Definition 2.2. The class S?o congists of all dzstm,butwns
u with the foZZowzng properties:
1) v s a primitive Lagrangwn dtstmbutwn, Z.e.,singspecuC A

A={(x,€):x=g"(¢), €0} , :
- where g_w homogeneous of degree 1 and Q is a conic open in Rz,

.10

2) §lul(g’(9.€) may be differentiated with respect to & and
there exist meR! and p>0 such that for any multiindex a.

Bolulg ©.6)-006" "), 181+, ¢an, 4
where s{uXx.¢) s any function such that o¢lul(x,ré)e Glu I(x,£).

3. CONSTRUCTION OF DISTRIBUTION WITH GIVEN SINGULAR
SPECTRUM AND SYMBOL

In the previous section we saw that the singular spectrum °
and the symbol determine the singularities of a distribution.
Now the question arises how to construct a dlstrlbutlon when
its singular spectrum and symbol are given.

Let A be a Lagrangian manifold and §(x,£) be an associated
symbol satisfying the conditions of definition 2.2.. Take o(x,£)
such that o(x,A£)€§(x,£). We want to find a dlstrlbutlon u such
that

< Fly WIE) = oAb SR ED
fort/:-:l (%), (x, f)cl\ But (x,£)c A means X=g (f) thus (3 1) turns
to be - : ’

| —iAé. : —iA . .
FlugJ(A€) = E“E’o(g'(f)xg)=e. O eieragy | (3.2)

because of the homogenelty of g. Let us write. 11 z\f and replace
the sign » by =. Then instead of (3.2) we get .. ..

Fluglm)=e 5 Po @ (). o 3.3

If u satisfies (3,3), then of.course, it w111 satisfy (3.2).
Now (3.3) 1mp11es » .

uy (y)= re‘” B 6 (g () dn .

Taking y=x we get (since ¢y (x)=1 )

u(x) [ —i(x-n- g(n))o(g;(n)'n)'dn'- ) o . (3'4)

These considerations suggest that we may expect the distribu—
tion (3.4) (the integral belng regularized, see refs./ 15/ )
to have symbol o .Before proving it we shall write (3.4) in
another form - as an 1ntegral on the manifold A.The manifold A
is given by y=g’(y) and, since g is homogeneous of degree 1,
g(m)=n-8"(n)=n-y, when (yn)&A. We write in (3.4) y instead of

11



g°(n), and n.y instead of g(y) and get

i(x-y)n ) .
ux= [ e -a(y,n)dy. ' (3.5)
AC R}2n . '
y

Theorem 3.1. Let A be a Lagrangian manifold and G(x,¢) =
=asymo(xAf)an assoctated symbol satisfying the conditions of
the definition 2.2. Then the distribution determined by the
formulas (3.4) or (3.5) (the integral being regularized) be-
longs to the class Lo and has for symbol G(x,€).

We omit the proof which is a straightforward, but tiresome
application of the stationary phase method.

k. THE SYMBOL OF A LAGRANGIAN DISTRIBUTION
IN THE GENERAL CASE

In this section we roughly sketch some ideas of how to de-
fine the symbol of a Lagrangian distribution when the condi-
tion of A to project one-to-one on the £ -space is not ful-
filled. :

Let A be an arbltrary homogeneous Lagrangian manlfold in
R*" and u- a distribution for which singspecuC A. According
to a well known property of Lagrangian manifold (see Appen—
dix 2) we may find a coverlng 10Uz} of A (Ugq, are open 1nRx e )
and local coordinates «z. in R® so that the image 1\'; of
Ay=U," A by the mapping x '

Ve, @, €9 < DK*)"‘ef{

is represented by @ (.f ) with .g, homogeneous of degree 1,
Denote UJ =(x, (DK*)‘l)U s Aggr U, N UGN Ay Al = (i, (DX )™ 1)Aa3

AfB._.(KB (DKé‘)"l)A g .Then AaB is represented by x(“) =g (é( Band
by x(B)—g (f(B) ).

’%enote u -u°:<a1 .Then U, is a primitive Lagrangian distribu-
tion, so Q[ua] is defined._,Consider the symbols Q[ua] and
@[uB] which map A7 resp. A3 into ®@(RY). The question we

- ask is: how does the symbol change when local coordinates are
changed,’ in other words how §lu odlpa, and Q[UBHAB are con-
nected. aB
~ Suppose that the distributions U,.are not only primitive-
but belon to the class £ . Take functions aa(x(a) £@) such
that (x AE®) )€8[u, ]. According to the previous section

1Dy e
u, (x‘“’) [ 1T "B o (g4 (n), ) dn.

12

Then for u =u, ° o KB ‘we get the expre351on

. (B)
x(K(x ) o .
ugx® )= (e TR g (& m) )y

where we denot_ex=:<a° ! For simplification of the notation
we shall write (2,{) instead of (X(B’cf( ).Take a point (z°§°)»=1\3

‘Then z —gﬁ(g"‘) Let ¥ €17(2°). We have to calculate the asymp—
totlc :

—iAL°. 2 o K (DN —ga(M)

Flugyl(x )=Ire o (&, () (2)dzdy

(4.1)

-A - Q. — . 'v .
= e N EDNET I (o 0y Amyu(2ydzdy.

Let us apply the 'stationary phase method. The statlonary p01nts
(z,7) satisfy the equations

(«"(2))*n -¢°=
«(2)~g (n)=0

hence

n=(x" (1)) e o
. (4.2)
k(D =g, (" (D*) L),

As was already mentioned AaB is represented by x@=g’(£%.0n.
the other:hand the mapping , - U S

@ anm , Y e (Dery

B a B .
transforms AaB into Aaﬁ.hence A,g is represented b}’ -

k@=g Dk T )

We see from (4.2) and él; 3) that if (z,7) is a stafionary point
of (4. 1), than (z, C")GA .and consequently 2=g,({%)=2° " Thus
there is a single statlonary point (z°%7°) where n°=(x (z°)*)"1g”
Denote by Hg the Hessian at (2%7°) of the phase function’

D(z,n) =« () n~L° z2~g; ().

(Prove that Hp is nonsingular!):The stationary phase method
gives us the following formula for- thie asymptotic of (4.1)

13



—iAz ;
0T G L o) = Flugu] (L% |
m

1 .
=(277,x-)"/2 [detﬂol % expli[A®(2°9°)+ 7

sgnHy 1} x ’ (4.4)
(12 o el b G :
X.=2(r) ‘]—'_' (Dz'n Ho _Dz'n) [aa(ga(n)v)‘n)lrll(z)]lzg:zg A .
n=n
This relation‘may be differentiated with respect to z%p°.
Denote by S, the suit of all the derivatives D“(%(x%),Aééa))
(@ (@) e (a) é(a) . : @)
of o, (x" 7, )with respect to(x ' ,& °)taken in the point (x4
)\féa))and by Sg similarly for og . Here (x(g),fgl)) is the image
of (2°,{°) by (x,(D«k*)"1). Then (4.4) and its derivatives give us
a relation of the form

Sg=Ty854. . , | (4.5)

where T,g is some linear mapping of an infinite product a~=
=@RY)x G(RYx...into itself.Now consider a fibre bundle F(A)
with base A, fibre @ and transition formulas (4.5). The sym-
bol of u is defined as a section of F(A) which in local coor-
dinates is given by o, and its derivatives.
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