
t;jtLfO

8-90
<. OOBlllEHl1H

OB 'hf,Jl.l1HEHHO CO
l1HCTl1TYTA

HLIEPHbiX
ltf(C rU.,LJ,OBAHl1i1

Ll.y6Ha

sr&r--
::c
>< w ...

E5 • 5787

Bruno Buchberger

AN EXTENTION OF ALGOL 60

1971

/

~TIONS
.t
t the Joint Institute for
:? be original publica-:­
with Article 4 of the

ES • 5787

Bruno Buchberger

AN EXTENTION OF ALGOL 60

.·
AHHOTAIU1.fl

naeTCfl pacmHpeHHe A]DQ]A 60, ll03BOHH~mee H3MeHHTb

nporpaMMU BO BpeMH HX BUnOnHeHHfl. PeanH3yeMOCTb pacmHpeHHfl

npoBepHeTCfl B wopuanbHOM ceuaHTH~eCKOM OllHCaHHH A~O]A 60
·rr.]ayepa.

I

1. Altering programs during execution time

To alter programs during execution time is very easy i

ming languages of the assemblertype. However, it is nc

in ALGOL-like programming languages. The absence of su

in these languages is a severe drawback for many pract

cations, for instance the realisation of. "learning pre

the application of function descriptions resulting frc

manipulation programs to concrete arguments. The remo•

defect is the concern of the present note, where we sl

a suitable extension of ALGOL 6o, which in our. opinior

.as a model for analogous extensions of similar languf

FORTRAN [6) PL/1 ~7J, ALGOL 68 1_5~).

2.·Informal description of the extension

The two main ideas of the present proposal for instal:

desired feature in ALGOL 6o are:

)

fl!Ol!l66 l13M6H.IIT1>

reMOCTl> pacmllp6HH.Il

ITHCaHllll ABrORA 60.
1, Altering progrRms during execution time

To alter programs during execution time is very easy in program­

ming languages of the assemblertype. However, it is not possible

in ALGOL-like programming languages. The absence of such a feature

in these languages is a severe drawback for many practical Rppli:.

cations, for instRnce the realisation of "learning progrruns" or

the application of ·function descriptions resulting from symbol

manipulation programs to concrete arguments. The removal of this

defect is .the concern of the present note, where we shall define .

a suitable extension of ALGOL 6o, which in our opinion could serve

as a model for analogous extensions of similar languages (like

FORTRAN [61 PL/1 ~?J, ALGOL 68 1:._5~).

2. Informal description of the extension

The two main ideas of the present proposal for installing the

desired feature in ALGOL 6o are:

1. We enable procedure identifiers to have a variable meaning.
.

which can be altered during execution of the program by a

special assignnent statement:

(1) proc := c; where proc is a procedure identifier and c the

identifier of an ALGOL data-entity (for instance an integer­

array) •. The meaning of this statement sho~ld be the following:

take the values(s) of c and consider them as a· desription of
. J .

·a programa~rding to a certain code, transform this desription

into a machine language program part corresponding to a proce-
J

dure-declaration and take this declaration as ·the declaration

for proc.in the further execution.

2. As an essential feature of a suitable code for describing pro­

grams we would.propose that the values of c after some easy

"editing" form an ALGOL procedure declaration for the deeired

program. The transformation to a machine language program then,

essentially, can be realized by an application of the compiler

already available for the concrete ALGOL-implementation. Thus,

the central effect of the propo•ed aew variant of the assign­

aent-stateaent would be a call of·the compiler during execution

time o:f.' the program, a possibility which·was realized also in

Busse [1).

For the theoretical purposes of this note we shall use the follo­

wing code :f.'or the description of ALGOL-programs: 'In assignment­

statements. of the form (1) use only the identifiers of one-dimen-

. ·. siona;t integer-arrays on the .right-hand side. De:fine once and

for all an injective mapping

,..

mapid: T~N

(T ••• set of ALGOL-nu:nbers, ·identifiere, -lo

-delimiters, and -operators,
N ••• set of natural numbers)~

.Then, as "ALGOL procedure declaration described by c"

one described by

M = mapid-1 (c[1]) ••• mapid-1 (c[i})

if there exists a "suitable" (cf.(4.54b)) i with
lower bound of. c :f 1 =.. if. upper bound of c.

The only extension of the language now consists in the

interpretation of assignment-statements of the furm (1

in ordinary ALGOL 6o would lead to an error-message du

cution time (see Lauer[2] 1 p•4-25). On the other hand.

of the form (1) are not excluded by the syntax of ordi

such that the proposed extension is syntactically invi

(see Lauer [2] 1 (2.~1) or Naur [4] 1 4.2.1.) •.

By this. simple extension we are now in a position to c

possible ALGOL-procedure (for instance in the :form of

of integer-numbers) during executian time of a program

manipulating the values·o:r the integer-array (in gener

entity) c. After the·procedure is set upit can be tr

execution by simply giving the instructions

.. f:= c ;, f((~ctual parameter list));

where f.has to be some identifier whose declaration is

declaration, or by

f:= c;

5

---------------,---..--

' a variable meaning

r! the program by a

tre identifier and c the

~ instance an integer­

!hould be the following:

1em as a· deerip;tion of

~ransf'orm this desription _

,rreeponding to a proce­

~ion as ·the declaration

:ode f'or describing pro-

of c after some easy

Laration for the desired

:te language program then,

plication of' the compiler

~L-implementation. Thus,

variant of' the assign­

compiler during execution

ch~was realized also in

-we shall use the follo­

ogz:ams: ·1n assignment­

dentifif!rs ofone-dimen­

fde~ Define once and

mapid: T ~N

(T ••• set of ALGOL-ntunbers 1 id~ntifiere 1 -loGicflJ. valtu~e,

-delimiters, and -operators,
N •.• eet of natural numbers).

Then, as "ALGOL procedure declaration described by c"- toke the

one described by

M = mapid-1 (c[1]) ••• mapid-1 (c[i1)

if there exists a "suitable" (cf.(4.54b)) i with
lower bound of c 6 1 "'- i ~upper bound of c.

The only extension of the language now consists in the pToposed

interprete.tion of assignment-statements of the fb rm (1) 1 which

in ordinary ALGOL 6o would lead to an error-message during exe­

cution time (see Lauer[2], p.4-25). On the other hand·, statements

of the form (1) are not excluded by the syntax of ordinary ALGOL6o 1

such that the proposed extension is syntactically invisible:

(see Lauer te}, (2.31) or Naur [4], 4.2.1.) •.

By this_ simple extension we are now in a position to compose every

possible ALGOL-procedure (for instance in the form of a sequence

of integer-numbers) during executiDn time of a program b'y suitably

manipulating the values of the integer-array (in general the data­

entity) c. After the· procedure is set up- it can be transmitted to

execution by simply .giving the instructions

.. f':= c ;, f'((cctual parameter list));

where f has to be some identifier whose declaration is a procedure

declaration, or by

f:= c;

and using the fUnction designator f((actual par~eter list)) in

some expression.

For practical purposes, of course, the special code defined above

would not be convenient. A practically interesting implementation

would probably have to be basedon well developed string manipula­

tion features, with careful consideration of the ~ount of work
;

given to the "editing" function (in our proposal the fUnction map,

cf. (4.54b)). Also, such a code would have to be standardized to

guarantee com~atibility of programs using this_new possibility

. and written for different implementations.

By the proposed method the desired language feature is realized in

a very general way, such that really every possible ALGOL-program

can be composed and executed during execution of some con_trol

program. Compared with other methods (for instance the "compile­

time facilities" in PL/1) the proposed extension has several ad­

vantages:

1. Firstly, for the interpretation of statements having the form

(1) we h8ve not to include a new, long program part into'the

compiler, but only to alter the translation of the ":=" in the

special case (1) by putt~ a call of the "editing" function

and the compiler to the translated program.

2. After-a program desribed by cis once compiled by execution of
I
I .

f:= c, it can be called as often as desired by the identifier f

in its compiled, quickly operating JBachine-language fo:rll.

-3. After execution of a procedure thus compiled, control automa-

6

!
,l

·I
!

tically returns to the status where new procedures c

'be compoeed.

3. Formal definition of the extension

We now formally desribe the extension usine the desript

developed by the IBt~-Laboratory, Vienna. For under~tand

followine at least a survey knowledge of the method· as

Lucas, Lauer,Stigleitner[3} and the formal definition c

_syntax and semantics given in Lauer [21 is necessary. ¥

definitions and notational conventions of tboselreporte

explicitly stating them.

We already remarked that a syntactical extension is no1

As to the semantics, we change the ALGOL 6o interpreta~

in Lauer I2J by changing (4.54) there to

(4.54) int-assign-st(t) ~
length(s-lp(t))=1 & is-proc-den(den1) & is-id(:

t

& is-INT(e-elemos-da(denr)) ~
t

upd-dn(n1 ,den);
t

den:-. combine (pt, s:-e, s-e (den1t));

pt: prepass-text(tranelate(map(rt)))
I

T ~ right-hand part of (4.54) in Lauer [2]

where lt=elem(1)·s-lp(t), rt=s-rp(t), ~=m~), denm=nm
I

(4.54a) translate(text) = this should be a function ~ . ' '

every character st-ring txt=char1 ••• char (charie '!' (i= . n

7

parameter list)) in

lalcode defined above

resting implementation

loped string manipula~

f the amount of work

posal the function map,

to be standardized to

hla,new possibility

feature is realized in

poesible ALGOL-program

on of some control

natance the'"compile­

ris'ion has .several ad-

!Dente h8ving the form

rograJII part il'l'to the

ion.of the,":=" in the

lle "editing" rimotion

am.· .

~iled by execution of

red,by the identifier f

ne:.;.language fol"'l.

iled, control' automa-

I
I
I.
I

tically returns to the statue where new procedures can possibly·

·be compoeed.

3. Formal definition of the extension

We now formally desribe the extension using the desription method

developed by the IBM-Laboratory, Vienna. For underFtandine the

followine at least a survey knowledge of the method as given in

Lucas, Lauer,Stigleitner[3} and the formal definition of ALGOL 6o

syntax and. semantics given in Lauer t2] is necessary. We use many ·

definitions and notational conventions of thoselreports without

explicitly stating them.

We already remarked that a syntactical extension is not necessary.

As to the semantics, we change the ALGOL 6o interpretation given

in Lauer [2] by changing (4.54) there to

(4.54) int-aasign-at(t) -=
length(s-lp (t))=1 & ia-proc-den (den1) & ia-id (r t')

t

& ia~INT(s-eiemos-da(denr)) ~
t

upd-dn(n1 ,den);
t

den: combine(pt,s-e,a-e(den1));
' t .

pt: prepaea-text(tranelate(map(rt)))
I

T ~ right-hand part of (4.54) in Lauer [2] unchanged,

where lt=elem(1)os-lp(t), rt=a-rp(t), ~=mQ:), denm=nmQm).
I

(4.54a) translate(text) = this should be a function which for

every character string txt=char1 ••• charn (chari e '!! Ci=1 1 ••• ,n),

7

r

I
!

II
i
i
L
~ .

I

T ••• set of numbers, logical values~ identifiers, detimiters and

oper~tors in the fixed concrete representation of abstract ALGOL 6o
programs, txt being a syntactically correct procedure declaration

in the concrete representation) gives the corresponding abstrac.t

object txt• satisfying is-proc~decl. Note that no procedure iden­

tifier for the procedure under study appears in txt•. We can sup­

pose that the function translate is already defined according to

the practical situations where for the fixed conbrete represen­

tation this function, essentially, is given by the compiler. An

example of a formal definition of a similar function is given in

Lucas et al. [3], p.3-26.

(4.54b) J

map(id)= L
mapid-1 (id1) ••• mapid-1 (idi),

if i1'-1 £ i2 & (3j)Q(id,j)

undefined else,

idk= elem(-i1+k+1)•s-value(denid),

11: s-lbdos-da(denid),

i 2= s-ubdos-da(denid),

Q(id,j)= (16jfi2 & mapid-1 (id1) ••• mapid 1 (idj) is a

procedure declaration of the concrete representation)

i= (L.j)Q(id,j),

(4.54c) mapid(t) is an injective mapping yielding an integer

number for every element"tE T.
(4.54d) combine(o,s,p) = PASS:~(o;,s:p)).

This concludes the formal definition of the extension.

Let us call ALGOL 6o machine the machine whose language function

(state transition function))\ is desribed by the definition in

Lauer l21 and ALGOL 6o' machine the machine whose language function

8

/

I

t
\1.·

11
I
!;

I

r~
f'
1

is described by the definition in Lauer [2] plus the g

_given above.

we know, firstly, that the above extension does no han

-easily prove

Lemma 1: Every abstract program t yielding a sequence c

~1 .s2' ... ~u~h that. for no state _s k (k ~1) s-in•t'(~k:
fort: c. tn(s-c(_)k)), if submitted to the interpretation 1

ALGOL 6o machine, also yields the same. sequence if subn

the interpretation by the ALGOL 6o 1 machine.

Let us define concrete(obj) to uniquely yield a charac1:

txt for every abstract obj satisfying is-proc-decl(obj)

that translate(concrete(obj))=obj (see Lauer [2), chapt

definitions of syntactical predicates in the concrete r

tion should be such that concrete(obj) satisfies the pr

"procedure declaration" of the concrete representation.

is-proc~decl(obj), Further :for any abstract object P we

P'= d(P;ts-noK \ is-0\VN(s-scope•K(P))}),

i,e, P' is the same object as P with all unique names a

OWN-variable'l deleted. So, in particular, if P satisfie'

is-p-proc-decl, then P' as tisfies is-proc-decl. As in tl

wing we shall speak about several distinct states~·~/,~

we shall agree to denote the corresponding immediate co1

by: Q!=s-dn ~), !!!!=s-un(~), ••• 1 .!lli'=s-dn(~')·, !!!'=s-w

DN1 =s-dn <51), UN1 =s-un (~1), • • • • Further, denc =c (§) (.Q!!)

denf=f~) (Q!!).

9 -

fiers, delimiters and

ion of abstract ALGO~ 6o
procedure declaration

=orresponding.abstract

1at no procedure iden-

e in txt' •. We can sup-'

defined according to

1 .concrete represen-

by the compiler. An

function.is given in

-1 (idi))

8o (3j)Q(id t j)

tid1 (idj) is a

:oncrete representation)

:lding · an integer.

extension.

'se language- function

· the definition in

whose· language function

'\1 . .
11 _,

is described by the definition in Lauer [2] plus th~ supplement

.given ·above.

we know, firstly, that the above extension does no harm, as we can

easily prove

Lemma 1: Every abstract program t yielding a sequence of states

~1 ,)2 , ••• ~uch that. for no state _s k (k ~1) s-in•t:(Sk)= ~
for'Cctn(s-c~k)), if submitted to the interpretation by the

ALGOL 6o machine, also yields the same sequence if submitted to

the interpretation by the ALGOL Go' machine.

Let us define concrete(obj) to uniquely yield a characterising

txt for every abstract obj satisfying is-proc-decl(obj), such

that translate(concrete(obj))=obj (see Lauer L2}, chapter 5). The

definitions of syntactical predicates in the concrete representa-

tion should be such that concrete(obj) satisfies the predicate

"procedure declarat~on" of the concrete representation whenever

is·proc:-decl(obj), ·Further for any abstract object P we define

P'= d(P;_s-noK \ is-0\VN(s-scope•K(P)))),

i.e. P' is the same object as P with all unique names assicned to

OWN-variable'l deleted. So, in particular, if P satisfies·

is-p-proc-decl, then P' satisfies is-proc-decl. As in the follo­

wing we shall speak about several distinct states~ •$' ,_s
1
,j

2
, •••

we shall agree to denote the corresponding immediate components

by: E!=s-dn ($"), .!m=s-un(~), ••• , Q!!'=s-dn(!;')·, !!!'=s-un~'),, ••

DN1=s-dn(S1), UN1=s-un(51), •••• Further, denc=c(~)~ and

denf=f~) (Q!!).

9

•",

I I

I I

I i
'

Our main task is to show ··,.

LemmA 2: Consider P=((s-type:type),(s-par-list:par-list>,
< s-spec-pt: spec-pt) 1 (a-body-: statement))

with is-p-proc-decl(P) and a state~ with f(!)=nf 1 cQ~)=nc'

s-da(denc)=((s-lbd :I1),(s-ubd :I2),(s-elem:INTG)) and I1~ 1 ~I~ I 2 ,

mapid-1 (elem(-I
1

+2)• s-value(denc)) •• ·.mapid-1 (el~m(I1 +I+1)os-yalue

(den)) = concrete(P') for a certain I. c 1 ...

Then the execut~on of t=((s-lp:<:'t')),(s-rp:c)), satisfying the

first condition of (4.54) 1 yields a·state_:5' such that

(+) s-typonr~')=type, s-par-list•nr(DN')=par-list,

s-spec-pt~nr(.!lli')=spec:.pt, s-bodyonf(E!'):statement' 1

,ill!'=!lli+k, £.1 . =JCQ p:"), where tn(Q)=\t\ and

-r(Q.)=int-st(t).

k is the number of OWN-varibales in statement. statement' differs

from statement. only in the unique names standing at the_positions

s-noK of statement, where is-OWN(s-scopeoK(etatement)). The~e

unique names differ from each other and from all unique names

used for OWN-variables thro~hout the program and for other iden- ·

tifiere in the present environment. Further, s(~')=s(.)) for all
composite selectors s differing from the composite selectors

mentioned in (+).

Proof:We first compute,by straightforward application of the

definitions given in Lucas et al. [~land Lauer '[21

s1 ='¥<~. •)=t-<.f<.s; •·s-c) ;<;to s-c =r<int-assign-st(t) ;(s-ri&))>).

_s
1

is like ~ , with the exception that now

~1 =:·4.<£ ;("t: ((s-in :int-assign-st), <s-al :(t)), <.s-ri :it)))).

Stiil tn CQ 1)=\ -r\.

For the next step the new form of (4;54) is. used:

.S2=fq1 ,-r)=~int-aseign-et (t, S(f1 ;t"" s-c),l:,Jl)=

.,;)'-(J{~1 ;1:" ~-c) ;(to s-c·:f-(ct; (s-ri :J2)))).

·Thus,. also~ 2 differ~ ·from ~ only by th"e s-c component

~s Q; 2=1N.CQ. ;(r :ct)), where

ct=((s-in:upd-dD)~(s-al:\n;?) ,(r: C<s-in:combine),(s-al:<

s-e(denf))),(s-ri: c<r,elP.n(2)· s-al))),(r:((s-in:E:,!

~-al :(traDslate(map (c)))) 1 (s-ri: ((ro r, elem(1)o s-al•

Now; tranelate(map(c))=P', as one can ·easily check. No1

is-proc-d~cl(Pt) and therefore concrete(P') satisfies 1

cate ~procedure-declaration" of the concrete representl
·. . l

tn(Q!: J=\1: 2\ 1 where "!2=roro "'C • Further,

J 3=~<S2• t2)=<j:>prepass-text (P' • S() 2 ;r2os-c),-c2,(r•r, eleml

· /"'(f<Jr'2"s-c) ;(-r2 .. s-c :r((prep-text-1 (P' ,un);. ·

1. K(un) :un-name \ is-OWN(s-scope oK(P') >3);
(s-ri:<r•r,elem(1)•s-al~r)))/).

Thus,

£ ;;/"CQ. _2 ;~: (<s-in:prep...;text-1) 1(s-al :(Pt)),

(~-ri:(<r .. r, eiem(1)• s-al •r))>,

<._r1 : (<s-in :un-name) ,<s-ri: ((r1 ,4<1• elem(2)• s-al)

(rk:(<~-in:~-name),(e-ri: ((rk,-t<koelem(2)• s-al~

-Kj such that is-O!VN(s-s~ope•i<j(P')) for 1f:j-'"k.

tn(Q. 3)={r1 a"t:2 , .. ~rk~t2\ •.

·For further processing we .take the instructions at the

r
1

•T
2

, ••• ;rk·t
2

in one spe~ial order omitting the stra:

r-list:par-list>,
, (s~body': sta'tement>)

f{!)=nf,c(!d)=nc' ·

:INTG)) and I1i.1~I;,I2 ,

:l-1 (elem(I1 +1+.1)os-yalue

:c)), satisfying the

.'5' such that

'):par:.. list, .

(DN'):statement' 1 · . - ' .

\t\ .and

ment •. statement' differs

ttanding at the posi tiona

·K(state~nent)). These

:rom all uni<lue names

tgr~ and for other iden-·

Le~, s(S')=s()), .for ~11

composite selectors

l applies tion of the.

Lauer 1:21

)!1-~t (t)';<,s-.ri :n.~~).
)W

I

For the next step the new form of (4;54) is used:

52=fq1 ,-c)=~int-asdgp-st<t, .f(i1 ;r~ s-c),l:,Jl)=

:::,J'4(d {~1 ;l:o s-c) ;(to s-c :f(c.t; (s-ri :.!2)))).

Thus, .also~ 2 differs ·from~ only by the s-c component which now

is £ 2=_r<£ ;(r :ct;>), .where .

ot=((s-in:upd-dn);(s-al:\nf>) ,(r: <<s-in :combine),(s-al :(n, s-e,. .

s-e(denf))),(s-rl: <<r,elen(2)• s-al))),<r:((A-in:prepass-text),

~-al :(translate{map(c)))),(s-ri: ((r•r, elem(1)o s"-al•r> >>»))).
Now; translate(map(o))=P', as one can easily check. Note that

is-proc-deol(P') and therefore. ooncrete(P1) satisfies the predi­

cate "procedure-declaration" of the concrete representation •
. . ··~ . (

tn(Q2.:)=t"t2\' where12=ror• r. Further,

J 3=~<~2' "C2)=1>prepasa.:.text (P', S'() 2 ;t" 2os-c),T2 ,(r•r 1 elem(1)o s-al or))

=t(f(j rr
2

os-c) ;(1:2 os-~ :r((prep-text-1 (P' ,'un);.. .

{K(un):un-name\is-OWN(s-scope~K(P')~j);
(s-ri :<.ror 1 elem(1) .. s-al<>r)))/). '

Thus,

Q 3=/'(£ .2 ;~:(<e..: in: prep-text-1) 1 (s-al ;(pt)),

(s-r~((ror 1 elem(1)•s-al•r))),

zz:1 : (.<s-in:wi-name),<s-ri: ((r1 ,4<1• elem(2)• s-al))))), • , • ,

<rk :(<s-in :un-name),(s-ri: <<rk,-l<koelem(2)o s-al)))))))),

-Kj such that is-OWN(s-scope•'l<j (P')) for 1 ~ j ~k.

tn(£ 3)={r1'•T2, •• ,rk·T2\.

'For further processing we take the inst~1ctions at the nodes

r
1

•'t21 •• .;rk~T 2 in one spec.ial order omitting the straightforward

II

i·
''

proof, that order does not influence the final result'~·

.S4=1pC_53,r1 .. :r 2)=fun-name(cf(_{
3
,r1 ot:

2
os-c),r

1
.. -r

2
,(r

1
,-t<

1
o elem(2)os-al))

=J'Yt(f(J3 ir1 or2·o-c) ;<(1<1oelem(2)o s-alo (r
1
o'2-r1)•s-c :nUN));

(s-un:!!!±1)),

. Q 4•/(J(£ 3 ;r1•t 2);-K1 oelem(2)os-aloT2 :nUN), U~=!lli+1,

tnQ[4 >=tr2or2 , ••• ,rkor2\. Proceeding~ this way we finally obtain

£ .5+k=f(b'(Q 3 ;r1 o"L2 , ••• ,rk•r2) ;'(<K1 oelem(2)• s-al•{2 :nUN'), ••• ,

.(<Kk" elem(2)• s-al•"t'2 :nUN+k-1)),

. UN3+k=!lli+k, tn(£ 3+k>=tr 2\ •

In the next step the newly generated k unique names are attached

to all OWN-variables occurring within the a-body component of P'

thus yielding an object P''• which is like P except for the unique

names attached to the k OWN-variables.

j4+k='P<J3+k'T' 2 >=.1.1(d(J3+k;T2• s:-c) ;<.elem(1)• s-al•ro('l2-r•r). s-c:

;M(P';(s-noK1 :nUN'), ••• ,{s-noKk:nUN+k-1)))),
'-- - - .J v

P''•

We omit the easy. calculations of the next two steps which yield

.5'=] G+k=f(J'(] 5+k' !• s-c) ;(s-dn=f(m!;(nf•f(P''; (s-e: s-e (denf)) >)>)),

st = S(Q n:), .mp;,.tm3+k=,!!!+k, m!' :,A<m! ;<nf ~.(P" ; <s-e: s-e (denf))))).

T~us, s-t;r~~·nfQ?!'):type, s-par-listanf(m!'):par-list,

s-spec:..pto,nf~')=spec-pt, s-bodyanf(m!')=statement',

where statement' has the property described in Lemma 2, because

the use of the instruction un-name steadily produces new unique

names. This completes our proof.

Lemma 2, informally speaking, .has the following signif:

given any procedure-denotation denf for an 'identifier j

·.consisting of a procedure-declaration and an environme1

·nent, we can generate. this procedure-denotation by fir•
' .

ring •f as procedure identifier of any procedure (thus· <

environment) and then executing f:=c at any place whel

clared, co~posing ~ c (1], •• :, c [IJ a description of ,

declaration. The execution of f::c then generates a pre

.denotation for f 1 which differs from denf only in the 4

unique names for .the OWN-variables, which is realized I

conflict with other VHrlHblP.~ may arise. It is also sh!

the execution of f:=c has no other effects. How the de1

of the procedure-declaration in c l_1) , • •• , c (I] has to 1

is given by the function concret<s, whose effect has to

to the programmer.

I·want to thank G.A.Osoekov, V.P.Shirikov, and A.A. Kh1

with whom I had several discussions· on the subject of ·

r,i terature:

[11 H.G.Busse, Eine mOgliche Erweiterung der P.rogrrunmie:
ALGOL, Elektronische Rechenanlagen, B, Heft 2

[2) P.Lauer, Formal def_inition of ALGOL Go, Technical

TR 25.oBB, IBM Laboratory Vienna, 1968.

. l)J P. Lucas, .P.Lauer, H.Stigleitner, Method IUld notat:

formal definition of progrB.mming languages, T'

Report TR 25.o87, Im~ Laboratory Vienna, 1968

~j P.Naur, Reovieed repo:::..t on the algorithmic language

t1al result.

r2,(r1,~1·elem(2)•e-al))

·t2-r1) • s-c :nUN'>);

~=!lli+1'

le way we 'finally obtain

3-al~r2 :nUN), ••• ,

3-al•"t'2 :nUN+k-1)),

1e names are attached

·body component of pr

, except for the unique

·al•ro(r2-r•r). e-c:

ol<k :nUN+k-1 '>))), ·-

wo ~tape which yield

<s-e~ e~e(denf))))))),

ptr;<e-e:s-e(denf))))).

)=par-list,
·' .

tement •·,

in Lemma 2, because

produces new unique

I
l

I
r

i

I
\•
l •

Lemma 2, informally speaking, has the following significance:

given any procedure-denotation denf for an 'identifier f, denf

·.consisting of a procedure-declaration and an environment compC?­

nent, we can generate this proc~dure-denotation by first decla-

ring f as procedure identifier of any procedure (thus definin11 the

environment) and then executing f:=c at any place where f is de­

clared, composing in c [1], •• :, c [I} a description of the procedure

declaration. The execution of f::c theB generates a procedure-.

.denotation for f, which differs from denf only in the choice of

unique names for the OWN-variables, which is realized eo that no
/ .

conflict with other VBrlHblAA may arise. It is Rlso sho·.'ln, thP.I.

the executien off:=c has no other effects. How the description

of the procedure-declaration in CL1), ••• , c[I]has to be composed

is given by the flinction conoret<s, whose effect has to be l<:nown

to the programmer.

I want to thank G.A,Ososkov, V.P.Shirikov, and A.A. Khoshenko,

with whom I had several· discussions' on the subject of this paper.

r,i terature:

[1) H,G,Busse, Eine mogliche Erwei terung der Progrnmmiersprache
ALGOL, Elektronische Rechenanlagen, B, Heft 2~ 196n.

[21 P,Lauer, Formal definition of ALGOL 6o, Technical Report .

TR 25,o88, IBM Laboratory Vienna, 1968.
-· L31 P. Lucas, .P•Lauer,. H.Stigleitner, Method and notation for the

formal definition of programming lan~ages, Technical

Report TR 25.o87, Im~ Laboratory Vienna, 1968.

L41 P.Naur,. Reovieed. report. on the algorithmic langu!lr;e H.GOI· 6o,

i
I.

I

1Jj :~ . .,.;n '.7i.jncaarden, Report on the algorithmic .lanGUage ALGOI. 68 1

' r.Lthematisch Centrum iunnterdam, f,S MR 1o1, 1969.

["·,} V. '?. -::h.irikov, Yazik FORTRAN, JINR, LVT!. 1969.

[71 IB!.! System/3So Operating System, PL/1 Laneuaee Specification's, ·

1}0:"3 1 Fol'l!l Nr. 79879-1.

Received by Publishing Department
;

on March 19, 1971.

