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YpaBHeHHR neH~eae H HX CBR3b C He~HHeHHWMH 
3BO~~~HOHHWMH ypaaHeHHRMH. 4acTb II 

Hcc~eAPBaHw HeKoTopwe ceMeHcTaa ~acTHwx peweHHH 
TpeTbero H nRTOro ypaaHeHHH neH~eae, o6CY*Aa~TCR pesynbTaT 
HCC~eAOBaHHH O~HX H ~aCTHWX peweHHH. YcTaHOa~eHa COR3b 
Me*AY no~y~eHHWMH peweHHRMH, HaHAeHO npeo6paSOOaHHC 6CKnyH
Aa. 

Pa6oTa awno~HeHa a Ila6opaTOPHH a~~HCnHlCnhHOH 
TeXHHKH H aaTOMaTH3a~HH OHRH. 

C~eHMe 06~eAMHeHHoro HHCTMTyTa ~AePHw~ H 

Bordag L.A. 1<:5-110-.1·77 

Painleve" Equations and Th~ir Connection 
with Nonlinear Evolution tqlliJii<ln~. l' t ltl II 

INTRODUCTION 

In the paper 111 we have discussed general and partial so
lutions of the first, second and fourth Painleve' equations. 
Here we deal with the third Painleve' equation 

d
2 

2 8 ~=..!.(.illY..) - _lh_+..L(aw2 +f3)+yw 3 +-
dz 2 w dz z dz z w (P3) 

and with the fifth Painleve' equation 
2 2 

d w=(-1-~ _1_)( dw/ _ _!_ dw+(w-l) (aw+.f!._)+ yw+ 8~1) 
dz2 2w w-1 dz z dz z2 w z w-1 

(P 5) 

Some of the important overall features that these equations 
have are: 

i) Both equations can have solutions with a fixed criti
cal point. 

ii) The equations P 3 and P5 can have entire transcendental 
solutions (the equation P 3 for the parameters y= a= 0, 
and the equation P5 for the parameters a= 0, see 1 1/ ) • 

During the last decade the investigation of partial solu
tions of the equations P3 and P5 was especially intensive 
because solutions of some important physical problems are 
expressible in terms of the solutions of the equations P 3 and 
P5 . For instance, in the recent paper Newell and Flashka /2/ 
have shown that the special case of the P

3 
equation is deri

vable as similarity solutions of the Sine-Gordon equation. 
In the article 131 examples corresponding to equations for 
other Painleve' transcendents of the type P3 and P 5 which 
result from the Regge-Lund model 14,5/ and the Ernst equa-

• 16 1 d I dd. . h . . . f h t1on are presente . n a 1t1on, t e 1nvest1gat1on o t e 
spin-spin correlation function <u 0 0u M ;N > for the two-di-
mensional Ising model in the scal1hg limits leads to the ex
pressions for these scaling functions in terms of a Painleve' 
function of the third kind 171 

I. THE INTEGRABLE CASES OF THE THIRD PAINLEVE' EQUATION 

The first exce~tional case of P 3 equation has been inves
tigated in refs. S,9/. Two conditions are indicated for the 

' ; 1 : ·.'.·' y 1 
.- ) 
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parameters of the equation for which the equation PJ is comp
letely integrable in terms of classical functions 19 . Indeed, 
if 

a) a= y = 0 and ~, a are any constants, 
or 

b) ~ = a = 0 and a ' y 
then we substitute 

z = et 
' 

w =Ve kt 

are arbitrary, 

(I ) 

( k=l for the case a) and k=-1 for the case b)) and obtain that 
the third Painleve~ equation corresponds to one of the equa
tions 

aJ vv"=v' 2 +~v+a (a= y= 0) 
or 

b) vv"=v'2+ av 3 +yv 4 (fJ=a=o). 

With the help of the substitution v'= u w~ reduce the last 
equatiqns to the equations of the first order 

or 

du 2 
a) VU- = U +f3v+a 

dv 

b) v u ..£I! = u 2+ a v 3 + y v 4 . 
dv 

(2) 

t 
After the integration of the equations (2) we obtain that the 
function v(z) must be defined from the equality 

a) f dv --;--= ± t+C2 
yC1 v2 -2f3v -o 

or (3) 

b) f dv -- '-- -=±t+C2 
vy;V 2+2aV+ Cl 

where C 1 and C2 are any constants. 
9onsequently, functions v(t) and w(z) respectively are 

expressible in terms of classical functions. For instance, if 
in the formula (3b) C 1 =a = 0 then the solution of the 
eq. P

3 
is 

w(z) 1 

y"y z(±lnz +C 2 ) 

and the point z = 0 is a branch point of the solution. 

2 
... 

It is a close connection between the cases a) and b) since 
the equation P3 has certain symmetric properties. It is known 
that, if w(z)=¢(z,a,f3, y, 8) is a solution of the 
eq. P3 . then the functions 

a) w(z) = ¢-1(z,-f3,-a,-o,-y), 

b) w( z)= ¢ - 1(-z, f3 ,a ,-8 ,-y ), 

c) w(z) =-¢-1 (z,f3,a,-o,-y), ( 4) 

d) w(z) =-¢-1(-z, -{3,-a,-o,-y) 

are also solutions of the equation P 3 . 
Later the similar results were found by H.Airault 1101 The 

author proved the following theorem. 

Theorem I. Assume that f3=o = 0. 
two families of solutions 

A-1 

Then the equation P
3 

has 

w(z) =--z ___ _ 

Az 2.\ + BzA + D (5) 

~vhere 

8=-..£_ 
,\ 2 ' 

and 

w(z) 

4AD =..E..~ Y 
,\4 - ~ 

1 

z(alog 2z+bl6gz +d) 
where 

2a =a b2 -4ad=y. 

(6) 

Of course, the formulae (5-6) can be also obtained from (3). 
In addition to the cases (I) N.Lukashevich has found that 

all solutions of the Riccati equation 

~=aw2+~W+b 
dz az 

are simultaneously solutions of the equation P
3 

meters of the equation P3 fulfil the conditions 

f3+a- 2
a b =0, y=a 2 ;, 0, o+b2 =0. 

a 

(7) 

is the para-

(8) 

If we -take W=-1.. .!!..'=- ...!.. (ln u '), then the equation (7) can 
· a u a 

be rewritten in the linear form 
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u"+ ~u'+abu=O. 
az 

It is the equation for the Bessel function. For 

· a = ( 2 n + 1) a = ± (2n + 1) V y , 
where n is an integer, it has solutions 

- ..1.. n 
u(z) =v2.... zn+ 2 {(-1)0 c d ( sinr ) + 

rr 1(rdr)n r 

n 
+ c

2 
_d_c cosr) 1 
(g-dr)n r ' 

where r = z V ab. 

(9) 

( 1 0) 

( 1 1 ) 

Therefore, the equation P
3 

has solutions expressible in 
terms of classical functions and also under conditions (8) *. 

It should be remarked that J.Myers, B.McCoy, G.A.Tracy 
and T.Wu have investigated almost analogical case/7,111. Namely, 
they assume that the parameter a , f3 , y and 8 satisfy 

a,_j-8 + f3VY =0. (12) 

Under the assumption (12) there is no loss in generality if 
we consider in place of the equation P3 the equation 

w"=.1..(w') 2 --1w'+ k(w 2 -1)+w3 _ _l. 
w o e w • ( 13) 

where v is a constant. 
If we seek the one-parameter family of solutions of the 

eq. (13) that remain bounded as 0 approaches infinity along 
the positive real axis, then we come to the following. The 
function ~(H,v,i\) for positive 0 and Rev>-t has there
presentat~on 

~e.v,i\) =C(t;v,i\), 
1+w(O,v,i\) 

where t = 20, 

( 14) 

*Remark. It can be found also other conditions on the pa
rameters a , f3 , y , 8 for which the equation P 3 has partial 
solutions expressible in terms of classical funcGions (see 
Sections 2,3). 

4 
.. 

• 
2n+1 

G(t;v,,\) I i\ g (t;v), 
n=-0 2nll (15) 

"" g (t· v) = 1· dy exp(-ty) ( y-1 v 
1 • . --·-----· --) 

1 cl-1) Yt Y +1 · 
( !fi) 

and for n 1 

n -- (......, 2n+ 1 
g2n+l(t;u)=(-l) fdyl ... (dy

2 
l 11 ~i=.W.c~-l)~'lx 

n+ 1 . 2 tl 1 1 1 J= 1 (y . --1) 72 y. + 

'< [ ff ( y. + y. f 11-l II (y 2 -1) I J J 
j= 1 J J-l 1 I, 1 2j ' 

[i\l<R(t) , R(t) is the radius of convergence of (15). This as
sumption was proved via a straightforward substitution '11/. 

N. Lukashevict/ 121 has found the necessary and sufficient 
conditions by which the solutions of the eq. P

3 
have a pole 

in the point z. = 0: a pole, a critical pole, a critical algeb
raic point (i.e., the point z =D is a branch point of a so
lution and w -• 0 by z -• 0 ) or by which solutions of the 
equation P3 are holomorphic functions in the point Z=O. 

If the point z = 0 is a pole of solutions of the eq. P 3 
or solutions are holomorphic in this point, then such solu
tions of the equation P

3 
have the form 

w = _ti&_ 
u(z) 

(17) 

where v(z) and w(z) are entire functions. But the general 
representation of the solution of P3 and its complete clas
sification have not been so far obta~ned. 

In addition, systems equivalent to the equation P 3 were 
found. For example, for parameter yfoO the systems are 

dw - 2 
zcrz=aw 1 +vyzw • 

dw 
zw --1 = 8z +f3w + (a-1) ww + zw 2 , 

( 18) 

dz 1 1 

a= a -l, 
VY 

y,k 0 

and 

dw a -- 2 
Z-=-(-+1)W+ZW -z,_jy w-

dz vr 2 

5 



zwdw2~-(_::_+2)ww +f3W+OZ+zw 2 
dz .fY 2 2 

The investigation of these systems allows us to prove the 
following theorem. 

(19) 

Theorem 2. Hhen y=/0, zw' -\~ -2)w -{3~0 (the function w1 . 1 vY 1 
is defined through the system (18)), zw;+({y-+2)w2-fl~O (the 

function w2 is defined by the system (19)), than all solutions 
of the P3 equation (except for the rational solutions), 
which have in the point z =0 a pole or which are a holomorp
hic function in the point z =0, have an infinite number of 
poles with residues±./ . Hhen y= 0 , af 0 then all solutions, 

except for rational sofutions, have an infinite number of 
poles with residues eq~al to zero 1 12 1

, 

2. RATIONAL SOLUTION OF THE EQUATION P
3 

If we take in (17) 

n 
v(z) = ~ aj zj a

11
=/0, 

j=O 

rn . (20) 
u(z)= ~ b.zJ, b 

111
=/ 0, 

j=O J 

then the function w(z) is a rational function. It should be 
emphasi~ed that three cases are possible, namely 

a) n = m, if yo =1 o; 

b) n > m , if y=a=O, (21) 

c)n<m, if fl=o=O. 

In the last two cases (21b,c) the equation P 3 is completely 
integrable, therefore the rational solutions exist and can 
be obtained from the general formulae (3) for the solutions 
of the equ~ion P 3 . For instance, if fl~ o = 0 (21 c), 
and a=±kyy, k>O, k is an integer and the equation P

3 
has 

a rational solution 

W ( z) = __ _:a::_ __ _ 

-yZ+ CZ l±k 

where c is an arbitrary constant and so on (see Section 3, 
formulae (3), (5), (6)). 

6 
ri 

Besides these rational solutions the equation P3 has for 
the parameters yo I= 0 rational solutions of the type 

:f a. zi 
j =0 J 

n j , an' bn fO. 
~ b.z 

w( z) 

j=O J 

If n=m =0, then 

w(z) =±y-T 
a 

is a solution 

of the equation P 3 for the parameters 

afl-/= 0, yf3 2 +oa 2 /=0. * 

Ifn=m =1 a solution of the eq. P3 has the form 

w(z)= ~ 
bz+c · 

(22) 

(23) 

(24) 

The straight substitution gives us three possibilities for 
values of the coefficients a, b and c 

a) if ~ + JL - ..±.., then bac I= 0, 
v-f?y a Y 

/\:ab-c I= 0; 

fl= c -3ab 
/\2 

b) ifa{-31= 0, 9y-a 2 =0 and 

a = 0 b2 =....a_ c = _1_ · 
. '3fl . fl . 

c) if y-a4=0 , 9o+fl = 0, then 

b 2=k a 2=~ c = 0 fl . yfl • . 

b4 
y=-. a =- __ 1_ 

~2 2. 1\ 

o+fl 2 
= o, then 

These rational solutions (with n =m,(22)) can be found also 
from the system · 

*Remark. If a,fl,y,o and w(z) are real and the conditions 
afl<O , yfl2+ oa2=0 are fulfilled, then all solutions of the 

equation P 
3 

which fulfil the initial conditions lwCzJ I <4, 

lz
0

l<oc and lw'(zQ)I<oo can be continued for all z possibl,Y 
except for the po1nt z =0. 

7 



, ,2 , 2 
zuu = zu -uu -yzv -auv, 

(25) 
2 

zvv"=zv' -vv' +ozu 2 +f3uv, 

which was obtained by Painleve~ 11~1 for the functions u(z) 

and v(z) from (17). But now one must look for a solution of 
the system (25) in the form 

u(z) =((z)exp g(z), 

v(z) = ry (z) expg(z), 
(26) 

where ((z) and ry(z) are 
function. In order words, 
lution of the equation P3 
sufficient that the system 

polynomials and g(z) is an entire 
for the existence of a rational so-
for yo t 0 it is necessary and 

z(("=zC 2-(('-(2Az+JL)( 2 -yzry2 -a(ry, 

(27) 
2 1i "', = z 7], 2 - 7]"1,- (?, ,\ z + Jl) "12 + 0 z' 2 + f3' 7] • 

where g'(z) =Az + Jl and A, Jl are any constants, has a poly-

nomial solution for some Jl and A= ± ; v:::;B :' 121 

Remark. It should be pointed out that by the restriction 
g(z) =const one cannot find the rational solution of the equa
tion P3 of type (22) from the system (25). The system (25) 
has polynomial solutions of the type (22) with m < n or n > m 
only. But if we look for the rational solutions of the equa
tion P3 system (27), then we can find all rational solutions 
of the equation P.3 • It is the ground that the statement in 1 1°1 

that the equation P 3 can have rational solutions for y=a=O 
(n > m) or for f3= O= 0 (n< m) only is wrong. This state
ment is right for the system (17) only. For instance, if 
we take 

a=5, f3=-1, y=l, 0=-1, 

then the equation P has the rational solution 
3 

w(z) = _u_l_ 
z +2 

(28) 

w(z) generates also a solution of the system (25) if we take 

and 

8 

u(z) =(H2) exp( _ z(z+12)) 
4 

"' 

l 

., 

v(z) = (z+l) exp(- z(z;l 2) ), 

i.e., the function g(z)~-tz(z+12) 
case. 

is nontrivial in this 

3. BACKLUND TRANSFORMATION FOR THE EQUATION P 3 
AND ITS APPLICATION 

At first one considers the equation P
3 

with parameters 

yo 1= o. (29) 

Under the assumption (29) there is no loss in generality if 
we take y=l and o=-t ,1g . In 1975 V.Gromak, 161 has found that 
the system 

z~-=(a<-l)V>+ZV+E zw2 
dz ' 

dv 2 
ZW-={1W-Z+(ac-2)V<VI-ZV , 

dz 

(30) 

h 211. . h . were c = )( = ,1s equ1valent to t e equat1on P
3 

for parame-
ters y= 1 and O=- 1. Using this system he proved the theorem. 

Theorem 3. Let w(z) 
any a , f3 and y = 1 , o = - 1 

he a solution of the equation P
3 

and the function R ;t 0, where 

R ( z, w, W ') = illY_ -< w 2 - _1.( a< -1) w + 1, 
dz z 

then the function 

w
1 

(z) 2zR(R-z) 

dR 
2 z - + R ( u(/i -a<+ 2) -7]( (3 +a c-2)) -2u( {J-cu+2) 

dz 

is a solution of the equation P for the parameters ,s 

a = ~[7J(f3+a<--2) -u({:$-a£+2)+4]. 
1 2 

f3 = L[ f3+ a<- 2]+ ~[ fl- a<+ 2] 
1 2 2 • 

y1=1, 0.=-1, 

where < 2 =7] 2 =u 2 = 1. 

for 

(31) 

(32) 

9 



Essentially it is a Backlund transformation (B.T.) for the 
equation P 3 under the condition yof 0. 

The B.T~ for the equation ~ in the cases 

if y=O and oa ~0 or 

if o: 0 and f3 y ~ 0, 
/14/ was found also by V.Gromak 

If y= 0 , aD -1 0 we take z = ,\ x , w = fl y , where 
4 ·------ 4 ,---0-

A = V- _1__ , fl = y - -, 
a2o a 2 

and obtain the following equation for the function 

xyy"= xy'2-yy' + yB+jjy-x' 

where /{ =/1v' t . 

(33) 

(34) 

On the other hand, we also get the equation for the second 
case 

0= 0. (1y ~ 0' 
4 -1- 4 y 

where now ,>.. =v'--• 11-=v'-2 and if ~;e take z "',\ x , w = 1!:... 
y' 

- v' 1 {3>=- a - y · (3 2y f3 

Therefore in both cases (33) the equation Pa can be redu-
ced to the equation ( 34) . ' 

It can be proved that the system (30) is equivalent to the 
equation (34).The investigation of this system leads to the 
following theorem. 

Jheorem 4. Let y
0 

=y(x, i~) be a solution of the equation 
(34) for any parameter (3

0
=11 then the function 

(E-{3 ) y +X -fXy' y
1

(x) = ~-Q..:. _____ o 
y2 

0 

( 2= 1 (35) 

is a solution of the equation (34) for a parameter 

/1 1= f3 0 - 2£ . (36) 

Theorem 4 gives us the B.T. for the equation P
3 

in cases (331 

*Remark. Besides the theorem 4 the following theorem is 
true. 

Theorem. If we look for the general solution of the equa
tion~~or any parameter B it is enough to build the_ge
neral solution of the equation (34) in the region [ Ref30 ,Re(3

1
], 

where f3o is any constant and f3 1=(3 0 -2c, c2,.,!. 

10 

... 

l 
I 
~ 

I" 

I 
I 
~~ 

t 
f 
c. 

11> 

,: 
'' 
~: 
.I 
~ 

- -----------~~---------------------- --~ 

The formulae (35), (36), i.e., B.T., can be used 
construction of partial classes of the solutions of 
tion (34) and, respectively, of the equation P

3
. 

If we take · 
3-

y(x)=v'x 
0 

for f3 = 0, 
0 

we obtain after the first step 

s
Y (x) = + 2 +3 V x2 

1 
a ~x 

for f3 = +2 1 - ' 

after the second step 

-2 a- a
y2(x) = + 4X+20yx+9zy~:_ 

(2 + 3Vx2 )2 
and so on. 

for f3 = ± 4 
2 

for the 
the equa-

(37) 

(38). 

(39) 

The solutions of the equation P 3 corresponding 
lution Y 0(x) (37) of the equation (34) are 

t0 the so-

113 
w(z)=hz , 

where h is defined from the equation 

ah 3 +o=0 

by the parameters {3 = y = 0, a o f, 0 ; and 

- -1/3 w(z)=hz , 

where h is a solution ~f the equation 
yh 3

+f3=0 

(40) 

(41) 

if in the equation P3 the parameters a and o are zero. 
If one takes the solution y 

1
(x) (38) of the equation (34) 

then the corresponding solution of the equation P for y- 0, 
aof3" 0 '168 2-9(3 2 =.0 is, for instance, 3 

s-
9aa v' z2 +4 

w(z) .. a ---s=---
4 ,1 z 

where a is an arbitrary constant*. 

( 42) 

The list of the solutions of the equation P
3 

which are 

rational functions of the ~~ may be continued easily in the 
same wa.~y_. ________ _ 

*Remark.The solutions (40-42) are obtained by straight 
substitution in 1121 

11 



The B.T. can be applied also by the extraction of the va
lues of the parameters for which the equation P3 has always 
solutions which are expressible in terms of classical trans
cendents. The first results in this way were obtained in 1 15/, 

Theorem 5. Let be 

f3+a£ 
1
=2(2n+1)c

2
, y=1, 0=-1, (43) 

where n is an integer, cf= 1, fulfilled then the eq. P3 for 
such parameters a,f3 • y and 8 has solutions which are ra-
tional functions of the Bessel function. 

Indeed, if n= 1 in (43) then all solutions of the eq. 

w'- £ w 2 -z -l (at -1) w -t =0 
1 l 2 

are solutions of the eq. P
3 

for parameters 

f3+at 1 =2t 2 , y=l o=-1 £2 =€2 =1 • • 1 2 . 

( 44.) 

Using these solutions as start solutions by the B.T. one ob
tains new partial solutions of the eq. P for the parameters 

3 
. f3+at 1 £2 =-6£2 , y=l,o=-1. 

They are solutions of the equation 

3 3 . 
(w')3 + L P. (z,w)(w') -J=O, 

j= 1 J 

where 

2 -1 
P 1 = c 1 w + z (3 +a c ) w + t 

2 
, 

4 -1 2 2 ·2 2 
P2 =-W + 2z (q-a)w -(2t1 t2 z +a + 6at

1 
+ 13)z w 

-1 
- 2(a+7)t2 c 1z w-1 

6 -1 
P3=-c 1 w -(1+3ac 1 )z 

5 2 2 
w - ( 3 € 2 z + 3 £ 1 a + 10 a + 15 f 

1 
) x 

3 -3 3 3 2 
W - Z W (a t 1 + 9 a + 23a t 1 + 15) 

-2 4 -1 
w -6(a+3q)t2 z z 

2 . 2 -2 . 2 
-(9c 1z + 3a c2 + 26a £ 1 <2 + 63t 2 )z w 

-1 
(3ac 1 + 7)z w -{ 

2 

12 
,.. 

(45) 

... 

; 

. ! 

;), 

\ 
'I 
J 

All solutions of the equation (44) are expressible in terms of 
Bessel functions, therefore all solutions of the eq. (45) are 
also expressible in terms of Bessel functions. Using the induc
tion we have now the pr.oof of theorem 5* · 

4. THE CONNECTION BE":'HEEN THE EQUATIONS P3 AND P5 • 

THE BACKLUND TRANSFORMATION FOR THE EQUATION Ph 

Solving the system (30) with respect to the function u(z), 
one proves the theorem concerning the l8rynection between 
the solutions of the equations P 3 and P 

5 
· ' · 

Theorem 6. If 
P3 for any a. f3 
condition 

function w(~ is a solution of the equation 
and y= 1 , 8 =- 1 so that w(z) satisfies the 

, dw 2 1 
R(z,w,w )=;; -r::- -tW- --(at -l)w +1 /i 0, uz z 

then the function 

u(r) = 1- ____ J_. - , 
R(z, w, w') 

2 
2r = Z 

is a solution of the equation P5 

3u-1 2 
Urr= ---u 2u(u- 1) 

u, a 2 2 
--+ -::7 u(u-1) + -~ (u-1) 

T "2 -;--- + 

for the parameters 

a - 1 2 - 32({:3- at+ 2) b =- 1 ( r:< 2 32 f-' +at- 2), 

c =-{ ,d=O.** 

2 
(46) 

{/+6') 

(47) 
c du(u+ 1) 

-- u + -·-----
u-1 

(48) 

* Remark. This family of solutions of the eq. P3 produce 
a family of solutions of the equation P5 (see Section 4, th.6) . 

** Remark. In this part we use new notations for the equation 
P 5 and its solutions for more clear description of the results. 
Namely, under the equation P5 we understand the equation (47), 
its solution is a function u(r ), and instead of parameters · 
a , f3 , y and 8 we write in this equation parameters a , b , c 
and d, respectively. 

'13 



Theorem 7. Let U= u ( T) 
for some parameters a , b 
function M is 

be a solution of the equation P5 
and c = ± 1 and d=O for which the 

du .,.-- -- -- · ---
M(r,u,u')=r---y'2au +(\'2a+y-2b)u-\L2b i 0, 

dr 

then a function 

J2-; u (r) 
w(z) = -----

M ( T ,u ' u,) 
2r= z

2 

is a solution of the equation P3 for the patameters 
--- --

a = 2 c ( \ 12 a - \1- 2 b - 1), 

{1 = 2 ( \,.2-; + \':._ 2 b) ' y = 1 ' 8 = - 1 * 

(49) 

(49') 

The theorems 6,7 give us the connection between the equation 
P 3 for parameters yof 0 and the solutions of the eq. P 5 

for parameter d = G ( o = 0) ** . 
Using both these theorems we obtain a BoT. for the equation 
. l d + ( + )/ 16/ P 5 ~n t1e case '0 0, c = -1 or 8=0 ,y= -1 0 

Theorem 8. Let u(r) be a solution of the equation P5 (47), 
for any parameters a , b and c = ± 1, d = 0 then the function 

Ut(r) = 1+2M 2 [2ru~~- -M
2
-[2U+2ru'- 2ccu(\12a

dr 

I 'J --1 
- v-2b -1) ]M + 2eru~]. (50) 

*** 
where f 2 = 1. M =M(r ,u, u') is defined by (49) arid M .J, 0, is 
a solution of the equation P5 for the parameters 

*Remark. The eqs. (46) and (46) are investigated in
117

: 

**Remark. The theorems 6;7 take place also for. the general 
solutions of the eqs. Ps and P 5· i.e., if W=w(z,c1 ,c 2 ) is 
a general solution of the eq. P 3 for any a. f3 ,y= 1 and o=-1. 
then u(r) defined by (46') is a general solution of the eq.P 5 
for the parameters which satisfy the conditions (48) and vice 

versa. 

***Remark. It is easy to prove that under the condition M·"'O 
<.R~O) the denominator iJl; the (50) (and, respectively, (32)) 

~s not equal to zero · 

14 ... 
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Jl 

.. , 
l 
~ 

1 ,.- :-- 1- r-- 2 
a 1 = 8 [ y 2a + v-2b - f c ( \ 2 a - v'- 2 b - 1 ) + 1 l , 

1 ·- r-- -- --- 2 
b1 = - 8 [ v 2 a + y- 2 b + f c ( v 2 a - \'- 2 b -:1) - 1 l , (51) 

c 1 =-( ' d1 = 0. 

The connection between solutions of the equation~J 3 and P 5 
has been investigated independently by H.Airault · In this 
paper the following lemma was proved. 

Lemma__!_. Let w (z) be a solution of the equation P 3 ( f3= o = 0, 

a=o-a,y= 1) 
, (w') 2 w' (b-a) 2 3 

w =-w---z+-z---w +W 

(w '-c-w/z) 
and let y(z) = ---

2
--, where c =a+b-1. Then the function u (z) = 

w 
=(Y+l)(y-1)-1 is a solution of the equation P5 when(o=y=O)c =d =0 

and -·2 
a= a -2-

b- 1)
2 

---
2 

-2 -'2 
b . a ) 

({1=-2-, a=2 . 

Moreover, u (z) ~s a particular solution of 

u'= tu + 
(u-1)(au +b) ----z---. where 

(52) 

t=2W. 

This result is not surprising since both the equation P 3 for 
parameters {3= 8 = 0 (see Section I) and the equation P 5 for 
parameters C= d=O (o=y= 0) are completely integrable. Indeed, 
N.Lukashevich181 has obt&ined that the solutions u(r) of the 
equation P5 for C= d=O (o=y= 0) and any a and b can be deter

mined through 

{ ~d=~~-====~~=== 
(u-1) .Jau 2 + c 1 u - b --

= ± y 2 ( c 2 + ln r ) o (53) 

For instance, a partial solution of the equation P 5 for the 

parameters a= b = 0 , c 2 =- 2d is 

u (r).=-;; exp(± v- 2d r), 
- Is I 

where c is a constant 

The rational solut1tnJ of the equation P 5 for C= d=O(o=y=O) 
which was obtained in 10 from the rational solutions of the 
equation P 3 for parameters f3 =O= 0 can be found directly from 
(53). The other rational solutions of the equation P5 are 
constructed with the help of B.T. and described in Section 5. 

The fur.ther investigation of the systems equivalent to 
the. eq. P 5 allows us to prove the following theorem. 
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Theorem 9. Let u = u(z) be a solution of the equation P 5 for a parameter d f 0 so, that 

<P = r u' - q u 2 + ( q - p + k r ) U + p /, 0, 

where P
2
+2b=0, q2=2a, k2 =-2d. then the function 

-1 
u1(r)=l-2kru<P (r) 

is a solution of the equation P 5 for the parameters 

a1 = - 1~di c + k(1-p-q)]
2

, 

b1 =--L[ C-k(l-p-q)] 2, 
16 d 

c1 = k ( p- q) 

d1 = d. 

(54) 

(55) 

The formulae (54), (55) give us the B. T. for the 'equation P5 
in the case if the parameter df 0 (8 ~ 0). 

5.· PARTIAL SOLUTIONS OF THE EQUATION P 5 
Families of partial solutions of the equation P 5 can be 

constructed with the help of B.T. for the equation P5 and with 
the help of the relation connecting the equation P3 with P 5 · 

We give now some examples of the calculation of new fami
lies of the solutions of the equation P5 

If we take as start solutions for the B.T. the solutions of 
the equation 

' 2 ( zw -2w + 3 + z) w -1 = 0 (56) 

(these solutions are simultaneously solutions of the equation 
P5 for the parameters a= 2 , fJ--1/2, 8 =-1/2, Y= 0 ) , then after 
the first step of the B.T. (54) we have that the equation P5 
has solufi~s which are rational functions of the Whittaker 
function 15 ·In other words, the solutions to the equation 

,2 2 ' 2 ' 1 4 z 
2 

+ 4 3 2 2 1 1 (57) Y --YY+-;-Y- ::-2Y +----Y -Y -(-y+-)Y+-...= 0 
z z z 2z 2 z 2 z"' 

are simultaneously solutions of the equation P 5 for parameters 
1 f3 1 "1 . fh . a1 = 2 , 1=- -2 y1= 3, u 1=- -2. Repeatlng o t e B. T. glves us 

other solutions of this family. All these solutions are ra-
tional functions of the ~%ittaker function (this follows from 
the form of the B.T. (54)). 
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The other family of solutions of the equation P 5 can be 
obtained if we take as start solutions of the B.T. the solu
tions of the equation 

z w ' - cw 2 + ( c - a + k z) w + a= 0 . (58) 

All solutions of the equation (58) are simultaneously solu
tions of the equation P 5 under the condition 

k(1- a-c)= y, 
2 where a = -2f3 , 

All solutions 
Bessel function. 

2 2 k2 c =a. =-28. 
of this family are rational functions of the 

The family of the rational solutions of the equation P 
for the parameter of 0 can be also obtained with the help

5
of 

B.T. (54). 
In the paper/8/ N.Lukashevich has proved that any rational 

solution of the equation P 5 for the parameter o 1-0 has the 
form 

p (z) 
w(z) =AZ+fL-t-~ 

Q n (z) 
(59) 

where A' and f1 are some constants, P n-l (z) and Q 
0
(z) are poly

nomials of the n-1 and n degrees, respectively. 
The first three solutions (for P n-l (z) = z ) have the 

form 

J. W=-1 

2.W=Z+1 

for parameters y=O , a+(-3 = 0, 8 is any constant, 

for parameters a= -o , fJ=-112 , y=-28 ,8 is any 
constant, 

3.w=-kz+a.for parameters a=1!2 , y=k(a-2) where a ,.£1 
and k is any constant. 

We can take now these solutions and the solution W=1/z 
(for parameters a=O , f3=1/2, y=-2 , 0=-1/2) as start solu
tions for the B.T. (54). 

If we take w
0 

= ! then after the B. T. we have 

w = 1u. z(a k) _ 
1 1 +a - z (a +k) ' 

where a2=1, k2=1. It is the solution of the equation P5 for 
the parameters 

a =.1.[-2+k(1-a.)] 2 
1 8 . 

1 [ 2 {3 1 = - 8 -2-k(l-a)] , 

y 1=ka, o1=o. 
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Continuing this procedure we obtain the family of the rational 
solutions of the equation P 5 for a parameter 0 1 0. 

The equation P5 has a symmetrical property, namely, if the 
function W=¢(z,a, {3,y, o) is a solution of the equation P 
then the function \V =¢-l(z,-{3,-a.,-y,o) is also a solution of t~e 
equation P5 . This can be used for the construction of. the new 
solutions. 

For the computation of the partial solutions of the equa
tion P5 the connection between the equations P and P (see 
Section 4, Th.6 and 7) can also be used. IndeeJ, each5solu
tion of the equation P~ with parameters yo I= 0 gives us two 
solutions of the equat1on P5 with parameters o= 0, y= ±1 
(see (46')) and each solution of the equation P with para
meters y=±l and o=O gives us 4 solutions of th~ equation P

3 for the parameters y=1 and B ~-1 (see (49')). _ 
In this way one can obtain the rational (in vz) solutions 

of the equation P. from rational solutions of the equation P 
( . ) ;} 3 Sect1on 2 . 

Since both parameters y and o are not equal to zero the 
rational solutions of the equation P

3 
have the form 

w(z) = Pn(Z) • 
Q nCz) . 

where P (z) and Q.n(z) are polynom1al s of the n degree. For 
n =0 th~ equation P

3 
has a solution 

w(z) d. 
where A= ±...j-{:3/a (for parameters y=1, o=-1 ). Let be a=3. 
{3=-3 , y= 1 ,.o~-1 and w(z) =1 then we obtain two solutions 
of the equation P5(see Th.6) 

- 1 
u (r) = 1 + · 1 2 r a = .L b = - - c = -1 d = 0 · c = 1 0 y • 2 • 8 • • • • 

- 2 1 
u0(r) = --,--=- a= 8-, b=-2, c =1, d =0. ( = _ 1. 

2 + v 2 r 

On the other hand, each of these solutions determines four 
solutions of the equation P3 through the Th.7. If we take 
one of them, 

W (Z)=~ 
1 z +2 (a=5.(3=-1 y = 1 . o= -1) 

and apply once more the Th.6 then we obtain two solutions of 
the equation P5 

r-· 1 1 
ut(r)=l+v2r;(a= 2 .b=- 8 .c=-1. d=O;c=l) (

6
0) 

- 2 T+ 4,;2r-+ 3 9 
u 1(r)= -- --~-- (a= 8 .b=-2,c=l,d=O;c=-1). 

r y2 r+ 6 r+ 6 rv'2 r + 3 

The first solution i's equal to u0(r) and the second solution 
is a new solution. 
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The application of the Theorem 7 to the solution (60) gives 
us the following solution of the equation P3 

5 4 3 2 
w 2( z) = _ ~ + 10 z ~9 z + 7 ~::_..::_~~~ 

Z + 9 Z r+ 32 Z:J+ 54 z2 + 42 Z+12 

for parameters a= -3, /)= 7 , y= 1 and 0= -!.Continuing this pro
cedure we obtain the family of the solutions of the equation 
p5 which are rational functions of the v-;-( /z ). 
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