$$
\frac{4840}{B-90}
$$

СООБ山ЕНИЯ ОБЪЕДИНЕННОГО института ядерных ИССЛЕЛОВАНИЙ

E5-5787

Bruno Buchberger

AN EXTENTION OF ALGOL 60

E5-5787

Bruno Buchberger

AN EXTENTION OF ALGOL 60

АННОТАЦИЯ

Дается расщирение АЛГОЛА 60, позволяющее иэиенять программы во время их выполнения. Реализуемость расширения проверяется в Фориальном семантическом описании АЛГОЛА 60 П. Лауера.

1. Altering programs during execution time

To alter programs during execution time is very casy in programming languages of the assembler type. However, it is not possible in ALGOL-like programming languages. The absence of such a feature in these languages is a severe drawback for many practical applications, for instance the realisation of "learning programs" or the application of function descriptions resulting from symbol manipulation programs to concrete argumenta. The removal of this defect is the concern of the present note, where we shall define a suitable extension of ALGOL 60, which in our opinion could serve as a model for analogous extensions of similar languages (like FORTRAN [6] PL/1 「7], ALGOL 68 「5]).

2. Informal description of the extension

The two main ideas of the present proposal for installing the desired feature in ALGOL 60 are:

1. We enable procedure identifiers to have a variable meaning which can be altered during execution of the program by a special assigment statement:
(1) proc: $=c ;$ where proc is a procedure identifier and c the identifier of an ALGOL data-entity (for inatance an integerarray). The meaning of this atatement should be the following: take the values (s) of c and consider them as a desription of a program acoording to a certain code, transform this desription into a machine language program part corresponding to a proce-dure-declaration and take this declaration as the declaration for proc in the further execution.
2. As an essential feature of a suitable code for describing programs we would propose that the values of c after some easy "editing" form an ALGOL procedure declaration for the desired program. The transformation to a machine language program then, essentially, can be realized by an application of the compiler already available for the concrete ALGOL-implementation. Thus, the central effect of the proposed new variant of the assign-ment-statenent would be a call of the compilor during execution time of the program, a possibility which was realized also in Busse [1].

For the theoretical purposes of this note we shall use the folloFing code for the description of ALGOL-programs: In assignmentstatements of the form (1) use only the identifiers of one-dimensional integer-arrays on the right-hand side. Define once and for all an injective mapping

$$
\begin{aligned}
& \text { mapid: } T \rightarrow N \\
& (T . . \text { set of ALGOL-numbers, identifiere, -locical velueE, } \\
& \quad \text {-delimiters, and -operators, } \\
& \text { N. . . eet of natural numbers). }
\end{aligned}
$$

Then, as "ALGOL procedure declaration described by c " take the one described by

$$
M=\operatorname{mapid}^{-1}(c[1]) \ldots \operatorname{mapid}^{-1}(c[i])
$$

if there exists a "euitable" (cf. (4.54b)) i with lower bound of $c \leqslant 1 \leqslant i \leqslant u p p e r$ bound of c.

The only extension of the language now consists in the proposed interpretation of assignment-statements of the form (1), which in ordinary ALGOL 60 would lead to an error-message during execution time (see Lauer [2], p.4-25). On the other hand, statemente of the form (1) are not excluded by the syntax of ordinary ALGOL 60, such that the proposed extension is syntactically invisible (вее Lauer [2], (2.31) or Naur [4], 4.2.1.).

By this simple extension we are now in a position to compose every possible ALGOL-procedure (for instance in the form of a sequence of integer-numbers) during execution time of a program by suitably manipulating the values of the integer-array (in general the dataentity) c. After the procedure is set up it can be transmitted to execution by simply giving the instructions

$$
f:=c ; f(\langle\text { actual parameter list }\rangle) ;
$$

where f has to be some identifier whose declaration is a procedure declaration, or by

$$
f:=c ;
$$

and using the function designator f (<actual parameter list>) in some expression.

For practical purposes, of course, the special code defined above would not be convenient. A practically intereating implementation would probably have to be based on well developed string manipulation features, with careful consideration of the amount of work given to the "editing" function (in our proposal the function rap, cf. (4.54 b)). Also, such a code would have to be standardized to guarantee compatibility of programs using this new possibility and written for different implementations.

By the proposed method the desired language feature is realized in a very general way, buch that really every poseible ALGOL-program can be composed and executed during execution of some control program. Compared with other methode (for instance the "compiletime facilities" in PL/ 1) the proposed extension has several advanteges:

1. Firstly, for the interpretation of statements having the form (1) we have not to include a new, long program part into the compiler, but only to alter the translation of the ": $=$ " in the special case (1) by putting a call of the "editing" function and the compiler to the translated program.
2. After a program desribed by c is once compiled by execution of $f:=c$, it can be called as often as desired by the identifier f In its complied, quickly oporating machine-language form.
3. After execution of a procedure thus compiled, control autome-
tically returns to the status where new procedures can possibly be composed.
4. Formal definition of the extenaion

We now formally desribe the exteneion using the desription method developed by the IBM-Laboratory, Vienna. For underatandinc the followine at least a survey knowledge of the method as given in Lucas, Lauer, Stigleitner[3] and the formal definition of ALGOL 50 syntax and semantics given in Lauer [2] is necessary. We use many definitions and notational conventions of those reports without explicitly etating them.

We already remarked that a syntactical extension is not necessary. As to the semantics, we change the ALGOL 60 interpretation given in Lauer [2] by changing (4.54) there to (4.54) $\frac{\text { int-assign-st }(t)}{\text { length }(\mathrm{s}-\mathrm{lp}(t))=1 \& 1 \mathrm{~s}-\mathrm{proc-den}\left(\mathrm{den}_{l_{t}}\right) \& i \mathrm{~s}-\mathrm{id}\left(r_{t}\right)}$
\&e $1 \mathrm{~s}-\operatorname{TMT}(\mathrm{s}-\mathrm{e}$ emo
upd-dn $\left(n_{1_{t}}, \mathrm{den}\right) ;$

$$
\text { den: combine }\left(p t, \mathrm{~s}-\mathrm{e}, \mathrm{~s}-\mathrm{e}\left(\mathrm{den}_{1_{\mathrm{t}}}\right)\right) \text {; }
$$

$\mathrm{pt}:$ prepase-text(translete $\left.\left(\operatorname{map}\left(r_{t}\right)\right)\right)$
$T \longrightarrow$ right-hand part of (4.54) in Lauer [2] unchanged,
where $I_{t}=e l e m(1) \circ \theta-l_{p}(t), r_{t}=s-r p(t), n_{m}=m(E), \operatorname{den} m_{m}=n_{m}(D N)$. (4.54a) translate (text) $=$ this should be a function which for every character string txt=char $1 \ldots \operatorname{char}_{n}\left(\operatorname{char}_{i} \in \mathbb{T}(i=1, \ldots, n)\right.$,
$\bar{T} . .$. set of numbers, logical values, identifiers, delimiters and operators in the fixed concrete representation of abstract ALGOL 60 programs, txt being a syntactically correct procedure declaration in the concrete representation) gives the corresponding absirac.t object txt' satisfying is-proc-decl. Note that no procedure identifier for the procedure under study appears in txt'. We can suppose that the function translate is already defined according to the practical situations where for the fixed concrete representation this function, essentially, is given by the compiler. An example of a formal definition of a similar function is given in Lucas et al. [3], p.3-26.
(4.54b)

$$
\operatorname{b)} \operatorname{map}(i d)=\left\{\begin{array}{c}
\operatorname{mapid}^{-1}\left(i d_{1}\right) \ldots \operatorname{mapid}^{-1}\left(i d_{i}\right), \\
\text { if } i_{1} \leqslant 1 \leqslant i_{2} \text { \&o }(\exists j) Q(i d, j) \\
\text { undefined olse, }
\end{array}\right.
$$

$$
1 d_{\mathrm{k}}=\operatorname{llem}\left(-i_{1}+\mathrm{k}+1\right) 0 \mathrm{~s}-\mathrm{value}\left(\mathrm{den}_{\mathrm{id}}\right) \text {, }
$$

$$
1_{1}=s-l b d \circ s-d a\left(d e n_{i d}\right),
$$

$$
I_{2}=s-u b d \circ s-d a\left(d e n_{1 d}\right),
$$

$$
Q(1 d, j)=\left(1 \in j \leqslant 1_{2} \& \operatorname{mapid}^{-1}\left(1 d_{1}\right) \ldots \operatorname{mapid}^{1}\left(i d_{j}\right)\right. \text { is a }
$$ procedure declaration of the concrete representation)

$I=(L j) Q(i d, j)$,
(4.54c) mapid (τ) is an injective mapping yielding an integer
number for every element $\tau \in \bar{T}$.
(4.54d) combine $(0, s, p)=$ PASS: $\mu(0 ;\langle s: p\rangle)$.

This concludes the formal definition of the extension.
Let us call ALGOL 60 machine the machine whose language function (state transition function) Λ is desribed by the definition in Laver [2] and ALGOL 60' machine the machine whose language function
is described by the definition in Lauer [2] plus the supplement given above.

We know, firstly, that the $A b o v e$ extension does no harm, as we can easily prove

Lemma 1: Every abstract program t yielding a sequence of states ξ_{1}, ξ_{2}, \ldots buch that for no atate $\xi_{k}(k \geqslant 1) \quad$ s-in• $\tau\left(\xi_{k}\right)=$ orror for $\tau \in \operatorname{tn}\left(\sec \left(\xi_{k}\right)\right)$, if submitted to the interpretation by the ALGOL 60 machine, also yields the same sequence if submitted to the interpretation by the ALGOL 60^{\prime} machine.

Let us define concrete(obj) to uniquely yield a characterising txt for every abstract obj satisfying is-proc-decl (obj), such that translate (concrete (obj)) =obj (see Lauer [2], chapter 5). The definitions of syntactical predicates in the concrete representhtion should be such that concrete (obj) satisfies the predicate "procedure declaration" of the concrete representation whenever is proc-decl (obj). Further for any abstract object P we define $P^{\prime}=\delta\left(P_{i}\{\operatorname{s-n} \circ K \mid\right.$ is-OWI (s-scope•K(P)) $)$,
i.e. Pr^{\prime} is the same object as P with all unique names assifned to OWN-variabler deleted. So, in particular, if P setisfies is-p-proc-decl, then P^{\prime} eatisfies is-proc-decl. As in the following we shall speak about several distinct states $\mathcal{K}_{1} \mathcal{S}^{\prime}, \xi_{1}, \mathcal{K}_{2}, \ldots$ we ohall agree to denote the corresponding immediate components by: $D N=s-d n(\xi), U N=s-u n(\xi), \ldots, N^{\prime}=s-d n\left(\zeta^{\prime}\right) ; ~ U N^{\prime}=s-u n\left(\zeta^{\prime}\right), \ldots$ $\mathrm{DN}_{1}=\mathrm{s}-\mathrm{dn}\left(\zeta_{1}\right), \mathrm{UN}_{1}=\mathrm{s}-\mathrm{un}\left(\zeta_{1}\right), \ldots$. Further, den $\mathrm{c}=\mathrm{C}(\underline{\mathrm{E}})$ (DN) and $\mathrm{den}_{\mathrm{f}}=\mathrm{f}(\underline{E})$ (DN).

Our mein task is to show
Lemmf 2: Consider $P=(\langle s-t y p e: t y p e\rangle,\langle s-p a r-11 s t: p a r-11 s t\rangle$,〈s-spec-pt:spec-pt>, 〈s-body:statement>)
with 1a-p-proc-decl (P) and a state S with $P(E)=n_{f}, c(E)=n_{c}$, $s-d a\left(\right.$ den $\left._{c}\right)=\left(\left\langle s-1 b d: I_{1}\right\rangle,\left\langle s-u b d: I_{2}\right\rangle,\langle s-e l e m: I N T G\rangle\right)$ and $I_{1} \leqslant 1 \leqslant I=I_{2}$, $\operatorname{mapid}^{-1}\left(\right.$ elem $\left(-I_{1}+2\right) \cdot$ s-value $\left.\left(\operatorname{den}_{c}\right)\right) . . \operatorname{mapid} d^{-1}\left(e l e m\left(I_{1}+I+1\right) \cdot\right.$ s-value $\left.\left(\operatorname{den}_{c}\right)\right)=$ concrete $\left(P^{\prime}\right)$ for a certain $I_{\text {. }}$,
Then the execution of $t=(\langle s-1 p:\langle t\rangle\rangle,\langle s-r p: c\rangle)$, satiafying the first condition of (4.54), yields a state ξ^{\prime} auch that
(+) s-typon $n_{f}\left(D N{ }^{1}\right)=t y p e, ~ s-p a r-1 i s t \circ n_{f}\left(D N^{1}\right)=$ par-list, s-spec-ption $f_{f}\left(\underline{N^{\prime}}\right)=$ spec-pt, s-body ${ }^{\prime} n_{f}$ (DN' $)=$ statement', $\mathrm{UN}^{\prime}=\underline{U N}+k, \underline{C}^{\prime}=\delta^{\prime}(\mathrm{C} ; \tau)$, where $\operatorname{tn}(\underline{C})=\{\tau\}$ and $\tau(C)=$ int-st (t).
k is the number of OWN-varibales in statement. statement differs from statement only in the unique names standing at the positions s-nok of statement, where is-OWN(s-acopeok(statement)). These unique names differ from each other and from all unique names used for OWN-variables throughout the program and for other identifiers in the present environment. Further, $s\left(\xi^{\prime}\right)=s(\zeta)$ for all composile selectors a differing from the composite selectors mentioned in ($(+$).

Proof:We first compute by straightforward application of the definitions given in Lucas et al. [3] and Lauer [2] $\zeta_{1}=\psi(\zeta, \tau)=\mu(\delta(\xi ; r \cdot s-c) ;\langle\tau \cdot s-c: \mu($ int-assign-st $(t) ;\langle s-r i: \Omega\rangle\rangle\rangle)$. ξ_{1} is like ξ, with the exception that now $\underline{G}_{1}=u(C ;\langle\tau:(\langle s-i n:$ int-assign-st $\rangle,\langle s-a l:\langle t\rangle\rangle,\langle s-r i:(1))\rangle)$. Stili $\operatorname{tn}(\mathbb{C}, 1)=\{\tau\}$.

For the next step the new form of (4.54) is used:
$\zeta_{2}=\psi\left(\xi_{1}, \tau\right)=\phi_{\text {int-assign-at }}\left(t, \delta\left(\xi_{1} ; T 0 s-c\right), \tau, \Omega\right)=$
$=\mu\left(\delta\left(\xi_{1} ; \mathrm{To}_{0} \mathrm{~s}-\mathrm{c}\right) ;\left\langle\tau_{0} \mathrm{~s}-\mathrm{c}: \mu(\mathrm{ct} ;\langle\mathrm{s}-\mathrm{r} 1: \Omega\rangle)\right\rangle\right)$.
Thus, also ξ_{2} differs from $\}$ only by the sec component which now is $C \quad 2=\mu(\underline{C} ;\langle\tau: c t\rangle)$, where
$c t=\left(\langle\mathrm{s}-\mathrm{in}: \underline{\mathrm{upd} d} \mathrm{dn}\rangle,\left\langle\mathrm{s}-\mathrm{a},\left\langle n_{\mathrm{f}}\right\rangle\right\rangle,\langle\mathrm{r}:(\langle\mathrm{s}-\mathrm{in}:\right.$ combine $\rangle,\langle\mathrm{s}-\mathrm{al}:\langle\Omega, \mathrm{s}-\mathrm{e}$, $\left.\left.s-e\left(d e n_{f}\right)\right\rangle\right\rangle,\langle s-r i:(\langle r, e l e n(2)-s-a l\rangle)\rangle,\langle r:(\langle$ s-in :prepass-text \rangle, $\langle a-a l:\langle$ translate (map (c)) $\rangle\rangle,\langle\mathrm{s}-\mathrm{rl}:(\langle\mathrm{r} \circ \mathrm{r}, \operatorname{elem}(1) \circ \mathrm{a}-\mathrm{al} \cdot \mathrm{r}\rangle)\rangle\rangle\rangle\rangle\rangle$.
Now, translate (ma p(c))=P', as one can easily check. Note that is-proc-decl (PI) and therefore concrete (P') satisfies the predicate "procedure-declaration" of the concrete representation. $\operatorname{tn}\left(\mathbb{C}_{2}\right)=\left\{\tau_{2}\right\}$, where $\tau_{2}=$ roc $-\tau$. Further, $\xi_{3}=\psi\left(\xi_{2}, \tau_{2}\right)=\phi_{\text {prepase-toxt }}\left({ }^{\prime}, \delta\left(\xi_{2} ; \tau_{2}{ }^{\left.\circ 日-c), \tau_{2},\langle r \circ r, \operatorname{elem}(1) \circ \text { valor }\rangle\right)}\right.\right.$

$$
=\mu\left(S\left(\xi ; \tau_{2}{ }^{\circ} \mathrm{\theta}-\mathrm{c}\right) ;\left\langle\tau_{2^{\circ}} \mathrm{B}-\mathrm{c}: \mu\left(\text { (prep-text-1 }\left(\mathrm{P}^{\prime}, \text { un }\right) ;\right.\right.\right.
$$

$$
\left.\left.\left.\left\{K(u n): \text { un-name } \mid \text { is -own (s-scope ok(} P^{\prime}\right)\right)\right\}\right) \text {; }
$$

$$
\langle\mathrm{e}-\mathrm{r} 1:\langle r \circ r, \text { elem }(1) \circ \mathrm{s}-\mathrm{al} \circ r\rangle\rangle)\rangle) \text {. }
$$

Thus,

K_{j} such that is-OWN(s-scopeo $\left.K_{f}\left(P^{\prime}\right)\right)$ for $1 \leqslant j \leqslant k$. $\operatorname{tn}\left(\mathrm{C}_{3}\right)=\left\{r_{1} \tau_{2}, \ldots, r_{k} \cdot \tau_{2}\right\}$.

For further processing we take the instructions at the nodes $r_{1} \cdot \tau_{2}, \ldots, r_{k} \cdot T_{2}$ in one special order omitting the straightforward

$$
\begin{aligned}
& \langle s-r i(\langle r \circ r, \text { elem }(1) \cdot \mathrm{B}-\mathrm{al} \circ r\rangle)\rangle \text {, } \\
& \left\langle r_{1}:\left(\langle\text { erin :un-name }\rangle,\left\langle\mathrm{a}-\mathrm{ri}:\left(\left\langle r_{1}, k_{1} \cdot \text { elem }(2) \cdot \mathrm{s}-\mathrm{al}\right\rangle\right)\right\rangle\right)\right\rangle, \ldots ; \\
& \left.\left.\left.\left\langle r_{k}:\left(\langle\theta-\text { in:un-name }\rangle,\left\langle\theta-r i:\left(\left\langle r_{k}, k_{k} \cdot e l e m(2) \circ s-\theta 1\right\rangle\right)\right\rangle\right)\right\rangle\right)\right\rangle\right),
\end{aligned}
$$

proof, that order does not influence the final result.

$$
\begin{aligned}
& \xi_{4}=\Psi\left(\xi_{3}, r_{1} \cdot r_{2}\right)=\dot{\phi}_{\text {un-name }}\left(\delta\left(\xi_{3}, r_{1} \circ \tau_{2}-8-c\right), r_{1} \circ \tau_{2},\left\langle r_{1}, \kappa_{1} \circ \text { elem (2) } \circ \mathrm{s}-\mathrm{al}\right\rangle\right) \\
& =\mu\left(\mu\left(\delta\left(\xi_{3} ; r_{1} \circ \tau_{2} \circ \mathrm{~B}-\mathrm{c}\right) ;\left\langle\kappa_{1} \circ \text { elem (2) } 0 \mathrm{~s}-\mathrm{al} \cdot\left(r_{1} \circ \tau_{2}-r_{1}\right) \cdot s-c: n_{\underline{\mathbb{N}}}\right\rangle\right) ;\right. \\
& \text { 〈s-un: } \mathbb{N N + 1} \text {)), }
\end{aligned}
$$

$\mathrm{C}_{4}{ }^{*}\left(\delta\left(\mathrm{C}_{3} ; \mathrm{r}_{1} \circ \tau_{2}\right) ; \mathrm{K}_{1} \circ \mathrm{elem}(2) \circ \mathrm{B}-\mathrm{al} \circ \tau_{2}: \mathrm{n}_{\underline{U N}}\right), \underline{U N}_{4}=\underline{\mathrm{UN}}+1$,
$\operatorname{tn}\left(\mathbb{C}_{4}\right)=\left\{r_{2} \circ \tau_{2}, \ldots, r_{k} \circ \tau_{2}\right\}$. Proceeding in this way we finally obtain
C. $_{3+k}=\mu\left(\delta\left(C_{3} ; r_{1} \circ \tau_{2}, \ldots, r_{k} \circ \tau_{2}\right) ;\left\langle\kappa_{1} \circ \operatorname{elem}(2) \cdot \varepsilon-\mathrm{al} \circ \tau_{2}:{\underline{n_{\underline{U N}}}}\right\rangle\right.$ $\left.\left\langle K_{k} \cdot \operatorname{elem}(2) \cdot s-a l \cdot \tau_{2}: n_{\underline{U N}}+k-1\right\rangle\right)$,
$\underline{U N}_{3+k}=\underline{W N}+k, \operatorname{tn}\left(C_{3+k}\right)=\left\{r_{2}\right\}$.

In the next step the newly generated k unique names are attached to all OWN-variables occurring within the s-body component of p p thus yielding an object P'I, which is like P except for the unique names attached to the k OWN-variables.
$\xi_{4+\mathrm{k}}=\Psi\left(\xi_{3+\mathrm{k}}, \tau_{2}\right)=u\left(\delta\left(\xi_{3+k} ; \tau_{2}{ }^{\circ} \mathrm{s}-\mathrm{c}\right) ;<\operatorname{clem}(1) \cdot \mathrm{s}-\mathrm{al} \cdot \mathrm{r} \circ\left(\tau_{2}-\mathrm{r} \cdot \mathrm{r}\right) \cdot \mathrm{s}-\mathrm{c}:\right.$ $\underbrace{\mu\left(P^{\prime} ;\left\langle s-n \circ k_{1}: n_{U N}\right\rangle\right.}_{P^{\prime \prime}}, \ldots,\left\langle\mathrm{s}-n \circ k_{k}: n_{\underline{U N}+k-1}\right\rangle)\rangle$,

We omit the easy calculations of the next two steps which yield $\xi^{\prime}=\xi_{6+k}=\mu\left(\delta\left(j_{5+k}, \tau \cdot s-c\right) ;\left\langle s-d n: \mu\left(D N ;\left\langle n_{f^{\prime}} \mu\left(P^{\prime \prime} ;\left\langle s-e: \quad\right.\right.\right.\right.\right.\right.$ s-e $\left.\left.\left.\left.\left.\left(d e n_{f}\right)\right\rangle\right)\right\rangle\right\rangle\right)$, $\underline{o}^{\prime}=\delta(\mathbb{C} ; \tau), \underline{U N}{ }^{\prime}=\underline{U N}_{3+k}=\underline{U N}+k, \quad D N^{\prime}=\mu\left(D N ;\left\langle n_{f}: \mu\left(P^{\prime \prime} ;\left\langle\varepsilon-e: s-e\left(d e n_{f}\right)\right\rangle\right)\right\rangle\right)$. Thus, s-tJpe on ${ }_{f}$ (DN') =type, s-par-liston $n_{f}\left(\mathcal{N H}^{\prime}\right)=$ par-list, s~spec ${ }^{\prime p} \operatorname{ton}_{f}\left(\right.$ DN $\left.^{\prime}\right)=$ spec-pt, s-bodyon ${ }_{f}$ (DN' ${ }^{\prime}$ =statement ${ }^{\prime}$,
where statement' has the property described in Lemma 2, because the use of the instruotion un-name steadily produces new unique names. This completes our proof.

Lemma 2, informally speaking, hes the following aignificance: given any procedure-denotation den for an identifier f, den f consisting of a procedure-declaration and an environment component, we can generate this procedure-denotation by first declaring 1 as procedure identifier of any procedure (thus defining the environment) and then executing $f:=c$ at any place where f is declared, composing in $c[1], \ldots, c[I]$ a description of the procedure declaration. The execution of $f:=0$ then generates a procedure-. denotation for f_{9} which differs from den f_{f} only in the choice of unique names for the OWN-variables, which is realized so that no conflict with other varinblar may arise. It is also shom, thal the execution of $f: x c$ has no other effects. How the description of the procedure-declaration in $c[1], \ldots, c[I]$ has to be composed is given by the function conorete, whose effect has to be know to the programmer.

I want to thank G.A.Ososkov, V.P.Shirikov, and A. A. Khoshenko, with whom I had several discussions on the subject of this paper.

Ifterature:

[1] H.G.Bugse, Eine mögiiche Erweiterung der Programiersprache ALGOL, FIektronische Rechenanlagen, 8, Heft 2; 1966.
[2] P.Laver, Formal definition of AIGOL 60, Technical Report TR 25.088, IBM Laboratory Vienna, 1958.
[3] P. Iuces, P.Lauer, H.Stigleitner, Method and notation for the formel definition of programming languages, Technical Report TR 25.087, IBR Laboratory Vienna, 1968.
[4] P.Naur, Revieed report on the algorithmic languace ALGOI. 60,
[:] A.van Mijncaarden, Report on the algorithmic language ALGOI, 68, Methematisch Centrum Amsterdam, IS MR 101, 1969.
[-] V.?.ThirikOv, Yazik FORTRAN, JINR, IVTA. 1969.
[7] IBM System/350 Operating System, PL/1 Language Specifications, 1955, Form Nr. 79879-1.

Received by Publishing Department on March 19, 1971.

