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We consider a gauge field theory with spontaneous breaking 
of the symmetry due to the presence of nonlinearly transform­
ing fields. Treating the gauge group G as a structure group 
of a principal fibre bundle and the fields as cross-sections 
in associated fibre bundles, the nonlinearly transforming 
fields play the role of "reducing fields" according to the 
reduction theorem for structure groups of principal fibre 
bundles. Based on the latter we review some features of the 
reduction of the gauge field theory with gauge group G to a 
gauge field theory, which is gauge invariant with respect to 
a subgroup of G . We put an emphasis on the reduction of the 
Yang-Mills potential (a connection form on the principal 
fibre bundle). Within the frames of that reduction there 
arises in a natural way a Yang-Mills potential, which takes 
values in the Lie algebra of a group, containing the gauge 
group as a closed subgroup (Eq. (3}). We elaborate in more 
detail the spontaneous symmetry breaking in case the Lie 
algebra of the gauge group satisfies Eq. (4}. Then every 
"reducing field" relates to the Yang-Mills potential in the 
theory another one, which is "correlated" with the "reducing 
field" (Eqs.(5),(9),(11}). The two Yang-Mills potentials are 
connected by a 1-form field (Eq. (10)). Finally, we write the 
relation between the latter and the "reducing field" (Eq. (8)). 

We consider a gauge field theory as being defined by 
(a Yang-Mills potential) a connection form on a principal 
trivial fibre bundle P(X,G) with base X and structure Lie 
group G and a set of (fields) cross-sections of fibre bund-
les associated to P (see e.g. /1,2,1/ , ) without fixing the 
details of their dynamics. 

1 . Let w be a connection form on P , i.e. , w P : r P (P) .. § , 
for every p ~ P, where r P (P) is the tangent space to P at 
the point p • and ~ denotes the Lie algebra of G • The pull 
back of ru by a cross-section q : X .. P , rq =Q *w is the 
Yang-Mills potential (corresponding to w) in the gauge q . 
In terms of another cross-section q' , q '(x) = q (x) g(x) , 

•we denote by r(M) the tangent bundle of the manifold 
and by r m (M) the tangent space at m ~ M. 
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g : X --> G, one has 

-1 -1 
f' '( ) = ( q '*w) = ad (g (x)) f' ( )+ g (x) dg (x) 

q X X q X 

A 

2. Every field ¢ is considered as a cross section of a 
fibre bundle E = (Px<ll)/G associated to P with standard 
fibre, the manifold <ll (the action of G on <ll, T(g) : <lJ __, <lJ , 
g ~ G is given). Relative to the cross-section (the gauge) 
q : X-> P every ¢: X ... E is represented by a (smooth) mapping 
¢: X _,<IJ. By means of the cross-section q', q'(x) = q(x) g(x), 
g:X .... G, onehas ¢': X .... <ll,¢'(x)=T(g-1(x))¢(x). 

3. We suppose that among the fields there are cross-sec­
tions of the fibre bundle K =(PxG/H)/G associated to P with 
standard fibre the homogeneous space G/H of G , where H is 
a closed subgroup of G and the action of G on G/H , F(g) : 
:AGIH--> G/H , g ~ G, is the natural one. The cross-sections 
z : X-+K are those, which "break the symmetry spontaneously". 
In the context of a Lagrangian field theory they arise usu­
ally from the values of the Higgs field, which minimize the 
"potential energy" or from boundary conditions, which ensure 
~inite energy (e.~., monopole type) solutions of the field 
equations (see 15

• 
1 

) • By means of the cross-section (the 
gauge) q : X--> P every such field ~ : X ... K i!s described by a 
mapping z : X --> G/H .. 

Th~~covariant derivative (with respect to w) V z of the 
field z : X .... K is a 1-form field on X with values in the 
associated bundle Kr = (P xr(G/H)) /G (cf. /4,3/ ) • In terms of 
the gauge q it is given by a 1-form Vz on X with values in 
r(G/H) 

Vz (t) = dz (t) + F(z(x)h (f' ( It)), 
X X q X}' (1) 

where x G-X, t ~ r x (X) , and the second term in the right-hand 
side of (1) is the value at z(x) G-G/H of the fundamental vec-
tor field on G/H corresponding to f' ( p) r;; G . ~ 

According to the reduction theore~ L 8 , Ch. 1] , to every z : 
:X __, K there corresponds a reduction of the principal fibre 
bunde P(X, G) to a principal Afibre bundle Q(X, H). with a 
structure group H . We call z : X ... K reducing field. Q ap­
pears as a subbundle of P with projection rr Q : Q ... X which 
is the restriction of rr : P ... X to Q . In general Q is not a 
trivial bundle, although P is. 

A collection of local trivializations lqa I of Q is 
obtained in the following way ( cf / 31 ) • Let IV a : a~ I I be an 
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open covering of X such that for every a<; I there exists a 
differentiable map g a·: V a --> G which satisfies 

z I v <J (x) = F'(g a· (x)) (eH), 

Then a set of local 

(2) 

where e is the unit element of G 
trivializations (local gauges) qa Va-->Q is given by qa(X) = 
= q(x) ga (x) for every aG I and 

rr~1 (Va.) =l~(x)h: X ~ Va, h G H} 

4. The restriction 

# w =wi Q 
(3) 

of the connection form w to Q C P determined by 

f' <Ja (x): T X (X). --> '§ 

r «<a(x)= ad(g;
1 

(x))f' q(x) + g~1 
(x) dga(x) 

is a '§ - valued connection form on the reduced H -subbundle 

Q*. 
Let '§ admit the decomposition (as a vector space) : 

'§ = J{ $ J( ' ad (h) J( c J( ' for every h r;; H, (4) 

where J{ is the Lie algebra of H, and K is identified with 

r eH (G/H) • .. 
Then an J{ -valued connection form a

11 
on Q is determined 

[8, Ch.ll] by the projection 

Aqa (x) = (f' qa (x~ J{ 
(5) 

of f <o(x) onto J{ (Aq (x} q t a# is the Yang-Mills potential 
corresponding to a 11 fn the local gauge qa ) • 

li-Since Q is a subbundle of P, r P (Q) for every p G Q is 
a subspace of rp(P) and can be decomposed into horizontal 
and vertical parts (with respect to w ) : r P (Q) .. H P (Q) + V p (Q) • 
In general, of course V (Q) q rp (Q). The form w# ann~hila­
tes the vectors from HP~) and only thlf· These vectors we 
call horizontal in Q with respect to w • 
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5. The difference v 11 
= w 

11
- a 

11 
is a horizontal K -valued 

1-form on Q • It corresponds to a 1-form field ~ 11 on the 
base X with values in the associated bundle KQ=(Q xK)/H. 
In terms of the local trivializations lqa l we give ~~~ 
through the set of 1-forms 

~ # ( 
v=q*v =1 )K a a qa ' (6) 

where ( 1 q a)K is the projection of 1 Qa onto K. The local 
forms va transform according to the representation h .... ad(h- 1) 
of H. 

6. The reduction of__ P(X, G) to Q(X,H) ~puts in correspon­
dence to every field ¢ a reduced field ¢ 11 : X .... EQ= (Q x ¢)/H. 
The latter is defined by a mapping cpa: Va -.<ll, ¢a-ex) =T(g-;;_1(x))rp(x) 
in every local gauge q

0 
, a~ I . 

7. The set of reduced fields 1¢ # l obtained from the 
fields ! ¢ l of the initial theory with gauge group a ' the 
J{ -valued connection form a# in Q and the 1-form field 7,# 

constitute the reduced field theory gauge invariant with res­
pect to H. The field £#: X->KQ=(QxG/H)/H, corresponding 
to the reducing field z , in every local gauge q

0 
i~ given 

by the constant mapping (cf.Eq. (2)): 

z a va .... <P, za (x) = eH. 

Its covariant derivative with respect to w# equals the 
1-form field v-# (cf.Eqs. (1), (6)): 

v~#=~# 

(7) 

(8) 

( K is identified with r
6
H(G/H) ) . 

This relation and Eq. (6) enable us to find a parallel bet­
ween the massive vector fields in the gauge theories with 
spontaneously broken symmetry via a Riggs-Kibble mechanism 
and the covariant derivative of the nonlinearly transforming 
field which appears in field theories based ·on nonlinear 
Lagrangians (see, e.g., /7,91). 

8. Sincg Q C Pis a subbundle of P it is possible to extend 
a# and v to a~ -valued connection form a on P and to a 
horizontal ·~ -valued 1-form i7 on P, respectively (so that 

I # -1 ~ # 
a Q =a , v Q = v ) • To this end we gauge transform A ( ) 

qa x 
and v ( ) by g-1 (x) : a x a 
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A ~(x) .... A q(x) =ad (g a ( x)) A~(x) + ga (x) dg a (x) , 

(9) 
vqa(x) .... vx = ad(g a(x)) vax' X G- V a . 

This provides us in the gauge q: X .... P both with a Yang­
Mills potential Aq=q*a and a~ -valued 1-form v=q*i7 on 
X . The latter transforms according to the representation 
g .... ad(g-

1
) of G. We have, of course, 

1 =A +v. q q (10) 

Therefore, when the structure group G of P reduces to a 
subgroup H and its Lie algebra ~ satisfies Eq. (4) , with 
every connection form w on P, we can associate, firstly, a 
~ -valued connection form a on P reducible to an J{ -valued 
connection form on Q , and, secondly, a horizontal ·~-valued 
1-form v (so that W=a+ v). The horizontal 1-form iJ corres­
ponds to a 1-form field ;;(;J Q = C #) on the base X with 
values in the associated fibre bundle (P x ~ )/G. 

Finally let us point out the fact that the reducing field 
which gives rise to the reduction is covariantly constant 
with respect to the connection form a on P. Denoting the 
covariant differentiation with respect to a byV' we have 
(cf.Eqs. (1), (5) and (7)): V'z = 0 in every gauge. That 
property has been used in 1101 to consider the so-called 
inverse Higgs effect. 
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