

E5 - 5787

Bruno Buchberger

AN EXTENTION OF ALGOL 60

Gz !
2 i,]
Y

o £
EVE by o §

AHHOTAENA

llaerca pdcuupesue AJNTOJA 60, nosmonApiee N3MEHATH
NporpauMi BO BPeMl UX BHNOMHEHMA. PeannayeMoCTh pacmupeHus

nposepAeTcA B (GopMANBHOM CENMAHTHUUYECKOM ONUCAHUM AHPOHA 60
‘1l.Jayepa.

1, Altering programs during execution time

To alter programs during execution time is very casy in program-
ming languages of the aseemblértype. However, it is not possible
in ALGOL-1like programming languages. The absence of such a feature
in these languages is a severe drawback for meny practical appli-
cations, for instance the realisation of "learning programs" or:
the application of’funcfion descriptions resulting from symbol
manipulation programs to concrete arguments. The removal of this
defect 18 the concern of the present note, where we shall define .
a suitable extension of ALGOL 60, which in our opinion could serve
as a model for analogous extensions of similar languages (like

FORTRAN [6} PL/1 "7], ALGOL 68 "5.).

2. Informal description of the extension

The two main ideas of the present proposal for: installing the
desired feature in ALGOL 60 are:)

1.

“m

We enable‘procedure identifiers to have a‘variable'meaning‘
which can be altered during execution of the proéram by a
special assignmest statement:

proc := c;‘ where pfoc i a'procedure identifier and c the
identifier of an ALGOL data-entity (for instance an integer-
array).'The meaning of this statement should be the following:

take the values(s) of ¢ and consider them as a-desriptiocn of

i : progrmmauwrding to a certain code, transform this desription:

2.

into a»machine language program part corresponding to a prooe-
dure-declaration and teke this daclaration as the deoiaration:‘
for proc 1n the. further execution. 7

As an esgential. feature of e suitable code for describing pro-
grams we would propose that the. values of ¢ after some easgy
“editing" form an ALGOL procedure: declaration for the desired
program, The transformation to a machine language program then,'
essentially, - can be realized by an application of the conpiler
already avsilable-fo:~the,concrete;ALGOL—implementation. Thus,
the cemtral effect -of the proposed mew variant of the assiga- ‘
lent-statesent~sould be a call'of-the compiler during execution_
time of’the progian, a possibility which was realized also in
Busse tﬂ]. : v

’", Foxr the theoretical purposes of this note’ we shall use the follo- :

wing code for the description of ALGOL—programs- ‘In assignment-

,‘statenentsfof the form‘(1) use‘only:the‘identifiers of onefdinen—

'2-sional integer-arrays on the;right-hand side, Define once &nd

t for all an_injeotive mapping

mapid: T —N
(T... set of ALGOL-numbers, -identifiere, -logical veluee,

~delimiters, and -operators;
N... get of natural numbers).

Then, as "ALGOL procedure declaration described by c¢" take the
one described by
M= mapid_1(c[1]) ‘oo mapid"1(c[il)

if there exists a "suitable" (cf,(4.54b)) 1 with
lower bound of c< 1< i< upper bound of c.

The only. extension of the language now consists in the proposed
intefpretation of assignment-statements of the form (1), which

in ordinary ALGOL 60 would lead to an error-message during exe-
cution time (see Lauer[2], p.4-25). On the other hand, statements
of the form (1) are not excluded by thé syntax of ordinary ALGOL 6o,
éuch that the propdsed extension is syntactically invisibief ‘
.(éee Lauer [2], (2.31) or Neur [4], %4.2.1.).. | .

By thisvéimple,exténsion we are‘now in a positidn to,compoéé every
poséible ALGOL-procedure (for instance in the form of a Bequence
of integer-numbers) during qxecut}nﬁ time of a program by suitably
manipulating the vaiués‘offthe integer-array (in general the data-
entity) c. After the procedure is set up it can be tranemitted to
execution by simply,giving the instructions '

. f:= c3 f({actual parameter listd);
where f has to be eome‘identifiér whose declaration is a procedure
declaration, or by

i= Cj3

‘and using the function designator f£(<actual parameter list>) in

some exnression.,

For practical purposes, of course,;the special code definedrabpve,.
‘would not be convenient. A practically interesting implemeﬂtetion
would probably have to be based on well developed sfring maﬁipula-_
_tion features, with careful consideration of the amount of work .
‘given to the "editing" fUnction ‘(in- our propoeal the function map, 5
. (4.54b)). Also, such a code would have to be standardized to
"guarantee comgatibility of programs using this new possibility

;and‘writteh for different implementationms.

By the proposed method the desired languege'feature 1g realized in
a very general way, such that really every pOEBibietALGOL—program 1;;
“can be compesed and execﬁted\during execution of‘éome COnﬁroi "‘
brogram; Compared with other methods (fer‘instanCe the‘"eoﬁpile-,ﬁ
time facilitiee" in PL/ﬁ) the proposed ertensioﬁyhas several ad-
vantages: s o =
:1 Firstly, for the interpretation of statemente having the form
1) we have not to include a new, long progran part into the
eonpiler,vbut only to alter the translation of the ":=" in the -
special case (1) by"putting a cail of the "editing" function
and the compiler to the translated program.
'2, After a program desribed By c is once cbhpiled‘ by execution of
f:= ¢, it can be called aaioften as desired by the identifier .
in ite complled, quickly oberating machine-language form,

.3, After execution of a procedure thus compiled, control autome--

. tieally returns to the statius where new procedures ean possibly

" ‘be composed.

3. FOfmnl definition of the extension. -

We now formaily desribe the extension using the desfiption method

developed b& the IBM-Laboratery, Vienna, For underrtanding the
-following at least a:survey knowledge of the method as given in

: Lﬁcgg, Lauef,StigleitnerEB] and the formal definition of ALGOL 6o
nsyntaxeand:semanticéngiven in Lauer 12] is necessary., We use many

definitions andknotational eonventions of those\reports-Withoﬁt

'.ezplicitly etating>them.k

We already remarked that a syntactical extension is not necessary.
As to the semantics, we change the ALGOL 60 interpretation given
in Lauer [23 by changing (4,54) there to *

(4.54) int-assign-st(t) =
length(e-1p($))=1 & 1S-Pr°c-d°n(d°"1t) & 1s-1d(ry)

& 15-'m(s-‘eiemas-da(denrt)) —>
uRd-dn(nlt;den);
,tdéqz;eombine(pt,s-e,s-e(denlt));
pt: gregaes—textstranslate(map(rt)))

T — right-hand part of (4. 54) in Lauer EE] unchanged,

where 1 -elem(1)os-1p(t), r;=s-1p(t), ny=n(E), denm=n (QE).
/

(4 543) translate(text) thie should be ‘a functlon ‘which for

" eyery character string txt =char, ...char (char e™ (1_4,... n),
1 ?

T,., set of numbers, logical values, identifiei-s, de}imitqrs and

operators in the fixed concrete representation of abstract ALGOL 60
programs, txt being a syntactically correct procedure declaration -

in the concrete representation) gives the correspondin'g' abstra}c.t
object txt' satiefying is-proc-decl., Note that no procedure_ Vi\d.e'n-“
tifier for the procedure under study appears in txt!', We can suﬁ- ’
pose that the function translate is already defined according to
the practical situations where for the fixed concrete represen-—
tafion this function, essentially, is'given by the compiler, An
example of a formal definition of a similar function. is given in

Lucas et al, [3], p.3-26,
(4.54b) mapid~ (1d,) ... mepia~'(1a,),

map(id)= ‘ if 1141 4 i, & (33)e(14,3)

undefined else,

idy= elem(-1 1+k+1)os-va1ue(den d),
i1= s-lbdos—da(denid), |
12= s-ubd os—da(denid),

Q(1d,§)= (14J¢1, & mapid™'(1d,) ... mapid 1(‘idd.) is a
procedure declaration of the concrete representation)

1= (L3)e(14,4), o

(4.54¢) mapid(T) 18 an injective mapping yielding an integer
number for every element'l:e T,

(4.54d) combine(o,s,p) = PASS:/&(O;(S:p)).

This concludes the formal definition of the extemsion. .

Let us call ALGOL §o machiqe the machine whose language function

(state transition function) A is desribed by the defiﬁition in

LauerA [2] and ALCOL 60! machine the machine whose language function

is described by the definition in Lauer [2] plus the supplement

glven above,

We know, firstly, that the above extension does no harm, as we can

easily prove

Lemma 1: Every abstract program t yielding a sequence of states
31,52,... such that for no state Sk (k21) s-in-t(gk)= error
foxvc&tn(s—c(gk)), if submitted to the interpretation by the
ALGOL 6o machine, also yields the same sequence if submitted to
the interpretation by the ALGOL o' machine.

Let us define concrete(obj) to uniquely yield a characterising
txt for every abstract obj satisfying is-proc-decl(obj), such

that translate(concrete(obj))=obj (see Lauer L2], chapter 5). The . ',

definitions of syntactical predicates in the concrete representa~
" tion should be such that concrete(obj) satisfies the predicafe h
"procedure declaration" of the concrete representation ‘whenever
is proc—decl(obj) Further for any abstract object P we define
Pz J(P;is—n ox | is—OWN(s-scope-K(P))})y
i,e, Pt is the_same.object'as P with all unique names assigned to‘
OWN-variables deleted. So, in particular, if P satisfies .
is—p—proc-decli then'P' eatisfieskis—proc-decl As in the follo-
- wing we shall speak about several distinct statesig S t§1'5é""
we shall agree to denote the corresponding immediate components
by: DN=s-dn (§), W=s-un(8),..., DN':s-dn(S')} UR'=s-un(X'),...
DN1=s-dn(31), UN1_s-un(S1),... . Purther, den -c(E)(QH) and

denf-f(_) L)e
\ 9

Our main task is to show , S PR

Lemma 2: Consider .P={({s-type: type) (s-par-list par-list},
< s-spec-pt:epec-pt),(s~body:statement))

with is-p—proc—decl(P) and a stateS with f(_)-nf,c(u)-nc, ’
s-da(den)= (<s-1bd 1> 4<e-ubd: 12>,<s—e1em :INTG)) and I1L141 12,
mapid” (elem(—I +2)°s-va1ue(den))...mapid 1(e1em(I1+I+1 Jes-value
(den N = concrete(P') for a certain I, :
Then the execution of t= ((s—lp <i>> <s -Tp? c)), satlsfying the
first condition of (ll- 54), yields a state X' such that
(+) s-typonf(__N_') type, s—par—listonf(DN')—par-list,
s—spec—pt«nf(D_N.')=spec-pt, s—bodyonf(_')..statement '
UN'=UN+k, C’ =d(C 3T), where tn(C)={t\ and
t(€)=int-st(t). ’ ‘ :
k is the number of OWN—varibales in. statement. statement' differs
from statement only in the unique names: standing at the positione
g-nok. of statement, where is—OW‘N(s—scopeoK(statement)). 'I‘hese N
unique names differ)from each other and from all unique names
used for OWN—varisbles throughout the program and for other iden-”
tifiers in the present environment. Further, 8(8')= s(S) for all
composite selectors 8 differing from the composite selectors
mentioned in (+).
Proof:We first compute by straightforward application of the
definitions given in Lucas et al. [31 and Lauer Tal (
51-‘1{1(5,1‘)-/4(4'(3 r-s-c) (= 8-C /\o\(int—assig—s (t) (s-ri.ﬂ)))).
&4 is like §, with the exception that now
Cq=nC & ((s-in: int-assign-st) {s-al:lth) 4 (o-ri: 12)))).
st111 tn(g 4)=41}.

10

" For the next ‘step the new form of (4. 54) 18 used:

,52 =¥,)7)= *’int—asuigg-st(t Rlerhs s-¢), T, ﬂ)-
' (J(g,] ;1o é-c) +{To -0 /\4(ct et IZ)))).
"l‘hus, alfsog2 differs from g only by the s-c- component which now
G 2/\(_ (s ct)), where - ' '
ot= ((s-in gp_d_—__),(s-al;(.n?) Hé ((s-in combine’,{s~al: <-Q B-e,
s-e(denf)>>,(s—ri r,elen(2)s s-al))),(r ({r=in: 2repass—text>,
' -al: <translate(map(c))>> Ce-ri: ({roryelem(1 Ye s—aler))))) .

o ’Now, translate(map(c))_P', as one: can -easily check, Note that

_is-proc—decl(P') and therefore. concrete(P') satisfies the predi-
cate "procedure-declaration" ‘of the concrete representation,

: {

,tn(_z -{Iz\ where‘r2-rorat Further,

$5=VE T2 L enassctext (B8 oiTo08=0) ‘C2,<r~r,e1em(’l)os-a1or>)

'-/‘(f(j taoa-c) <'ca°s—c /u((greg-text 1(P? ,un),
{K(un) un-name\is-OWN(s-scope eK(P'))3)
: (s—ri R F elem('l)vs-alar>>)>).

Thus,
5/\<- 2'4‘2 (¢o-in:prep-text-1), (a1 B,
i (s-ri-((ror, el em('l Yo s-alerd)d, |
(r,] ((s—in un-name},<s—ri (<rq ¥4 selem(2)e s-a1>)>)>’ o)
. &yt (Comtn: un-neme,(s-ri: (<rk,«k=e1em(2)es-a1>)>)>)>),
‘-K:j ‘such that is-OW‘N(s-scopeaK (p:)) for ,],__dék. ‘

tn(_ 3) {1‘ ,ooork't2\

~For further proceasing we take the instructions at the nodes

Ty 2,...,rk-'t2 in one speoial order omitting the straightforward

[y

II

proof, that order doeg not influence the final result

¢4‘\P(§3’r -1‘2) ?&L_(J‘(ga,r ot °s-c),r1o‘ra,<r1,+< oelem(2)ns-a1>)
./.\(/u(f(fa,r otzos-c) (K1°e1em(2)°s-a1° (r,I o r,l) s-c: nUN§),
<{s-un: UN+‘I>), ‘
q_/((J(_ B,r ~t2),4(1°e1em(2)°s-alo‘t ‘nUN) UN-UN+‘I,
tn(_ RE {rzota....,r sT,\. Proceeding in this way we finally obtein
s k"/"(‘g(- 3101 Topee ey TyoTp); (K,Ioelem(a)ns—alora.nUN»,...,
Ky elem(2)- s—al»"-‘2 'nUN+k-‘I>), N

1N_§+k=_l_l_l\l_+k,l tn(C. 34k)= it2\ .

'In the next sfep t_he newly generated k unique names are attached
to all OWN-variables occurring within the s-body component of P?
thus yielding'an object P",‘which is like P excepit for the unique
names attached to the k OWN-variables.

54+k‘\P(§3+k ,‘L‘2)- \A(:f’(}z’“c Ty s~c);<elem(1)- s-al- ro(t‘z-r-r). B-c:

/\4(& e-n°K1 .nUN>,...,<B-n °Kk'nUN+k 1>)>)l
VT
P' ' L d

'V‘Ve omit the.'éasy.. calculations of the next two steps which yield
‘ S'=f6+k=}«(5‘(f5+k,t» s—c)-(e-dnv'/u'(_-(n‘ (P -(sQe: g-e (denf)>)>)>),
[oil ..A(_ i), UN'= O K=UR+k, DN'-/q(_;<nf/x(P";<s-e e-e(denf)>))). '
Thus, s—t;peonf(ﬂ')-type, s—par-listnnf(_' =zpar-list,
s-spec-ptonfu')..spoc-pt s—bodyanf(ﬂ') =atatement’,
_where statemont' has the property described in Lemme 2, because
the use of the instruotion un-neme steadily produces new unique ‘

names, This completes our proof.

I2

" Lemma 2, informally speaking, has the following significance:

given any proeedure-denotation denf for an identifier f, denf

- consisting of a procedure-deelaration and en’ environment compo-

‘nent, we can generate this procedure—denotation by first declg-
ring f as procedure identifier of any procedure (thus defining‘the
environment) eand then executing fi=c at'any place where f is de-
claredi,compoeingnin;clh],..:;_g[ix a description of the‘proeednre
declaration, The execution of f:i=o then_generates a procedure-l
.denotation for f, which differs from denf'only in the ohoice of
unique nemes for the OWN-variables, which is realized so that no
'confliet with other vnrinblnﬁ may arise. It is also showm, thel
jthe executien of f:=c has no other effects, How the deeeription_v
‘of the procedure-declaration in c{1], iesy c[T)has to be composed
is given by the function conorets, whose effect has to'oe Imown
_'to the programmer. . ' ' '

*a

I want to thank G.A.Ososkov, V.P.Shirikov, and A.A. Khoshenko,

-

with whom I had several discussions on the subject of this paper,

Literature:

[ﬂ]H G, Busse, Eine mogliche Frweiterung der PrOgrnmmiersprache
ALPOL Flektroniache Rechenanlagen, 8, Heft 2,. 1966,

Eﬂ P, Lauer, Formal definition of ALGOL 60, Technieal Report .
TR 25.088 IBM Laboratory ‘Vienna, 1948, '
12] P.. Lucas, P, Lauer, H.8 tigleitner, Method and notetion for the
formal definition of prosramming languages, Technical
Report TR 25 087, I Laboratory Vienna, 1968,
{5] P.Navr, Revieed: repo“t on the algorithmic language ALGOTL 60, ‘

| v : - I3t

[f] Aevan ijngearden, Report on the algorithmic language ALGOL &8,
Mcthematisch Centrum Amsterdam, 45 KR 101, 1969. '

[5] v.?.chirikov, Yazik FORTRAN, JINR, LVT. 1969.

171 IBM System/350 Operating System, PL/1 Language Specifications,:
1926, Form Wr. 79879-1. '

Received by Publishing Department
Fd
on March 19, 1971.

14

