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Introduction. A test is proposed for testing composite linear hypothesis
against &omposite linear alternatives on the mean of a normal pro-
cesé. ‘A. simple special case of the.studied problem can be stated
as follows: A normal random sample y=(y1,..., yr) is obseNed, where
¥y, are independent normal variables with known variances af (up

to a constant factor). 'We have to test the hypothesis

i=1l, e,

m
Ey = 2 7 f i+f

01’
i k=1 k k ‘l

against the alternative

n
= i=1,...,
Eyi kal qSk By tByy v | , r,
where f,, .g,, {(k=0,.s.,m, j=0,u.,n, i=l,..,r) are known numbers,
Oy, 9y (k=1,...,m y j=lyeee, n ) are unknown parameters, In other words,

we have to test that Ey ¢-F against Ey <¢§_, where F,,§_ are
two linear varieties contained in the sample space, In the general

case the standard likelihood ratio test based on the variable

sup In py(y/ E‘y)

A= 28
sup In py(y/Ey)
Eyé& t

. givées reasonable results, only asynptotically, for r -+ o



In this paper another test is proposed which is convenient also
for finite samples (in the case of a continuous process we are speak-
ing about small samples). Let x be the maximal likelihood (m.l.) esti-
mate for Ey if Eyc ¥, (ply/x)=magp (y/m))  and let zbe the
m,L, estimate for the orﬂqogona.l projéction of Ex onto gg( p,(x/2) =
=mmeégsy(x/m_) ). Denote D,, ( k,1=<l..,m) the covariance matrix of
the m.L estimate for 6-(6,,....0 under the hypothesis Ey ¢ JF, and
denote - F  the matrix Fy = En;‘_,:l (1/a,) 1,D 4y (1/ gy ) (i, j=1‘,...,r).
Let be

IIM..

I WD)y -5 -y

T =

[ i 1/2 ’
o (l/al)(zl—x!)(l-—F)”(z’-—x’)(l/g’ )1

where I is the unit matrix, f KcJ¥, then rCN(0,1) (theorem 5), The
one side test based on . r is similar, unbiassed, consistent and "al-
most the most powerful" (theorem 6). The é&xplicit expression for the
power function of the test is given in theorem 6,

~ The test can be used for any normal process with a continuous
covariance and for any nonorthogona.l linear varieties bff', and § ¢
such that ff'f ¢Q=,9g¢ 3’, and the elements of which satisfy a certain
convergénce condition (see theorem 7, expression (44)).

A Hilbert space (Euclidean space) technique is used. However,
the emphasis is not on the space of random variables with bounded

variances/ 5/ but on the sample space of the process/2/ .

1 Preliminaries.. A probability space (Q,&, PYand a closed
bounded subset T of a finite—-dimensional Euclidean space are given
(e.s. T is a finite set or a closed interval etc.). Consider a real
normal - process y(1,0),t€ T, 0w €0Q°, By y(t,0) we denote also a
sample of the process if o is fixed (denoted also as y (1) or simply
y )

Let K(ty,t3), 14,1 3 € T, bethe covariance and m(t), 1 € T -the
mean of the process, K(i, t3)is symmetric and semidefinite positive/,4/
chpt.10), Suppose-that K( taty) is continuous on TxT .

We shall use a well known result from the theory of integral

equations -with symmetric kernels.



(5“ N
~ Lemma 1. (theorem of Mercer,/7/, chpt.3, §17). For every 4,€T,
1€ T '

K(t ,t )= S Ao, (tpu, (e, ),
1’ 2 i=lixl“1 3 (1

where A,>0, u,(t) (continuous on T ) are the eigenfunctions of the
kernel K& ,t 1}, IT K('l’lz)“g(la)d'a=)‘x ni(tl),f_rn‘(t)n’(!)dt =8, »

and the series (1) coverges absolutely and uniformly on TxT.

Lemmna 2. (/4/, chpt. 10), The random variables

w‘(w)=f.‘.[y(t,w)-m(t)]wi(t)dt,i=l,2,..., (2)
are normal N(o, A ) , indepéndent,
yl,e)-mt)= £ w @)a (1) (©)

i=1

and the series (3) converges with probability one (a.e. in 0 ) uni-
formly on T . . :
Proof, According to the Kolmogoroff's inequality (/4/, chpt.5)

we may write for every ¢> 0

L s+i s+1i
P U[‘ b wr(m)ur(t”) el]= tim Plmax | 2 ‘”,(“’)“p(")l >
=1 r=stl - ks 194<k  rmstl : -

] 1 stk 2 1 ; 2
>el < lim — % A u; (t)e—a & Ayu (t).
= koo & gmayt ! € t=atl e

L
From lemma 1 it follows lim X A, ual (t) =0
ss00 =8+l

- st
uniformly on T . Hence lim P U[| X w (@) (t)]>e] =0

B 00 i=1 r=s+l

a+i
uniformly on T , i.e, (/4/ , chpt. 2, § 6.2), lin b3 wilw)a (1)=0

8,00 r=s8+4 1

a.e. in @ , uniformly on T. QE.D .
Denote £, the (complete) Hilbert space of square integrable

functions on T with the usual inner product

<a,b>= [alt})b(t)dt.’ @
T ,



Let Xc gzl;';e the closed subspace generated by hl};;l « The or-

thogonal complement H* is also closed, since if b € K* , l.e.

<a bV>20,a€¥H , and if lma=b,bV-450, be £, then

0<<a,b>? =<a, b-pt? >S<a:’aw><b—b(” ,b =135 L0,

Hence b C-HL. Following the lemma 2, y-m€ X a.e. in 0 .
We define for a,b € £,

1. the component of a = a,=<a,u, >/(Ai)1/2 ,

2. the operator U= :
U::(al,...,‘an) (5)

¥ _n
u Ua=(al""'amin(k,n) )
. ’

and denote a%=U"a,
3. the inner product and the norm
n
(an’bn)=(=zl a b, ”an”2=(a°,a“) . (6)
The space @n=§a‘n | a = U:,- a €8,} , with the inner product (6) is

the 1z —dimensional Euclidean space.

2. The hypotheses and the statistic, Two linear varieties are
given; ,gg ={a'|aC—£2,a—fC—3"}, ggﬁ{a]aegz,a—gég},
where JF,§ are closed subspaces of £ and i€ £,.:€8, are two

points, We. shall suppose that

F,¢8,.8, 99, - )
and that
lim [(a™,b2)|>0 v (8

for some a€JF,b€§ |
The normal process yl(t,w) having a known covariance (up td

a constant factor) is observed. 'We have to test the hypothesis

H i m C .‘}‘"
against the alternative



H,:m€§ -F, |
" where m=Ey

Denote F*=FN i . Evidently ¥* is. closed. ~There exist
the orthogonal projections F* (H) onto ff*(}('l' ), since £, is
_ complete (/8/, theorem 4.82-A), Suppose that H, is true i.e, m—-f€¥
Then we may wrile H(y—f)=H(m—f)=F*(m—f)=F*(y~1), since y-m€X
If F*(m—14£0,then the validity of the equation H(y—f) =F*(y—1) £0
proves the hypothesis with probability one., We can restrict the inves-
tigation to the case when - F*(m~{)=0 for every m€ ¥, ,

Thus we shall consider in this paper only thé regular case
when ffCH,gC}(, te K, g € H.

We define F"=u"%, "= v*g,

$!n={anlﬂn_‘negn l, ,g:={anl-én_gnegn

Lemma 3. An integer n, exists, such that for every n2no:
1. F" and §" are not orthogonal. i.e. (a"bM£0 for some a"€F"
v €§”
2, The dimensions of F* and 8" are less than n .

3. 5 ¢G. .8,¢3;

Proof.1. is a direct consequence of (8).

]

2. There is a one-to-one correspondence between every a® =(a jee,a)
n

and the series 1_21 a, (A )1/211 C}( . We may therefore write

H=tln vH = hm K" and ff = lim U"F < lim F° .
n- n - o n- oo a .

Suppose that dim  F* = dim ] for every n . Then F*-R%" and
F=H , but it must be FcH . Thus dim ¥ n°<no for some n,

which implies dim F "<n for > n, .

3.1 5§, e, §-FhG then T =inF NG, < umv™FN G- FN G,
Hence F'c §", for some n,and thus also for all o >a,. Q.1 .°E) . In
the sequel v(_/e shall always suppose that  n>n, .

Denote F", G ™ the orthogonal projections ( nxn matricés)
from R" onto F°,§" (the orthogonality with respect to the inner pro-

duct (6)) . Further denote Q"=I-F", $"=I-G" , We note that a linear



operator (matrix) F® is an orthogonal projection if and only illel

FPF " <F™, (F"",b™) = (o F?b™,a " b"€ & " - (92)

N

etc, for 6%, Q",s” . If ac®; we define F'a=F'U"a , etc. From (9a)

it follows

(F*,Q"b)=0, (G"a,8"b)=0 . (ob)

Let us define
X(n)=Fny'+an , zv(n)=Gny+Sng . (10)

Evidently x(")Cg:,n 2% g"'. If H: is true then x®)is the ml. es-
timate for the mean Ey® and z{® is the m,\l estimate for the
projection on Ey" onto 9'; .

Wwe define the statistic

(yn__x(n), z(n)_ ") (11)

Hon(z(n)_ x(n))"

p(n)_

where y"=U"y ., We note that 2 gonly when ™ ¢ ) Q:.
However, for almost every sample y , «™.F%40°f is from Fr but
not from (1 9:, since dim Fr) o)< dimvﬂ:: (lemma 3, statement 3).
Hence z®)—x®)£0 with probability one, Further, if 2() — x(a)g0

then Q@ (z®)—£") 40 . Indeed, 0=0"(:"™ - x™} =Q"s™(g-
Q"8"=0 which contradicts to the statement 1 of lemma 3, Thus

£ implies

r(n)

is well defined a.e. in @ .

We further note that r(® is related to the likelihood ratio (but

“(n)

is not equal to it). Denote 2! the m,l, estimate for ‘Ey™ under H_ .

Then A = (1/2)1]] yn-—x(n)llar—”yn; 1%} is the logarithm of the like-
lihood ratio, Setting (formally) 2" instead of ™ we obtain A*=
=(l/2)lIly“-x(“)Ilz—lly“—z(“)llf}-’rhe consistent unbiassed estimates for the
mean and the variance of A* under H_; are c=(-l/2)|[vz(") —x®)2

and 8210 (z¢® — x®)||2 ., Evidently r(® =(A*-¢)/ 8"/
y



3.The properties of the test. ' Substituting (10) .into (11) and
using (9) we obtain ’

B( (n) _ )
AT L LLLE B (12)
™=~
Let us denote
r(n) ( Qn'(z(n)_f) )
1 =ly-m,
e (z®-¢y (13)
a¢.(n) _
. T(;)=(m—\f, Q*(z f) )y

_ Fetz2x 1)
Evidently r®ar 20 4" | Further denote qfMa QR (™= 1)

v(n)=Qn(y—m) . Using (9) we have r(ln)=(v(n)’q(n) )/Ilq(n)”

Lemma 4, The .k -th moment of +’can be expressed as

. 0 if ¥ is odd
ED v - (19)
=t 1 n n
) 2 0Q we Q if £ is eve
pairs ’1‘2 ' ’k—l’ k i
where vgl“’ is the j, -th component of the vector v @ , and the

summation runs over all possible groupings of the subscripts Jpoeeesdy
into pairs..

Proof, The normal variable v(“’ =Qn(y—m) has zero mean and

the covariance matrix Q"Q"=Q" We write//,
k Tatw (o
ENv ™ (/1%

r=t 1)

, _ (15)
ap,l...ap,,k

J— . K

where i=y-1, ¥(p)=exp(-y), 7 =(1/2) 2 p.Q, P,. For kbeingodd,
T, 85

(15) contains only terms multiplyed by dy/dp,; . If Lk is even then

pairs

3" W (p) /3y, ...ap,' = 3 3%/dp,; 0p,...0%/dp, dp,
. B ; k- 1 2 k=1 k

+ terms containing dy/dp; . Thus (14) follows,



Theorem 5. For any m€ X, r is normal N(0,1) and

and r;") are indeperndent variables,

(n)

Ty
Proof. F®y and Q% are orthogonal, hence independent com-

ponents of y" , and v® and g™ are therefore also independent.

The k -th moment of r(l"),p x can be expressed as

b N (n) n (n) {n)
B gs Ef I vy JEf I a, et . (16)
3 e gt j=1 t 1=1 1

Setting {14) into (16) we obtain after simple computation that py=0
if k¥ is odd, pk=(k—l)!! if k} is even, since there are {k-1)!! ways
of grouping k terms into pafrs. The moments,K g, are the moments
of an N(0,1) normal variable, thus f(:)G-N(O,l) /9/._"

From (13) we obtain

() , (n)

Elr® (7 -E @1 =B Bl (T -E /I 7 1 =0, imlem,

'(;". depends ony only through ¢, thus r¢® and r;*’ are indepen-
dent. Q.E.D ,

© Let us denote

@=fala=C"b,b€F"1,B=4blb=0 a,ac@}." - (19

Evidentty @¢ g".8c(§ n)l and B£9¢ . We assert that the dimen—

sion

dimB<1 . : (18)

Proof of {18);{ Suppose dim 3 >2 , Then there are two-dimensional
planes 0,c4,0,¢8 such that 0;=00,, ard the straight line
?,=0,N0, is contained in both @ and (F%} . However ?lc(i
implies that a straight line %,CF" exists, such that %, is the
proje_ctioﬁ of 7,(9,=-6"%) . On the other hand, 9, c(FH+ implies
9, 1'?, which can not be true, Thus dim 3 < 1 . ‘

Let us denote H; the hypothesis that n"& '5:: and HY
the hypothesis that ‘m"eg:—i','. Consider the test of HY against



H% taking the critical region of the test W =[ AL where |
y is arbitrary but fixed, Denote ’

— 0O 2 ’
o) L1/VE)f a0, (19)

Theorem 6,
1. ¥" is a similar critical region with the level of significance
' a = 1’(}')
2, The test is unbiassed, ie. for any m€ % , mn*e€§-F
PIW®/m ) <P[W"/ m*] ,

where Pl./m] denotes the probability under the hypothesis that Ey=m.

3, The test is consistent , ie, if y(”(s‘-l,z,...) are (independent) samp-
r

les from the process vy, @), yepy=(1/n) .zt yts? is a sample
from the averaged process and f(‘,‘}’ is the statistic (11) correspond-
R . (n) . '

ing to y¢,) , then r{:n:nl’[f(:, >y/ mlel for every m €§_-5F,.

4, Let be h an arbitrary point from @-F" ,x=F"h, 1 =G k .

The power function of the test is

P> y/mle fOl-(Bres 248 o) aw (20)
where
B=Bm=|lm"—Ex‘®, (h-x)/||b~k]|]) | (21)
5= mip, l'Q"b-0Q"(G"b+5")| (22)
b €. ¢ ’

and p(r) is a normal probability density, .

EvafBeces?se, Dv-cos‘2¢—cos‘¢, (23)

where : .
cosd =l k=1l /1l b -klf. (29)

11



Specially, if F;,N1§, # ¢ then

PLr >y m]c@(y-B)=0 (Beotgd) [®(y=B) = D (y4+8)] (29

5, To every ¢ >0 it exists B, so that any a -level test V &a-
tisfies the inequality )

PIr®>y ]l >P{V/nl-e
for every m&€ @ such that B(m)>B 0

Proof.1. The proof. follows immediately from the theorem 5,

2, If Ht is true then r;n)=0‘ . Since r(n)=r(ln)+ r;n) © o, it is suf-
(n) : (n) o
ficient to show that Plry” >0/ml>Plr, <0/m]l | if m&eG-F,

i.e. to prove (see (13)) that 0<E(m—f, "= @)= (@) wEx™ E(W_g, 0 ),
The triangle with verticies m®,Ex®, Ez(® is rectangular, sincem € G |
(n)eg: and Ez™ s the projection of Ex(n) onto Q: . Thus

=B E2P B | B2 P % > 0.

3. The averaged process y(;) has the covariance (1/r)K(t;,1,) -
Hence we obtain r;n)(r)'setting Y. instead.of y. into (10) and
(13) and using the inner product (a,b), =rla,b) instead of (a,b).
The operators F®,6" do not change, since (9) obviously hold also

(n)_ (n)

for the new inner product. F‘rom (10) it follows that Q™z ) con-

verges in probability to QUE ™ - EX™) . Therefore P (=Vilm-t1
Q" (- Q" =) and . P converges to +e asrae,
since (m—f, Q" (Ez™-ELM o ||EA"-E |2 >0 , as follows from
part 2 of the proof, This, together with the relations r =rf“)(r)+r;"’(r),
P (1 en(o,1 ), prove the cons‘istency.

4, Let us denote

a, =_{a|a=c“b+sf‘g, beF 1, Be=ib'b=0"a, acd.1 . (26)

Comparing (26) with (17) we see that @;,B, are ‘translations of
@, 3 in the Eucl_ide‘-an .space " . Thus @ . is parallel to @,
53; is parallel to 8 and dim B <1 (see (18)).

Next we prove, that (21) and (24) are independent on the
choice of h , Indeed, h-k=0Q% G B since h € @ . Hence the
unit vector

el=(h-—_k)/|[h—k|| (27)

12



.
is parallel to $ and is uniquely defined (for any h ) up to its
sign. Analogically, we can prove that (k-1) is parallel to a straight

line, ,
Denote 4€ 8, the point satisfying (see (22))
fe=Qf ||~ min ||[b-Q7f]{ =8 (29
»b€B .
[
and define
e,=(a-Q"/1la Q"1 (29)

if 840 , Let Abe the 6bthogona.l ‘projection onto G‘ . Define

e; =(m" =A™/ n"~Ann| (30)

if m"£An” ., The three vectors e  ,e,,e, form an orthogonal system
in (gn)l‘. Indeed, e',.eac-(ff")'l’ . For any’ b€F" we may write
(= An®,b)=(n®—An%E—Cb ) (a"—An®,G"b)0 since(m®™~Am™] &, ¢*bp €@,
and (m®~Am®)€8= @" | (b-G"b) . Hence e,e(ﬂ’“)'l’ . From (28)
it follows (e, .e,}=0. Since d4€ 8  itexists 3¢ ¥, such that
d=Qn[G"b(d)+ s#g] . Hence, (m"—Am® ,d=Q")=(m™—An",C Y y+5 g~Yy)=0,
thus (e, ,e,)=0 . Analogically, if a €& then (m—Am,Q")=(m-Am,a)=0,
" hence, (e;,eg} =0

From the theorem 5 it directly follows that

P[r(u1>,y/'m]=f¢(y_u)pr (uddu ) (31)
2

where p (.) .is the probability density of (see (13))

L2
r;“’ =(m-Ex®,Q0 (2 1)) /]l -] . (32)
Taking into account that Q%™ €8, we may write
Q\nl\;»z(n)—f) =V e; +8e2 " (33)
where . .
v=(Q"a®—d, e, ) (34)

1

13



is a normal random variable, According to (21), (22) we may write
B=lm*-Ex" e, (35a)
8= (m" —Ex®) ,e) . (35b)

To prove (35b) we write (n®-Ex™,e, )=((An"~Ex™) 4(n"-An®),e;) =5
as follows from (28) and from Q" Am € 8, .,
Equalities (32) - (35) show that

M (Brv+8?) /02 +5311/3 , -(36)

where we have chosen h in the definition of e; , so that

= (mn—Ex(n),e |=(m®~Ex‘*’e ), This is true e,g. if we take
©1 1

h=An;n—c(d) ’ (37).

' : ™
where c,=6 b, +5 8. Then k=F'h=Ex  +(d-Q"=ccqy and

1=6"k=E="-c(4y . From the definition of e; and ¢; we obtain

Ho-kfl=Ca?=Ex® e )4+ (An® —m™e D+ ((Q%F=-d),e,) =B . (38

We may write

He =11/l a1l =cosd =l 1=F 1] /]| k=1]] " (39

since (n-1) is parallel to (1-F°1) , and from (37) - (39) we obtain
- () ;
cos =l k=111/ B =l4-EQ7z " [I/llk-1]] . (a0)

Excluding || k-1]| from (40) we obtain using (34) E,<|[Q"Ez™=a || =
=Bcos’ ¢ , To compute the variance Dv ~we write using (10) and
(39) v-Ev=(C"F (4" ~Ey™, e;) ., Hence Dv=1(e G F C e )=||F G |
From (24) and (27) we obtain [|G"c|l=sin ¢ , since <k-1ug“,c";,§g“,
and ||F%" e, |l=cosg]IG"e |} since F2G"e cF " (- }LF" and since
(k-1) ] 6" ¢4y . Thus, finally, Dv=cos’¢ sin’¢ . '

14



Setting (36) into (31) we obtain (20), Specially, if F, (]"Q’;,é [}
then 8=0 and from (36) it follows : r(;‘)=B ifv>0 , riMaB jfv<o
’I‘hus'P[r(“)>y/m]=¢(y—ﬁ)—P[v<0]{ D(y-B)-D(y+ B)}
and (25) follows from (19) and (23).

5. From (36) we compute 9r3’ / 3 V% o jf vé B, v'l-i’n;r(;)('ll)=ﬁ ,

$P(v LB ~87)/28) =B, nax PO (B) 2 V8T LB 2 A .
. 1 4 -

From (20) using (19) we thus obtain

K

(I>(y—A)_>'P[r(“)>y/m]_> ¢(y-A)f f [q’.(y-A)_

-0

~0(y=v))p (W) dy= [IO(y=A) = (y— )] p(v) dv (41)
. f :

v

2 @(r-A)-Plv<xl-{@(y-8)-0(y-B)]

where «'=(( 8% —5%)/ 2B). According to (19) and (23)
P[.v»<'<‘]=¢[(52+2ﬁ2 cos 2 ¢—ﬁ2 )/ 2B sinpcosplo 0

as B+~ |, since from (24) follows that 2 cos®¢>1, Thus the inequali-
ty (41) gives

m PLr>y/nla®(y-a) : (42)
ﬁ-»oa ‘
Denote m*=F"n"+ (1. We have |[m-m*||=y82+B8%2-A , since

m"—m"‘:Q“(m—f):(J:u“—Ex("),el )el +(m"—Ex("),e=) ey =Be 1+8e2 .

.For any a _level test V of Hy  against HZ we may write lV/mi<a ,
since m* Cffn + V is therefore an a -level test for the simple
hypothesis Ey® =n* against the simple alternative E y2=m?®

Thus the power P[V/m] mus‘; be smaller than the power of the
likelihood ratio test for simple'hypothe.sis /of which in this case is

equal to PO(y—||m-m*{]=® (y-A) . Therefore

P[v/m]_<_(I>(y-A) (a3)

and the statement of the theorem follows from (42) and (43) Q.E.D .

15



If HY is false then H, is also false. The test W'=[r"?>y]
is therefore an a -level test for testing H , against K-, . Howe-
ver its power function depends on =n . The cordition under which
the power funétion converges with n- e éan be heuristically stated
as follows, Consider the series (3)

y(t) = 3 [<m,a R ]u ().

i=1

The terms <m,u, > are the "signal components", and 2 are the

"noise components', We can neglect| m (3) the term 2 [<m, > 4
w l] u‘(t) if <m,u > is "very small" comparing to the variance
of w, ‘for all i>n . More exactly, we need that Il

- oo
lim 2 <m,u‘> /Ai=o

n-+o0 f=n+l

Theorem 7, If

oo

3

(a2 )

lim sup Oz m?/ ) mzl)=0
n+oo m@f}" u gg f=n+1 wi=1
n#0
then the power function P [T(")>y/m] converges with n-e for
every m€§, . .
Proof. Let us denote flall= = l,aCH —<a,u S /N
t=1
Further denote
(n) = S w?/% md). ,
‘f o nC f?}!lpug i=n+l ml ol m‘
Let lAl }1—1 beasequence of operators which are equal to F”
or to G° , For s<e~ and for any a, |le ||<m,the Timit
lim A%... AZa" = *
n-:mco 1 !a * . (45)

- exists, and He*ll <_||a'|| <ew ., If moreover Z l'af/HaH’s‘l”f (n)
ot
for some 1§_‘l’ < o then

fAT ... AL a®—a*| (a6)

lim 1 .

nae  (gyl)ffall ¥V E(n)
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Proof of (45) and (46): Let be s=1,A% =G , We write -
6™ am™ —emat <]l 6™ (2 ™) || 4

n (47)

+”Gn+f JLI ntr

n n
a

bl a™ —a™f1+] 6™ a"-6" a”l.

Denote ( .5{')'!' the ( r —dimensional) orthogonal complement of R"
in g (_.3"“ ;R"@(fﬁ')l ). According to the definition of @"
we write §”°7'CE” @AM L. Further (:°-6"a®} 8" and (scu™ €

hence (a™~6"a®) 1G§**" i e, G"** (a™G"a™ =0 , Thus we may write
- n+r n n n ntr np n n B n n
“G a -G a.“=“G G a -G a “=bem§‘}un_{_r “b-—G a ”5
- /2 (48)
<™ () =¢™a"||=( = [c(n)]’) <( z e (1%),
i=n+1

where c () is one of the points from § satisfying the 'equation Ucla) =
=6"a® ( e(n) exists, according to the definition of § ", and
et (n)=Un+'t’:(l:|)EQH-’-r )e .

Suppose that sp |lc(n)||ls= , Then.a subsequence feln )},
exists such that lim ”Z(n Jll == . Hence hmz [c G, )12 /letan, VIP -
<lim (|| ca)]|* =]l 6" ®a" "Il WMiet ]| %1 since || ¢ % 2] <llall < o .

On the otherhandlf. [e, (n )]/I|c(n)[|”<¢f(n Yo 0 .
This contradiction proves that .S fetad || =y a o < o0 for any
n,>1 , and from (48) we obtain

6™ a™ —crarllcy yE <y T ( 29)

Finally from (47) and (49) we obtainn'rl_x;m\’o [l 6™ artr_gmam||=0.
Thus the limit lim G"a™ =a* exists and |la*||< e~ , since
le=ar|i<|lall <°°n—..w’1‘he same can be proved taking A%, = F" | je,
(45) is proved for s=1 ., Let us suppose that (45) is true for some
s >1 . Then [[A}... A%a® I<» and we can take A" ...A n
instead of a® in (47). So we obtain (45) for 41 . If s af <
<HalP¥ 2 (a) then from (44), (47), (48) it follows that "'

”Gnan—a*”<_2max{\l'”a“,yn}\/f(n). (50)
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Further  fim y2 = tim s (I6"a” )% I [c(m)1?)<
w le® <

no-.en ] no-veo n>n l=n+f
<llall’ hm  sop e P& =] a |
n g n_>n° :
From (50) we obtain
A “llemat —ar| ' [lGma® —ax||
1_> lim =lim ?

n- e

2yVE(n) max [ ¥la]|, v} P 29 |la|lVE(a)

i.e. (46) is true for s =1 and induction arguments prove (46) for ar-

bitrary s
Let bbe an arbitrary point from ¥-§ ., ||b||<~, Denote

h(n)=Fnb.k(n)=annb' 1(n) _pogapay . (51)

According to (45) there exist limits “lm b ¢®> | qim {(®) = pp
with finite norms, Therefore also cos ¢ ¢’ ='||l(“)—k(“)ll/llh(“)—k(“)||
(see (24)) and ;a(f) = (WY@ — @ || (see (27)) converge with n-w.
Further e =(d®-Q%)/]|¢®-Q “fll (see (29)) where 4® s the projection
of Q"t onto the straight line going through the point Q®[c¢%+5® gl
and parallel to ¢, According to (45) the limits with finite norms

lim Q°[6% 148" 1= Hm U-F™)(E 1+(1-c")g) and

n- oo n -0
‘lim Q%f=f— lim FO{ do exist. Hence lim d (»? and the-
n ~» o n-»o ) n - 0o

refore also lim e;“ exist, Now consider the parameters (see (35))

) n-» 6o .

(n) n (n) (n) .
B (m"-Ex ™ e (M ], (52)

_ a(n)=(mn_Ex(n)'e(2n) ).

Using (10) and (45) we may write

n+r

(at)
e oI F T me Q7 -

N ”Ex

—(F?m+ Q") || =] F**  (u=-1) " _F™ (u—1)" |20
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with n,r -+ = . According to (52) |B®* 8™ |<|(n ™" —EL ),
e(:‘+r) _e(‘n) )I+|(Ex(n+l) —Ex(n),e:n) )lS”m"f" ” e(n-—r)__ein) " +

+ ” Ex(n+l)_Ex(n)”~_’ 0

(») GXIStS. Analogically we prove the existence of lim 8(“’

Le. Im B
n- o0 n - oo
. Thus all the parameters cos ¢m, B (n) g (m) deflning the power

' funchon PLr™>y/m1] (theorem 6) converge and the limit power

function is obtained setting the limit values of the parameteré into

" the expression (20), Q.E.D .

Conclusion

1, The inequality .(46) shows that the rate of convergence of a pro- -
jection of any vector a€F, UG, or a€Fuv§ {s comparable
with the rate of convergence of £ () a'nd the same -must be therefore
valid -for the convergence of cos¢®), p(») LRSS

2, Computationally the problem of constructing the test consists in
finding a finite number of eigghvectors and eigenvalues of the sym-
“metric kernel K(i,,1,) (see lemma 1). But from (11) and from the
theorem 7 it follows that other methods giving the projections onto
¥ and § and the lmit of (a,b)= z fa(!)u ()de fbl)a (de/A,

can be used/s/ The problem is especxally sxmple if T Is a ﬂrute ‘

" set (see the expression for r {n the introduction, and /6’5 The

last case was used to solve approximately a problem in the analy-
sis of nuclear scattering experiments /5/.
The author thanks Dr. G.A.Ososkov and Dr.E.PJidkov for

their interest to this investigation.,
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