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I . INTRODUCTION 

Expansions of distributions A? terms of special functions 
were first studied by Zemanian in the one-dimensional cas e. 
In connection with light-cone expansions of current products 
and the corresponding expansion for their matrix elements123 1 
higher dimensional expansions of distributions are needed · 

3
'
4
• 

An important case as the harmonic analysis on the space S'( R ) 
has been performed in ref. 151 • 

The purpose of this paper is to investigate an expansion of 
distributions on the space S'( R d) on the basis of the rotati
on group SO(d) • In the second section the expansion of test 
functions ¢(x)E S( Rd) in terms of harmonic polynomials is 
given . Taking into account this analysis in section III we 
associate to the expansion of test functions in terms of har
monic polynomials a decomposition of the distribution C(x)E•S'(Rd) 
in a series of distributions r {x)E•S'(Rd). We proof the theorem 
that this decomposition of !(x) is available in the strong 
topology of •S'(Rd) • Furthermore we describe the general struc
ture of this decomposition if the distribution f (x) is inva
riant with respect to a rotation gE SO(~. The fourth and last 
section is devoted to the validity of this decomposition after 
Fourier Transform and to some applications to analytical func
tion expansion. According to Muller161 we use the following 
notations. By spherical harmonics Ym(a) we call the eigenvec
tors of the spherical part Aa of the d-dimensional Laplace 
operator 6. 

(1) 

where r . a 1 a- (at ..... ad) 1 x1 = a 1 r are the spherical coordinates 
of x E Rd. 

Remarks. 1. They form a comptete and closed set of orthogo-· 
nal functions on the sphere gd- . 

2 . For each mo there exist 

linear independent spherical harmonics. 

~· ·~:rnr ... ~n 
, \(:, 'L . " .,.O:!r ~~~~ 
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3. For the spherical harmonics the integral representation 

Yro(a)= -
1
- I dO (a') Y

10
(a 'Xa.a't

0 
r

10 
r mo Sd-1 o 

".: 21-mo I' (mo tl) 

r (mo+ ~ ) 

(2) 

is valid, where dO(a) is the invariant measure on the sphere 
S d-l • I{} I is the total surface . 

We define the harmonic polynomials If
10

(x) by 
mo 

H10(x) = r Y m (a). 

II . EXPANSI ON OF TEST FUNCTIONS 

Besides the usual space S( R d) with the topology given by 

f3 
11¢(x) ll =sup (l+X 2 /i~ ¢(x)l. 

p,{J xER d 
f:3 =<f3 t , ... ,f3ct> 

d 

1.8 1- .I fJ1 •-1 

the space SR is used , described by the seminorm system 
r 

(n) - sup 
II</> (t)llk,f,s - t ER+ 

Proposition 1 

(n- s)+ 
-- k e 

t 2 (l+t) 1 !D 4> (t) l 

(n-s) = max(O,n-s). 
+ 

d 
For every function <f>(x)€ S ( R ) there exists the expansion 

2 </>(x)"' I 4> (x ) H (x) 
m~ 0 m m 

with 
mo 

2 2 -7"' -
</>m(x ) =(X ) f d!l(i:z)Ym(a)¢( r ,a), 

sd-t 

converging in the space S(R d) • 
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(3) 

r =V';f' (4) 

Proof. At first it will be shown that the expansion coef
ficients <f> 10 (x2 ) of the function <f>(x )ES( R d) are elements of 
the space S R • By construction it is clear that 

+ 
¢,

10
( r ) = I dfl (a) Y

10
(a)<f>( r,a ) ( 5) 

belongs to the space S ( R
1

) • To show that the function <Pm is 
an element of SR+ the properties of (/) m at the point rn = 0 
must be investigated. For ~omputing the derivatives </r-> ¢m(r) 
in eq. (5) we apply the cha1n rule 

a n x . a n n a a 
(a ) =(-•---)- I ait'""ai a ... -a--

r r axl f t , ... ,in=l n Xl l Xjn 

so that 

n a n - - a c/>_~(x:;;) __ <ar-) </>m(r)l rxO - I d{}(a)Ym(a) I ait"'aln a x ax I rxO . 
It ... In 

Because of the orthogonality relation I dO(a)Y (a)a it ... a i .. 0 
m n 

for m0 > n we conclude 

<a J" -dr 4> 
10
(0)=0 , n < m0 

(6) 

. mo 
The symmetry properties Ym(a)- (-1) Ym (-a) yield 
fm (-r )=(-l )m0 fm(r ) so that <Pm( r 2 ) = r-m~m(r ) 
is an even function . Now it is obvious that the expansion co-
efficients 4>m(t) belong to the space SR*' • 

As the next step the seminorms 114>m(t)1~11~of .s 
estimated. At first they can be related to 
Using the commutator relation [ .JL , t" l= ntn-l 

dt 

have to be 
S( It) seminorms. 
we have for IQ2f +S 

(m ) 2 k m -s 1 f 2 
II </> (r 2 )1 1 ° xSup l (l+r) r 0 ( -.JL ) if> ( r ) 

m t,f,s 2r dr m 

(7) 

d-2 f m0 -s- 2f 2 
!>.C(mo+-) max llr 4> (r >I I 

2 sl :;;f m k+f:st 

and for k<2f + s 
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(mo-s4 f- (mo-S\ 
(mol d-2 -y- 1 2 2.. 

11¢m( r 2 )11 0 ~C(m0 +-2-) ·max 11<--/- > ¢(rJII 
lt,L,s (m

0
- s)+ r r m k+f.s1 

St~-2-

f (mo -s)+ 

d-2 f 1 d - 2 2 
S: C(m0 + -) max II(- -d ) ¢ (r )I I 

8 ( ) r r m k+ f s 1 m 0-s + , 
St~~ 

{8) 

The further estimate with respect to ~( Rd ) seminorms is ob
tained if the bounds of the spherical harmonics 
1 Ym(a)I<(N(m0 )/I OI)~ the definition of the expansion coefficients 
(4) , eq . (6} , and the Taylor Theorem are used. From ineq. (7} , 

r espectively, in eq. (8) we obtain 

d-2 
(m ) f+ ,_-

ll¢m(t)ll 
0 ~ C(mo+ d2,

2
) max ll¢(x)ll f {3 · {9) 

k,f,s lf31 < 3f+s k+ • 

As further auxiliary step we regard the derivatives of the 
harmonic polynomials ~1\im(x) . It is clear that '1Jf3 Hm(x) are 
also harmonic polynomi~ls, of cource, of degree m0 -lf31 be
cause the operators ~p and 6 cotmnute . Therefore 

f3 ~ ~ 3~ '(afl m - lf3 l.m'{a)(x) l f3 1S mo T H (X)• m {a) ,m o 
m 

0 , lf31 > mo. 

With the help of the orthogonality relation for the spherical 
harmonics and the representation (2) the coefficients a~.m'(d) 
can be calculated 

m - ~{3 
a{J,m'(d) J d!l(a)Ym --lfJI.m '( d~)[:~, Hm(x)l x=a ) 

0 

'm
0

-lf31 

' mo 

mo! f3 t l3a -J dO(a)a 1 ... aa Y ll3l , (a) Y (a). 
(m o-1{31)! m o- ,m {d) m 

Using the bound of the spherical harmonics this implies 

m 1131 d-2 d-2 +1{31 
l a{J.m'(d) 1.5 2 (mo+ - 2-) . 

4 

No w it is possible to estimate each term of the series (3) 

11 Hm(x)¢m (x 2) ll p,q 

{3- {J' {3' 
~ sup (1 +X 2 )P I I cf3 ( T H (x)) ~ ¢ (x'l. >I 

d m m 
xER OSifJ'~IfJI 

d-2 lf31+ : (d-2) (mo) ( 10) 
< C(m 0 +-) max II ¢ (t) II 
- 2 lf3 -~I,RI m p+lf31. 1f3 'l.lf31 

2lf31+3Cd- 2) max II¢ (x) II p+2lf31.f3, d-2 ) 
~ C (m 0 + - 2- lf3 '~41,81 

d 
To show that the series (3} converges in S( R ) we need a bet-
ter m0 independent estimate. For this r eason we discuss 

d-2 2 n 2 
(m

0
+-- ) ¢ (x ) • From the definition (1) we get 

2 m 

d 2 2n 2 - m 2 n -
(m +-=-) ¢ (x ) • r 0J d(a )[ (~ -6 ) Y (a)l¢( r ,a) 

0 2 m 2 a m 

( 11 ) 

- mo - d~ n 
r J d{}(a ) Ym(a) [(-

2
--!la ) ¢( r ,a)l. 

Remark that the function <¥ -llaf ¢ ( r, a) is nothing else 
{n) ¥ d /x; 2 2 n · c: ( d) than the function¢ (x)-1( - + I

1
x1 ) -x Ill ¢(x)E 'c> R 

Ia Xt 

in spherical coordinates151 • Using ineq . (9) this leads to 

(mo) d-2 ~+f -2n (n) 
II¢ (t) II ~ C (m 0 + -

2
-) max II¢ (x)ll o f3 

ffi D lt+L , 
k,L,s l fJ I~s f +s 

and , consequently, i neq . (10) can be written as 

11 Hm(x)¢m(x2 )11 p,f3 ~ 

d-221131+ 3(d-2)-2nmax ll ¢(n) (x)ll k+21131.13' 
s C(mo + -2-) lf3'ls.:4 lf31 (12) 
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where the constant c depends o n p and f3 only . The last 
inequality is sufficient to show the convergence of the series 
(3) in S(Rd) . This follows immediatly from 

2 7 
I :£ Hm (x)¢m(x ) II $. I II H (x)¢ ex· ) II a 
m~O p,f3 m'2..0 m m p,~, 

S. C max llln)(x) II i ( d-2 2lf31 +4(d -2 )- 2n 
lf3'1S. 41{31 p+2lf31.f3' m .. o m 0 + -2-) 

- 0 

(13) 

~ C' max ll <f>(n)(x)i l , for n :L2(d-2)+ 1f3 1+ 1. 
lf3' ls:4 lf31 p+

21,si ..B 

Trivially this shows that the series (3) is uniformly conver
ging and represents a continuous function. Note that for fixed 

and all spherical harmonics Y ,(a) 
m 

f dO(a)Y , (a) I ( I H m(x)¢m(x 2))- ¢( x)l- 0 
m m~O 

is true. From the continuity it follows 

I H (x)¢ ( x 2 )-¢( x) a 0 
1112 0 m m 

~ 

so that the series I H m<x) ¢m (x • ) converges to the function 
¢ (x) in S( R d) • 

0 

Definition 1: •S( R + ;SO(d)) denotes the set of all sequences 
{ ¢m(t) I of functions if>m(t) infinitely differentiable on R + 
such that 

d-2 n (m 0 ) 
max ( m o + -

2
- ) II ¢ m(t) II 

0 m k, L ,s 
<oo 

(14) 

1&1 
for any n , k 1 f 1 s • 

Remark. The space S ( R_.; SO(d)) is a locally convex topologi
cal vector space with the topology introduced by ineq . (14) . 
According to definition 1 the proposition 1 changes to 
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Proposition 1' 

The map 

jt : { <f>m(t)l --+ ¢ (x) = I Hm(x)<f>m(x 2 ) 

is a topological isomorphism between the spaces •S( R+;SO(d)) 
and ·S ( Rd). 

III. Dr.COMPOSITION or DISTRIBUTIONS 

the distribution Definition 2: By spherical harmonics of 
C (x) E S '( R d) we call the linear functional 
by 

f m(t) E S~+ defined 

< C (t),¢(t)>:= < f(x),H (x)¢(x 2 )>. ¢(t)E S 
m m R+ (15) 

Remark. Because Hm(x)¢ (x2 ) E ·S ( Rd) for ¢ ( t)E •S R the defini-
tion 2 is correct. Due to ineq. (10) we have + 

I< fm(t) .¢(t)>IS. 

lf3 1+}(d-2) (m 0 ) (16) 

~ C II fll {3 (mo+ d2-2) max II ¢(t) ll lfJ I {3' lf31 
P. f3's.lf31 P + · · 

so that the relation (15) defines a continuous linear functio-
nal on •S'R • 

+ 
Proposition 2 

The map 

j 2: f (x) -1 f (t)l 
m 

(17) 

gives a topological isomorphism between the spaces S'(R ~ and 
S'( R+;SO(d)) 

Proof . For f(x) E S' ( R d) it follows from ineq. ( 14) that 
If m (t) I E S' ( R+ ; SO (d)) • Since the set of all finite sequences 
!¢0(t), ... , ¢m(t), 0,0, ... I is dence in •S(R+; SO(d)) the map je 
is a map from S' ( R d) on S' ( R+ ;SO(d)) • Now we consider a se
quence I fm(t)l E •S' (R+ ;SO(d)). In view of ineq. (12) and (16) 
the series I < Cm(t) 1 ¢m(t)> converges. Taking into account 
proposition 1 and definition 2 the reconstruction of the dis
tribution f(x) is arrived at 

< f ( x). ¢(x)>• I < f m( t ),<f>m(t)>. 
0 
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Corollary 3 

j i ':' j 2 in the weak topology of dual pairs. 

From the physical point of view it is interesting to know the 
common structure o f the decomposition (17) if the distribut ion 
is invariant with respect to additional transformations (for 
instance, gauge transformation). Here we describe the c ase 
that the distribution f( x) from S '( R d) is invariant under 
rotations g E SO(k) 

Invariance of a distribution f(x) under rotations gE SO(k) 
means 

< f(x).¢(x) >z f dg< f(x ), ¢g<x)>. 
so ( k ) 

(18) 

where dg is the no~lized invariant Haar measure on the 
group SO (k) and ¢g (x) is defined by ¢g(X)= ¢ ( g · x ) . In 
order to simplify formulae without loss of generality we pro
pose that the r otation g acts on the subspac e R k of the 
first k variables . 

Proposition 4 

The map 

j: f(x) --+1 f m(t)lm ~0. md-k= ... =md-2=0 (19) 

gives a topological isomorphism between the space of SO(k) 
invariant distributions of •S' ( Rd) and the space S'(R+;SO(d);SC(k)). 

Proof. Since proposition 1 and the invariance 
re dO (a) on the unit sphere S d-1 we have 

of the measu-

2 -mo/ 2 -
¢g(x) .. I Hm(x)(x) f dO(a)Y (a)¢(r,goa) 

m~O m 

2 - mo/2 - -1 
= I Hm(x)( x ) f dO(a)Ym ( g oa)¢( r ,a). 
m~ 0 

On the other hand , from the explicit form of Hm(x) 
of Gegenbauer polynomials 1 71 we can write 

Hm(X)=Wm m ( x2,ak+1 ... . ,ad) Hm ... m ( x1, ... , xk ), 
0 ... d-k d-k d-2 

8 

(20) 

in terms 

( 21) 

) 

·J 

l 

2 
W o(x ,a k+l ..... ad) a H o o(x). mo ... md·k-1 • m o ... m d·k· I · .... 

Using the representation theory of compact groups we have 

H (g-
1ox) =Tk (g) H ( x) 

md-k'""md-2 md-k md- k ... ,md-2 

I t k, md-k , (g- 1) II ,(x). 
, md-k+l' ... m - 2'm m m 

m d d·k' 

(22) 

T~(g) is the operator generating the unitary i rreducible 
representations of SO (k ) on the space of homogeneous polyno
mials of degree e in k dimensions, and t ~·.fm , (g) are the 
matrix elements of the corresponding canonical matrix . 

Remark . The orthogonality relation 

f 

0 
k f k , f' (g)= 

f d g t (~) ( g ) t (m') _1 k 

SO(k) dim T f (g) 

(m )I (m') 

(23) 

(m ),. (m' ) 

is true. 
Taking into account eq. (20)-(23) by standard considerations 

we conclude 

< f(x). ¢(x)>= J 
s c (k) 

dg < f(x), ¢ (x) > 
g 

-mo /2 - -1 
~I fdg<f(x),H(x)(x2 ) fd O (a) Y (g o a)¢(x) > 
m~O SO(k) m m 

9 -mo/ 2 -
= I f dg< f{x),H m(x)(x~) f dO(a)Wm

0 
... m (l ,a k+ l .... a d) x 

m.? 0 SO(k) d-k 

X y 
111 , ••• m 

d-k d-2 

-I 
(g (a 1 .... ak ))¢(x)> 

9 



= I J d k 'md-k 
m40 g I, tm , ( -1 

SO(k) m d-k+1''''md_2 .m g )x 

2 -mo'2 _ _ 
x < f(x),H (x)(x ) J d!l(a)W (l ,ak 1 , ... ad) Y , (a)c,{>(x)> 

m m 0 ... rnd-2 + m 

l 
m?, 0 

2
-m / 2 -

< f(x),ll (x)(x ) 0 J dO(a) W m (l,a 
1

, .... ad)¢(x)> 
m rn o"' d-2 k+ 

m = ... •m = 0 
d-2 d-k 

l < c (t ) ' c,6 (t)> . 
m 40 m m 

md-k= ... • md-2"' 0 

0 

Our final aim is to have a decomposition of the distribution 
C (x) E 'S' ( Rd ) in terms of distributions on the same space . 

Definition 3: Let I g m, ( t) l be a sequence from S' ( R+ ; SO(d)) 
such that gm'(t) = fm(t) for m'=m and grn' (t)=O otherwise. By 
the linear functional f m (x )E- S \ Rd ) defined by 

< fm(x),¢(x) > : .. I < g ,(t),¢, (t)>E< f (t),¢ (t) > 
m' m m m m 

for all ¢(x)E •S( R d) we call harmonic components of the distri
bution f( x) • 

Notes. 1. Due to proposition 2 the definition is correct. 
By ineg . (9) and (16) follows 

l< fm(x).(jb(x) >l 2 1< fm(t), ¢m(t)> I S. 

{3 d-2 
(m ) (mol d +2 

~ ll f mll ,8° ll <l>m !l {3 ~ C ( mo+ -=~) ll f mil · max ll¢ (x) ll • 
k . • 8 k. .s 2 k+{3 f 

I f 1.s:sf3+s · 

since f m(x ) i s a con t inuous linear functional. 
2. Conside r i ng that fm(t) is generated by f{x) we get 

from ineq. ( 11 ) and ( 12) 

10 

l< fm(x),¢(x) >l= l < f(x), Hm(x)(jbm(x 2 )>J !>: 

.S: I! f llk,{3 · ll ¢m(x2)Hm(x) l lk,{3 

(24) 
21{31 + 3(d-2)- 2n 

d-2) max 
~ C ( m 0 + -2- 1 f IS 4lf31+ 

20 
ll¢(x) llk+2 IJ1I+n,f 

The constant c is m- independent and depends only on n 
1 

k 1 

f3 1 and the !iPace dimension d . 
3 . Obviously f m (x) has the property 

m m 2 
< f (x ),(jb(x )>=<f (x), H m(x)(jbrn(x ) > 

=< f (x), H m(x) ¢1 (x2 ) >. 
m 

Now we can state our theorem. 

Theore m. 

The s eries 

m 
I f ( x ) 
m~O 

converges in the strong topology of S'( R d) to f ( x ) 

Pr oof. Cons idering proposition 1 and ineq. (24)
1 

we a r e 
allowed t o conclude for 2n~21f31+ 4 ( d --2)+2 

m 
l< f - I r (x),¢(x )>l .. l< f (x), 

m..S: rii I H (x)¢1 (x 2 )>I 
- m m m>m 

(25) 

(26) 

S C II f II k.,8 max 11¢ (x) 11 I ( m + d-2 ) 2Jf31+4(d-2)- 2n 
I fl~ 41,8l+2n k+21,81+n,f m0=m0 0 2 

~ c • C II C II max II ¢1 ( x) II . 
t,,8 J f J~4 1,8J +2n k+2 J,81+n,f 

The inequality implies the theorem. 
The series (26) is the desired decomposition of the distri

bution. 
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Remark. With the help of the proposition 4 it is easy to 
write the general structure of the decomposition (26) if the 
distribution f (x) is invariant under rotations g E SO (k). 

IV. APPLICATIONS OF THE DECOMPOSITION TO FOURIER TRANSFORM 

The purpose of this section is to study the Fourier Trans
form of the series (26) . First we proof the formula 

~ [ f m(x)l (g) .. ~ [ f(x)l m (g) 

and second we give some applications to analytical function 
expansion. 

Lemma: Suppose f(t) E Coo . Then for all m the relation 
holds 

a m a mo 
H (-)f (i-). 2 ° H (x)(-

2
) f(i- ). 

max m ax 
d 

x 2 : I x2 
i2l I 

(27) 

Proof. From the integral representation for the spherical 
harmonics (2) we have 

a 2 1 a mo 2 
H (-)f(x )·-fdO(a)Y(a)(a, - ) f(x ). 

m ax r m ax mo 
(28) 

Simple computations show that 

mo m 0 a mo 2 
(a,L) f(x 2) .. [2(a,x)1 (-

2
) f(x )+<l>(f,x,a), 

a X a·x 
(29) 

where <!> is a polynom in a , however, of degree smaller than m(). 
Substituting eq. (29) into eq . (28) and using the orthogonality 
relation for the spherical harmonics we get formula (27) . 

Notes. 1 . The Fourier Transform of H m(x)¢m(x 2 ) can be ex
pressed by 

12 

~ [Hm(x)¢m(x 2 )1(q) u H (i!__)~[¢ (x 2 )1 (q)' 
m aq m 

·(2ito Hm (q) (b_)mo ~ [<f>m 1(q2 ). 
aq 

2. As a consequence of the proposition 1 we are allowed to 
write 

mo a mo 
1{ ¢I (Q) 2 I H (q) J [¢) (q2 ) .. I H m(Q)(2l) (-:--:-2) n <Pm )(q 2 ). ( 30) 

m20 II' m m~ 0 aq 

2 mo a mo 
Hence J[¢]m (q )a(2i) ('dq2) ~ [¢m(x 2)J (q2 ) . Taking into 
account the property (251,we get 

~ [Cm(x)](q)= ~{C(x)lm(q). ( 31) 

Let us now propose that the distribution f(x) has a compact 
support . It is well known that the Fourier Transform ~ [ f] ( Q) 
is an entire function of first order, polynomial bounded on 
the real axis . Remark that the support of fm(x) is not bigger 
than the support of f( x) so that ~[ rm l (q) is also an entire 
function of an order and type as f(x) • Using eq. (25), (31) and 
the analytical properties of ~{ rm(x)l (q) simple computations 
show 

< ~ [ f m( x )] (q), ¢ (q)> .. 

- m / 2 - m 
<((q2

) 
0 

fdn(a)Y (a)~[ f (x)l(q)I H (q),<f>(q)>. 
m m 

Finally we have 

< ~ ( f (X)) ( q) , </> ( q) , >"" _I < J ( f m( X) , </> ( q) > 
m2:_0 

,.. I < r (c/) H (q).<f>(Q)· >u< I r (cr) H (q).¢(q)>. 
m~O m m m~O m m 

This means, every first order analytical function which is 
polynomial bounded on the real axis can be expanded in a seri
es in terms of harmonic polynomials uniformly converging in 
every compact subset of the complex plane . A similar result 
for the analytical function expansion is described iR ref./4/. 

I would like to thank G.LaBner, D.Robaschik and A. Uhlmann 
for fruitful discussions . 
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