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I . INTRODUCTION 

Expansions of distributions A? terms of special functions 
were first studied by Zemanian in the one-dimensional cas e. 
In connection with light-cone expansions of current products 
and the corresponding expansion for their matrix elements123 1 
higher dimensional expansions of distributions are needed · 

3
'
4
• 

An important case as the harmonic analysis on the space S'( R ) 
has been performed in ref. 151 • 

The purpose of this paper is to investigate an expansion of 
distributions on the space S'( R d) on the basis of the rotati­
on group SO(d) • In the second section the expansion of test 
functions ¢(x)E S( Rd) in terms of harmonic polynomials is 
given . Taking into account this analysis in section III we 
associate to the expansion of test functions in terms of har­
monic polynomials a decomposition of the distribution C(x)E•S'(Rd) 
in a series of distributions r {x)E•S'(Rd). We proof the theorem 
that this decomposition of !(x) is available in the strong 
topology of •S'(Rd) • Furthermore we describe the general struc­
ture of this decomposition if the distribution f (x) is inva­
riant with respect to a rotation gE SO(~. The fourth and last 
section is devoted to the validity of this decomposition after 
Fourier Transform and to some applications to analytical func­
tion expansion. According to Muller161 we use the following 
notations. By spherical harmonics Ym(a) we call the eigenvec­
tors of the spherical part Aa of the d-dimensional Laplace 
operator 6. 

(1) 

where r . a 1 a- (at ..... ad) 1 x1 = a 1 r are the spherical coordinates 
of x E Rd. 

Remarks. 1. They form a comptete and closed set of orthogo-· 
nal functions on the sphere gd- . 

2 . For each mo there exist 

linear independent spherical harmonics. 

~· ·~:rnr ... ~n 
, \(:, 'L . " .,.O:!r ~~~~ 
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3. For the spherical harmonics the integral representation 

Yro(a)= -
1
- I dO (a') Y

10
(a 'Xa.a't

0 
r

10 
r mo Sd-1 o 

".: 21-mo I' (mo tl) 

r (mo+ ~ ) 

(2) 

is valid, where dO(a) is the invariant measure on the sphere 
S d-l • I{} I is the total surface . 

We define the harmonic polynomials If
10

(x) by 
mo 

H10(x) = r Y m (a). 

II . EXPANSI ON OF TEST FUNCTIONS 

Besides the usual space S( R d) with the topology given by 

f3 
11¢(x) ll =sup (l+X 2 /i~ ¢(x)l. 

p,{J xER d 
f:3 =<f3 t , ... ,f3ct> 

d 

1.8 1- .I fJ1 •-1 

the space SR is used , described by the seminorm system 
r 

(n) - sup 
II</> (t)llk,f,s - t ER+ 

Proposition 1 

(n- s)+ 
-- k e 

t 2 (l+t) 1 !D 4> (t) l 

(n-s) = max(O,n-s). 
+ 

d 
For every function <f>(x)€ S ( R ) there exists the expansion 

2 </>(x)"' I 4> (x ) H (x) 
m~ 0 m m 

with 
mo 

2 2 -7"' -
</>m(x ) =(X ) f d!l(i:z)Ym(a)¢( r ,a), 

sd-t 

converging in the space S(R d) • 
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(3) 

r =V';f' (4) 

Proof. At first it will be shown that the expansion coef­
ficients <f> 10 (x2 ) of the function <f>(x )ES( R d) are elements of 
the space S R • By construction it is clear that 

+ 
¢,

10
( r ) = I dfl (a) Y

10
(a)<f>( r,a ) ( 5) 

belongs to the space S ( R
1

) • To show that the function <Pm is 
an element of SR+ the properties of (/) m at the point rn = 0 
must be investigated. For ~omputing the derivatives </r-> ¢m(r) 
in eq. (5) we apply the cha1n rule 

a n x . a n n a a 
(a ) =(-•---)- I ait'""ai a ... -a--

r r axl f t , ... ,in=l n Xl l Xjn 

so that 

n a n - - a c/>_~(x:;;) __ <ar-) </>m(r)l rxO - I d{}(a)Ym(a) I ait"'aln a x ax I rxO . 
It ... In 

Because of the orthogonality relation I dO(a)Y (a)a it ... a i .. 0 
m n 

for m0 > n we conclude 

<a J" -dr 4> 
10
(0)=0 , n < m0 

(6) 

. mo 
The symmetry properties Ym(a)- (-1) Ym (-a) yield 
fm (-r )=(-l )m0 fm(r ) so that <Pm( r 2 ) = r-m~m(r ) 
is an even function . Now it is obvious that the expansion co-
efficients 4>m(t) belong to the space SR*' • 

As the next step the seminorms 114>m(t)1~11~of .s 
estimated. At first they can be related to 
Using the commutator relation [ .JL , t" l= ntn-l 

dt 

have to be 
S( It) seminorms. 
we have for IQ2f +S 

(m ) 2 k m -s 1 f 2 
II </> (r 2 )1 1 ° xSup l (l+r) r 0 ( -.JL ) if> ( r ) 

m t,f,s 2r dr m 

(7) 

d-2 f m0 -s- 2f 2 
!>.C(mo+-) max llr 4> (r >I I 

2 sl :;;f m k+f:st 

and for k<2f + s 
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(mo-s4 f- (mo-S\ 
(mol d-2 -y- 1 2 2.. 

11¢m( r 2 )11 0 ~C(m0 +-2-) ·max 11<--/- > ¢(rJII 
lt,L,s (m

0
- s)+ r r m k+f.s1 

St~-2-

f (mo -s)+ 

d-2 f 1 d - 2 2 
S: C(m0 + -) max II(- -d ) ¢ (r )I I 

8 ( ) r r m k+ f s 1 m 0-s + , 
St~~ 

{8) 

The further estimate with respect to ~( Rd ) seminorms is ob­
tained if the bounds of the spherical harmonics 
1 Ym(a)I<(N(m0 )/I OI)~ the definition of the expansion coefficients 
(4) , eq . (6} , and the Taylor Theorem are used. From ineq. (7} , 

r espectively, in eq. (8) we obtain 

d-2 
(m ) f+ ,_-

ll¢m(t)ll 
0 ~ C(mo+ d2,

2
) max ll¢(x)ll f {3 · {9) 

k,f,s lf31 < 3f+s k+ • 

As further auxiliary step we regard the derivatives of the 
harmonic polynomials ~1\im(x) . It is clear that '1Jf3 Hm(x) are 
also harmonic polynomi~ls, of cource, of degree m0 -lf31 be­
cause the operators ~p and 6 cotmnute . Therefore 

f3 ~ ~ 3~ '(afl m - lf3 l.m'{a)(x) l f3 1S mo T H (X)• m {a) ,m o 
m 

0 , lf31 > mo. 

With the help of the orthogonality relation for the spherical 
harmonics and the representation (2) the coefficients a~.m'(d) 
can be calculated 

m - ~{3 
a{J,m'(d) J d!l(a)Ym --lfJI.m '( d~)[:~, Hm(x)l x=a ) 

0 

'm
0

-lf31 

' mo 

mo! f3 t l3a -J dO(a)a 1 ... aa Y ll3l , (a) Y (a). 
(m o-1{31)! m o- ,m {d) m 

Using the bound of the spherical harmonics this implies 

m 1131 d-2 d-2 +1{31 
l a{J.m'(d) 1.5 2 (mo+ - 2-) . 

4 

No w it is possible to estimate each term of the series (3) 

11 Hm(x)¢m (x 2) ll p,q 

{3- {J' {3' 
~ sup (1 +X 2 )P I I cf3 ( T H (x)) ~ ¢ (x'l. >I 

d m m 
xER OSifJ'~IfJI 

d-2 lf31+ : (d-2) (mo) ( 10) 
< C(m 0 +-) max II ¢ (t) II 
- 2 lf3 -~I,RI m p+lf31. 1f3 'l.lf31 

2lf31+3Cd- 2) max II¢ (x) II p+2lf31.f3, d-2 ) 
~ C (m 0 + - 2- lf3 '~41,81 

d 
To show that the series (3} converges in S( R ) we need a bet-
ter m0 independent estimate. For this r eason we discuss 

d-2 2 n 2 
(m

0
+-- ) ¢ (x ) • From the definition (1) we get 

2 m 

d 2 2n 2 - m 2 n -
(m +-=-) ¢ (x ) • r 0J d(a )[ (~ -6 ) Y (a)l¢( r ,a) 

0 2 m 2 a m 

( 11 ) 

- mo - d~ n 
r J d{}(a ) Ym(a) [(-

2
--!la ) ¢( r ,a)l. 

Remark that the function <¥ -llaf ¢ ( r, a) is nothing else 
{n) ¥ d /x; 2 2 n · c: ( d) than the function¢ (x)-1( - + I

1
x1 ) -x Ill ¢(x)E 'c> R 

Ia Xt 

in spherical coordinates151 • Using ineq . (9) this leads to 

(mo) d-2 ~+f -2n (n) 
II¢ (t) II ~ C (m 0 + -

2
-) max II¢ (x)ll o f3 

ffi D lt+L , 
k,L,s l fJ I~s f +s 

and , consequently, i neq . (10) can be written as 

11 Hm(x)¢m(x2 )11 p,f3 ~ 

d-221131+ 3(d-2)-2nmax ll ¢(n) (x)ll k+21131.13' 
s C(mo + -2-) lf3'ls.:4 lf31 (12) 

5 



where the constant c depends o n p and f3 only . The last 
inequality is sufficient to show the convergence of the series 
(3) in S(Rd) . This follows immediatly from 

2 7 
I :£ Hm (x)¢m(x ) II $. I II H (x)¢ ex· ) II a 
m~O p,f3 m'2..0 m m p,~, 

S. C max llln)(x) II i ( d-2 2lf31 +4(d -2 )- 2n 
lf3'1S. 41{31 p+2lf31.f3' m .. o m 0 + -2-) 

- 0 

(13) 

~ C' max ll <f>(n)(x)i l , for n :L2(d-2)+ 1f3 1+ 1. 
lf3' ls:4 lf31 p+

21,si ..B 

Trivially this shows that the series (3) is uniformly conver­
ging and represents a continuous function. Note that for fixed 

and all spherical harmonics Y ,(a) 
m 

f dO(a)Y , (a) I ( I H m(x)¢m(x 2))- ¢( x)l- 0 
m m~O 

is true. From the continuity it follows 

I H (x)¢ ( x 2 )-¢( x) a 0 
1112 0 m m 

~ 

so that the series I H m<x) ¢m (x • ) converges to the function 
¢ (x) in S( R d) • 

0 

Definition 1: •S( R + ;SO(d)) denotes the set of all sequences 
{ ¢m(t) I of functions if>m(t) infinitely differentiable on R + 
such that 

d-2 n (m 0 ) 
max ( m o + -

2
- ) II ¢ m(t) II 

0 m k, L ,s 
<oo 

(14) 

1&1 
for any n , k 1 f 1 s • 

Remark. The space S ( R_.; SO(d)) is a locally convex topologi­
cal vector space with the topology introduced by ineq . (14) . 
According to definition 1 the proposition 1 changes to 
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Proposition 1' 

The map 

jt : { <f>m(t)l --+ ¢ (x) = I Hm(x)<f>m(x 2 ) 

is a topological isomorphism between the spaces •S( R+;SO(d)) 
and ·S ( Rd). 

III. Dr.COMPOSITION or DISTRIBUTIONS 

the distribution Definition 2: By spherical harmonics of 
C (x) E S '( R d) we call the linear functional 
by 

f m(t) E S~+ defined 

< C (t),¢(t)>:= < f(x),H (x)¢(x 2 )>. ¢(t)E S 
m m R+ (15) 

Remark. Because Hm(x)¢ (x2 ) E ·S ( Rd) for ¢ ( t)E •S R the defini-
tion 2 is correct. Due to ineq. (10) we have + 

I< fm(t) .¢(t)>IS. 

lf3 1+}(d-2) (m 0 ) (16) 

~ C II fll {3 (mo+ d2-2) max II ¢(t) ll lfJ I {3' lf31 
P. f3's.lf31 P + · · 

so that the relation (15) defines a continuous linear functio-
nal on •S'R • 

+ 
Proposition 2 

The map 

j 2: f (x) -1 f (t)l 
m 

(17) 

gives a topological isomorphism between the spaces S'(R ~ and 
S'( R+;SO(d)) 

Proof . For f(x) E S' ( R d) it follows from ineq. ( 14) that 
If m (t) I E S' ( R+ ; SO (d)) • Since the set of all finite sequences 
!¢0(t), ... , ¢m(t), 0,0, ... I is dence in •S(R+; SO(d)) the map je 
is a map from S' ( R d) on S' ( R+ ;SO(d)) • Now we consider a se­
quence I fm(t)l E •S' (R+ ;SO(d)). In view of ineq. (12) and (16) 
the series I < Cm(t) 1 ¢m(t)> converges. Taking into account 
proposition 1 and definition 2 the reconstruction of the dis­
tribution f(x) is arrived at 

< f ( x). ¢(x)>• I < f m( t ),<f>m(t)>. 
0 

7 



Corollary 3 

j i ':' j 2 in the weak topology of dual pairs. 

From the physical point of view it is interesting to know the 
common structure o f the decomposition (17) if the distribut ion 
is invariant with respect to additional transformations (for 
instance, gauge transformation). Here we describe the c ase 
that the distribution f( x) from S '( R d) is invariant under 
rotations g E SO(k) 

Invariance of a distribution f(x) under rotations gE SO(k) 
means 

< f(x).¢(x) >z f dg< f(x ), ¢g<x)>. 
so ( k ) 

(18) 

where dg is the no~lized invariant Haar measure on the 
group SO (k) and ¢g (x) is defined by ¢g(X)= ¢ ( g · x ) . In 
order to simplify formulae without loss of generality we pro­
pose that the r otation g acts on the subspac e R k of the 
first k variables . 

Proposition 4 

The map 

j: f(x) --+1 f m(t)lm ~0. md-k= ... =md-2=0 (19) 

gives a topological isomorphism between the space of SO(k) 
invariant distributions of •S' ( Rd) and the space S'(R+;SO(d);SC(k)). 

Proof. Since proposition 1 and the invariance 
re dO (a) on the unit sphere S d-1 we have 

of the measu-

2 -mo/ 2 -
¢g(x) .. I Hm(x)(x) f dO(a)Y (a)¢(r,goa) 

m~O m 

2 - mo/2 - -1 
= I Hm(x)( x ) f dO(a)Ym ( g oa)¢( r ,a). 
m~ 0 

On the other hand , from the explicit form of Hm(x) 
of Gegenbauer polynomials 1 71 we can write 

Hm(X)=Wm m ( x2,ak+1 ... . ,ad) Hm ... m ( x1, ... , xk ), 
0 ... d-k d-k d-2 

8 

(20) 

in terms 

( 21) 

) 

·J 

l 

2 
W o(x ,a k+l ..... ad) a H o o(x). mo ... md·k-1 • m o ... m d·k· I · .... 

Using the representation theory of compact groups we have 

H (g-
1ox) =Tk (g) H ( x) 

md-k'""md-2 md-k md- k ... ,md-2 

I t k, md-k , (g- 1) II ,(x). 
, md-k+l' ... m - 2'm m m 

m d d·k' 

(22) 

T~(g) is the operator generating the unitary i rreducible 
representations of SO (k ) on the space of homogeneous polyno­
mials of degree e in k dimensions, and t ~·.fm , (g) are the 
matrix elements of the corresponding canonical matrix . 

Remark . The orthogonality relation 

f 

0 
k f k , f' (g)= 

f d g t (~) ( g ) t (m') _1 k 

SO(k) dim T f (g) 

(m )I (m') 

(23) 

(m ),. (m' ) 

is true. 
Taking into account eq. (20)-(23) by standard considerations 

we conclude 

< f(x). ¢(x)>= J 
s c (k) 

dg < f(x), ¢ (x) > 
g 

-mo /2 - -1 
~I fdg<f(x),H(x)(x2 ) fd O (a) Y (g o a)¢(x) > 
m~O SO(k) m m 

9 -mo/ 2 -
= I f dg< f{x),H m(x)(x~) f dO(a)Wm

0 
... m (l ,a k+ l .... a d) x 

m.? 0 SO(k) d-k 

X y 
111 , ••• m 

d-k d-2 

-I 
(g (a 1 .... ak ))¢(x)> 

9 



= I J d k 'md-k 
m40 g I, tm , ( -1 

SO(k) m d-k+1''''md_2 .m g )x 

2 -mo'2 _ _ 
x < f(x),H (x)(x ) J d!l(a)W (l ,ak 1 , ... ad) Y , (a)c,{>(x)> 

m m 0 ... rnd-2 + m 

l 
m?, 0 

2
-m / 2 -

< f(x),ll (x)(x ) 0 J dO(a) W m (l,a 
1

, .... ad)¢(x)> 
m rn o"' d-2 k+ 

m = ... •m = 0 
d-2 d-k 

l < c (t ) ' c,6 (t)> . 
m 40 m m 

md-k= ... • md-2"' 0 

0 

Our final aim is to have a decomposition of the distribution 
C (x) E 'S' ( Rd ) in terms of distributions on the same space . 

Definition 3: Let I g m, ( t) l be a sequence from S' ( R+ ; SO(d)) 
such that gm'(t) = fm(t) for m'=m and grn' (t)=O otherwise. By 
the linear functional f m (x )E- S \ Rd ) defined by 

< fm(x),¢(x) > : .. I < g ,(t),¢, (t)>E< f (t),¢ (t) > 
m' m m m m 

for all ¢(x)E •S( R d) we call harmonic components of the distri­
bution f( x) • 

Notes. 1. Due to proposition 2 the definition is correct. 
By ineg . (9) and (16) follows 

l< fm(x).(jb(x) >l 2 1< fm(t), ¢m(t)> I S. 

{3 d-2 
(m ) (mol d +2 

~ ll f mll ,8° ll <l>m !l {3 ~ C ( mo+ -=~) ll f mil · max ll¢ (x) ll • 
k . • 8 k. .s 2 k+{3 f 

I f 1.s:sf3+s · 

since f m(x ) i s a con t inuous linear functional. 
2. Conside r i ng that fm(t) is generated by f{x) we get 

from ineq. ( 11 ) and ( 12) 

10 

l< fm(x),¢(x) >l= l < f(x), Hm(x)(jbm(x 2 )>J !>: 

.S: I! f llk,{3 · ll ¢m(x2)Hm(x) l lk,{3 

(24) 
21{31 + 3(d-2)- 2n 

d-2) max 
~ C ( m 0 + -2- 1 f IS 4lf31+ 

20 
ll¢(x) llk+2 IJ1I+n,f 

The constant c is m- independent and depends only on n 
1 

k 1 

f3 1 and the !iPace dimension d . 
3 . Obviously f m (x) has the property 

m m 2 
< f (x ),(jb(x )>=<f (x), H m(x)(jbrn(x ) > 

=< f (x), H m(x) ¢1 (x2 ) >. 
m 

Now we can state our theorem. 

Theore m. 

The s eries 

m 
I f ( x ) 
m~O 

converges in the strong topology of S'( R d) to f ( x ) 

Pr oof. Cons idering proposition 1 and ineq. (24)
1 

we a r e 
allowed t o conclude for 2n~21f31+ 4 ( d --2)+2 

m 
l< f - I r (x),¢(x )>l .. l< f (x), 

m..S: rii I H (x)¢1 (x 2 )>I 
- m m m>m 

(25) 

(26) 

S C II f II k.,8 max 11¢ (x) 11 I ( m + d-2 ) 2Jf31+4(d-2)- 2n 
I fl~ 41,8l+2n k+21,81+n,f m0=m0 0 2 

~ c • C II C II max II ¢1 ( x) II . 
t,,8 J f J~4 1,8J +2n k+2 J,81+n,f 

The inequality implies the theorem. 
The series (26) is the desired decomposition of the distri­

bution. 

11 



Remark. With the help of the proposition 4 it is easy to 
write the general structure of the decomposition (26) if the 
distribution f (x) is invariant under rotations g E SO (k). 

IV. APPLICATIONS OF THE DECOMPOSITION TO FOURIER TRANSFORM 

The purpose of this section is to study the Fourier Trans­
form of the series (26) . First we proof the formula 

~ [ f m(x)l (g) .. ~ [ f(x)l m (g) 

and second we give some applications to analytical function 
expansion. 

Lemma: Suppose f(t) E Coo . Then for all m the relation 
holds 

a m a mo 
H (-)f (i-). 2 ° H (x)(-

2
) f(i- ). 

max m ax 
d 

x 2 : I x2 
i2l I 

(27) 

Proof. From the integral representation for the spherical 
harmonics (2) we have 

a 2 1 a mo 2 
H (-)f(x )·-fdO(a)Y(a)(a, - ) f(x ). 

m ax r m ax mo 
(28) 

Simple computations show that 

mo m 0 a mo 2 
(a,L) f(x 2) .. [2(a,x)1 (-

2
) f(x )+<l>(f,x,a), 

a X a·x 
(29) 

where <!> is a polynom in a , however, of degree smaller than m(). 
Substituting eq. (29) into eq . (28) and using the orthogonality 
relation for the spherical harmonics we get formula (27) . 

Notes. 1 . The Fourier Transform of H m(x)¢m(x 2 ) can be ex­
pressed by 

12 

~ [Hm(x)¢m(x 2 )1(q) u H (i!__)~[¢ (x 2 )1 (q)' 
m aq m 

·(2ito Hm (q) (b_)mo ~ [<f>m 1(q2 ). 
aq 

2. As a consequence of the proposition 1 we are allowed to 
write 

mo a mo 
1{ ¢I (Q) 2 I H (q) J [¢) (q2 ) .. I H m(Q)(2l) (-:--:-2) n <Pm )(q 2 ). ( 30) 

m20 II' m m~ 0 aq 

2 mo a mo 
Hence J[¢]m (q )a(2i) ('dq2) ~ [¢m(x 2)J (q2 ) . Taking into 
account the property (251,we get 

~ [Cm(x)](q)= ~{C(x)lm(q). ( 31) 

Let us now propose that the distribution f(x) has a compact 
support . It is well known that the Fourier Transform ~ [ f] ( Q) 
is an entire function of first order, polynomial bounded on 
the real axis . Remark that the support of fm(x) is not bigger 
than the support of f( x) so that ~[ rm l (q) is also an entire 
function of an order and type as f(x) • Using eq. (25), (31) and 
the analytical properties of ~{ rm(x)l (q) simple computations 
show 

< ~ [ f m( x )] (q), ¢ (q)> .. 

- m / 2 - m 
<((q2

) 
0 

fdn(a)Y (a)~[ f (x)l(q)I H (q),<f>(q)>. 
m m 

Finally we have 

< ~ ( f (X)) ( q) , </> ( q) , >"" _I < J ( f m( X) , </> ( q) > 
m2:_0 

,.. I < r (c/) H (q).<f>(Q)· >u< I r (cr) H (q).¢(q)>. 
m~O m m m~O m m 

This means, every first order analytical function which is 
polynomial bounded on the real axis can be expanded in a seri­
es in terms of harmonic polynomials uniformly converging in 
every compact subset of the complex plane . A similar result 
for the analytical function expansion is described iR ref./4/. 

I would like to thank G.LaBner, D.Robaschik and A. Uhlmann 
for fruitful discussions . 
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