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Introduction. A test is proposed for testing composite linear hypothesis 

against composite line=tr alternatives on the mean of a normal pro­

cess. A simple special case of the • studied problem can be stated 

as follows: A normal random sample y=( y 1, ••• , y r ) is observed, where 

y 1 are independent normal variables with known variances a; (up 

to a constant factor). ·\'I.e have to test the hypothesis 
m 

Ey 1 =I. llkfk 1 +! 01 , i=l, ••• ,r 
·k=l 

against the alternative 

where .fk 1 ,g 11 (k=O, ... ,m,j=O, ... ,n,i=l, ... ,~) are known numbers, 

llk , cp 1 ( k=l, ... , m, j=l, ... , n ) are unknown parameters, In other words, 

we have to test that E y c; !fr against E y c; § 
8

, where S: r , § 
8 

are 

'two linear varieties contained in the sample space, In the general 

case the standard likelihood ratio test based on the variable 

sup In p ( y I E y ) 
EyE§ y 

,\ = _.;._~--:---:---:--­
sup In p ( y I E y ) 

EyES:r y 

gives reasonable results, only asyrrptotically, for r .. oo 
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In this paper another test is proposed which is convenient also 

for finite samples (in tJ:e case of a continuous process we are speak-

ing about small samples). Let x be the maximal likelihood (m.L) esti-

mate for E y if E y G- S:, ( p ( y I x) = max p ( y I m ) ) and let z be the 
Y me; j' Y 

m.L estimate for the orthogonal proj~ction of Ex onto §" ( Py (xI z l 

=..,~~§:Y<xlm.l ). Denote Dkl ( k,l=l, ••• ,m) the covariance.matrix of 

the m.L estimate for lb ( 01 , ••• ,Om)Ander the hypothesis E y· '= S' r and 

denote· F the matrix F1l = ~':.I=I O/u1 ) fk1Dk1 f 1l Olul) (i, j=i, .•. ,rl. 

Let be 

~ 
I= I 

2 . 
(l/u 1 )(y 1-x 1 l<z 1 -x

1
) 

T =---------------------------------------
r 112 

[ ~ Olu }(z -x HI-F) (z-x lOiu )] 
l,j=l I I I lj j j j 

where is the unit matrix. If E¥ (;; S' r then r c; N ( 0 ,I ) (theorem 5), The 

one side test based on r is similar, unbiassed, consistent and "al­

most the most powerful" (theorem 6). The explicit expression for the 

power function of the test is given in theorem 6. 

The test can be used for any normal process with a continuous 

covariance and for any nonorthogonal linear varieties j' r and § " 

such that S', '7. § , § '7. S' r and the elements of which satisfy a certain 
" " convergence condition (see theorem 7, expression (44)). 

A Hilbert space (Euclidean space) technique is used. However, 

the emphasis is not on the space of random variables with bounded 

variances/51 but on the sample space of the process/2/ • 

L·Preliminaries.·. A probability space <n,<1, P land a closed 

bounded subset T of a finite-dimensional Euclidean space are given 

(e.g. T is a finite set or a closed interval etc.), Consider a real 

normal·process y(t,cu),tET,cuE!l", By y(t,cu) we denote also a 

sample of the process if cu is fixed (denoted also as y ( t l or simply 

y ). 

Let K ( t 1 , t 2 l , t 1, t 2 E T, be the covariance and m ( t l , t. e- T -the 

mean of the process, K ( t I' t 2 l is sym·netric and semidefinite positive~4/ 
chpt,10), Suppose· that K ( t , t ) i~ continuous on TxT 

I 2 

"Ve shall use a well known result from the theory of integral 

equations -with symmetric kernels. 
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Lemma 1. (theorem of Mercer/7 /, chpt.3, ~ 17)'~· For. e 

t2 e T 

K ( t 
1

, t
2

l ~ A 1 u 1 (t 1l~ 1 (t 2 l, 
1=1 

where A 
1 
>0 , u 

1
( t ) (continuous on T ) are the eigenfunctic 

kernel K(t ,t l,f K(t ,t )u (t )dt =Au (t l,fu(tlu(t' 
I 2 T I 2 I 2 2 I I I Tl j 

and the series (1) coverges absolutely and uniformly on 

Lem-na 2. (/4/, chpt. 10), The random variables 

w I ( CLI) = f T[ y ( l , CLI ) - m ( tl) w I ( tl d t , i = I,2, ••• , 

are normal N(O, A n) , independent, 

y(t,cu)-m<tl= ~ w
1
(cu}u 1(tl 

I= I 

and the· series (3) converges with probability one (a,e. ir 

forinly on T . 

Proof. According to the Kolmogoroff's inequality (f' 
we may write for every £ > 0 

s+l oo s+l 
P U [I ~ w,(cu}u,<tll~ £1= lim P[max ~ w(cu}u<t: r r . 

i=l r=s+l k-+oo l.,...t<k r=s+l 

• s+k 2 I 2 
..?d $.lim - ~. A 1 u 1 (tl=-y £ A 1 u 1(t). 

k->00 ~ l=s+l ( l=s+l 

From lemma 1 it follows ~ 
l=s+l 

A 1 u~ (t) = 0 lim 
s->OO 

s+l 

uniformly on T • Hence lim p urI ~ w, (cu} u,<tll. 
s ... 00 1=1 r=s+l 

uniformly on T , i.e. ~4/ , chpt. 2, § 6.2), lim 
s 1 {-+oo 

s+l 

~ ~ 

r = s+ 1 

a.e. in n uniformly on T . Q. E. D 

Denote £ 2 the (complete) Hilbert space of square 

functions on T with the usual inner product 
<a,h>= Ja<tlb(tldt.' 

T 
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/7/ .,.. . 
Lemma 1. (theorem of Mercer, , chpt.3, 917), For every 1 1E T, 

12 e T 

::E A 1 u 1 !1 1l~ 1 !1 2 l, 
1=1 

(1) 

where A 
1 

>O , u 
1
! 1 l (continuous on T ) are the eigenfunctions of the 

kernel K (I , I ) 
1 

f K ( I , I ) u (I ) d I =A u ( I ) , f u (I) u ( I) d I - 8 11 I 2 T I 2 I 2 2 I I I Tl I 

and the series (1) coverges absolutely and uniformly on TxT • 

Lem-na 2. (/4/, chpt. 10), The random variables 

(2) 

are normal N(O, A n) , independent, 

y (I, c.J) - m (I) = l; w I (c.J ) u I (I) 
I= I 

(3) 

and the· series (3) converges with probability one (a,e. in 0 ) uni­

. forinly on T • 

Proof. According to the Kolmogoroffs inequality (/4 /, chpt.5) 

we may write for every £ > 0 

oo s+l 
P U [I ::E w,(c.~)u !tll> d= lim P[max 

1=1 rca+l 
1 

- k-+OO l<~""t<k 

From lemma 1 it follows lim ::E 
s-too i=s+l 

uniformly on T • Hence limP U[l 
s ..... 00 •=• 

s+l 

::E w,(c.~)u,!tll > 
r=a+l 

A 1 u~(ll=O 

s+l 
::E 

uniformly on T , i.e. (/4/ , chpt. 2, § 6.2), lim 
s,t-.oo 

a,e. in 0 uniformly on T • Q. E. D 

Denote £ 2 the (complete) Hilbert space of square integrable 

functions on T with the usual inner product 
<a,b>= fa!tlb(lldt.' 

T 

5 

(4) 



I 
I' 
l 
I 

I 
I 
i 

' :I 
I 

:I 
I 

:I 
I 

::f 

Let }( C f 2 be the closed subs pace generated by In 
1 

I ;:, 1 • The or-

thogonal complement }(_. is also closed, since if b<l> E }(_. , i.e. 

<a ,b<ll >=0, a E }( , and if lim<b(l)_b, b<n_lo.>=O, b E f 
2 

then 
1-+ 00 

O-;;_<a,b> 2 =<a,b-b(l) >$<a,a><b-b(l) ,b- •,<ll >-+ 0 

Hence b <:-KL. Following the lemma 2, y -mE }( a.e. in 0 

We define for a, b E f 2 

1. the component of a ·: a 
1 

,;, < a , u 
1 

> / (A 
1

) 1/ 2 , 

2. the operator U n 

U~ = ( a I ' • • • ' a n ) 

uk u~ (al, •.• ,amin(k,n)) 

and denote a 0 
E U 0 a , 

3~ the inner product and the norm 

2 
(a 0 ,bn)= l: a

1
b 

1
,11 a 0 11 =(a 0 ,a 0 l, 

I= I 

(5) 

(6) 

The space (jn =I a'n I an= u:,. a E f2 I, with the inner product (6) is 

the n -dimensional Euclidean space. 

2 •. Thc hypotheses and the statistic, Two linear varieties are 

given: ~~=I a·laE-f2, a-fE~I. §.,~lalaEf2 ,a-gE §I, 

where ~, § are closed subspace~ of S' and f E f 2 , g E f
2 

are two 

points. We shall suppose that 

~~ Sl§.,. §., q~, (7) 

and that 

lim l!an,bnll> 0 
(B) n-+ oo 

for some a E- ~, bE§ 

The normal process y ( t , w) having a known covariance (up to 

a constant factor) is observed. 'A!e have to test the hypothesis 

c.gainst the alternative 
H 

1 
: m C ~~ 

6 
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H": mE § .,- ~ r 

where m = E y • 

Denote ~ * = ~ fl }( l . Evidently ~ * is closed, Ther 

the orthogonal projections F * ( H l onto ~ * ( J(.j. ) . , since 

complete (/B/, theorem 4.B2-A). Suppose that H 1 is true i.e. " 

Then we may write H(y- fl = H(m- fl=F*(m- fl = F*(y-fl., since 

If F*(m-rl~O,then the validity of the equation H(y-f) =F*(y-f 

proves the hypothesis with probability one. vve can restrict tl 

tigation to the case when · F *(m- f l = 0 for every mE ~~ • 

Thus we shall consider in this paper only the regular 

when ~ C }( , § C }( , f E }( , g E }( 0 

We define ~ n = U n ~ , § n = U n § 

cr n n n n ern 
J 1 =Ia Ia -r e J I' . § n = I an j"a n_ g n E § n I 

" 

Lemma 3. An integer n 0 exists, such that for every n ~ 

1. ~n and § n are not orthogonal, i.e. (a 0,bn)~O for some 

bn e§n; 

2, The dimensions of ~ n and § n are less than n 

3. ~ rn r;. §: • § : r;. ~ rn 0 

Proof,1. is a direct consequence of (B). 

2. There is a one-to-one correspondence between every an 
n 

and the series l: 
I= I 

1/2 }( 
a 

1 
(A 

1
) u 

1 
C • We may therefore write 

}( = lhn U n }( = lim !Rn and ~ = lim U n~ = lim ~n 

su;;~se that dr; 
00 

~n = dim !R n 
n-+OO n-+oo 

for every n • Then ~n=!R 

~=}( , but it must be ~ C }( , Thus dim ~no< n
0 for som• 

which htplies dim ~ n < n for n > n o 

0 

3, If ~nc§;, i.e. ~=~Jl§:,then ~1 =Iim~1'h§';.=limUn<~,n §g>= ~,n §. 

Hence ~,nc §:for some n 0 and thus also for ~it n >n
0

• o.'E 
the sequel we shall always suppose that n 2: n 0 • 

Denote F n, G n the orthogonal projections ( n x n mal 

from !Rn onto ~n.§n (the orthogonality with respect to the inn 

duct (6)) , F'urthe.r denote Q0 =l-F 0
, Sn=l-G n , 'Me note that 
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e if b<D E J{J. , i.e. 

b E f 2 

> .. 0 • 

then 

t a,e, in 0 

l . 

(5) 

(6) 

e inner product (6) is 

linear varieties are 

E f2 , a- g E- ~f I , 

IE f 2 , g E f 2 are two 

(7) 

(a) 

own covariance {up t~ 

the hypothesis 

l 
l 

H": mE § .,- ~~ 
where m = E y , 

Denote ~ * = ~ fl J< l , Evidently ~ * is closed, ·There exist 

the orthogonal projections F * ( H l onto ~ * ( J<.j. ) . , since f 2 is 

complete (faf, theorem 4,a2-A). Suppose that H 1 is true i.e. m- IE~ 
Then we may wriie H(y -ll = H(m -ll=F*(m -ll = F*(y-ll_, since y-mEJ<. 

If F*(m-!l~O,then the validity o( the equation H(y-fl=F*(y-ll ~0 

proves the hypothesis with probability one, Vl/e can restrict the inves­

tigation to the case when F * ( m- I ) = 0 for every m E ~ r , 

Thus we shall consider in this paper only the regular case 

when ~ C 1< , § C J< , I E ]{ , g E J< . 

We define ~ n = U 
0 ~ , § n = U 

0 
§ , 

I, , § n = I an I ·an_ g n E- § n I 
" 

Lemma 3, An integer n 0 exists, such that for every n ;:: n o : 

1., ~n and § n are not orthogonal. i.e, (a 0 ,b 0)~0 for some a0 e~n, 
bne§n; 

2, The dimensions of ~ n and § 0 are less than n 

3 , ~ 1n 1- §: • § : 1- ~ 1n • 

Proof,1.. is a direct consequence of {a). 

'one-to-one correspondence 2, There is a 

and the series 

J<=Ilin unJ< = 

}; 1/2 ]{ 
I= I a I (A I) u I C • We may therefore wr!te 

lim 9{ n and ~ = lim U 0 ~= lim ~n 

Suppose that dim ~n = dim 9{ n 
n _, oo 

for every n and 
n _, oo 

• Then 

, but q: ]{ q:DO it must be J C , Thus dim J < n
0 for some n

0 

which i'11plies dim ~ n < n for n > n 
0 

• 

3, If i,'c§;, i.e. (-~1'h§:.then ~1 -Iim~1nn§"g=limU0 (~1n §gl- ~,n §
8 

Hence ~,Oc §: for some n 0 and thus also for ~1t n >n
0

, Q.E~D , In 

the sequel we shall always suppose that n ?no 

Denote F n, G n the orthogonal projections ( nxn matrices) 

from 9{n onto ~n.§n {the orthogonality with respect to the inner pro-

, 'Me note that a linear 

7 



ll 
If 
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I! 
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I' 
li 
I ,: 

i: 
I, 

If 
! 

iH 

t 
' I' 
' :i ~ 
I~ 
ii 

., 
' ~ 

II ~ 
I) 
! ~ I 

operator (matrix) F n is an .orthogonal projection if and only i/
8

/ 

F n F n ,. F n' ( F nan ' b n ) .. ( an' F n b n) ' a n' b n '"· 9t n I ( 9a) 

etc. for G0
, Q n, S n • If a ~f~ we define F

0
"= F

0
U n a , etc. From (9a) 

it follows 

(F 0 ,Q 8 b).,O, (G 8 a,S 8 b)=O • (9b) 

Let us define 

x(n)=Fny+Qnf' z(n)=Gny+Sng (10) 

• (n) ern (n) (<)n 
Evtdently x C J 1 , z C t~ 11 : If 

timate for the mean Ey 8 and 

H 1 is true then x<n > is the m.I.. es­

z <:> is the m.L estimate for the 

projection on Ey n onto. §:. 

lNe define the statistic 

,<n) = 
( yn- x( n >, z(n)_ x(n )) 

II Qn(z(nl_ x(n)) II 

(11) 

D un . (n) (n) (n) crDrl (<)D 
where y = y • We note that z -x :Oonly when z C J 1 t~ 11 • 

f t 1 
(n) n n • cr n 

However, or almos every .samp e y , x =F y+O f lS from J 1 but 

not from ~Inn§;. since di~ (~; n §: ) <dim~; (lemma 3, statement 3). 

Hence z<nl -x<nl~ 0 with probability one. Further, if z<nl- x <n 'i 0 

then Q0 (z(nl_,[nl)~O • Indeed, 0=Q8 (z(nl_x<n~=Q 0S 0(g-x(n)) implies 

Q 0 5 n = o which contradicts to the statement 1 of lemma 3. Thus r < nl 

is well defined a.e. in n 
We further note that r < nl is related to the likelihood ratio (but 

is not equal to it). Denote ; < n > the m.L estimate for . E y n under H 11 • 

Then A = Ol2>lllyn-Jnlii
2
;:-IIYn_;cnlll

2 1 is the logarithm of the like­

lihood ratio. Setting (formally) z < n l instead of ;< nl we obtain A*= 

=UI2lllly0 -x<nlll 2-llyn-z(nlll~la'he consistent unbiassed estimates for the 

mean and the variance of A* under H 11 are E=<-112>11 z<nl- x<n> II~ 

and 8=1l0 8 (z<n>_x<n>lll 2 •• Evidently r<n> =(A*-dl8 112 

8 

\ 
•' 

3.The properties of the test. 

using (9) we obtain 

Substituting (10) intc 

. 
Qn(z(n) _f) ) . • 

(n)= (y~f' D (n) f >II 
r II Q ( z -

Let us denote 

T (n)_ ( Qn( (n) ) 
1 - Y- m , z -f 

II Qn ( z (n ) - f ) II 

(' (n) QD( (n) 
'2 =<m-;;_f, z -fl 

IIQn(z<nL f) II 

Evidently ,<n>=•1<n>+,~n>. Further denote ·q<n>=Q 8 C 

v(n)=Q 8 (y-m~ • Using (9) we have •'f'=<v(n),q(n) llllq(n 

where 

Lemma 4, The k -th moment of v<n> can be expre~ 

k . 
E ll v<nl 

r=l J l 

(n) 
vlj is the 

[ 

0 if k 

~ n n 
k Ql ••• Ql l 

pairs ~ 2 · k -1 k 

is odd 

if k is e 

j 
1 

-th component of the vector v <n> , 

summation runs over all possible groupings of the subset 

into pairs •• 

Proof. The normal variable v<n> =Q0 (y-ml has zero r 

the covariance matrix Q nQn = Q n , We write/1/: 

k 
E ll v < n> = 01 i k) 

r=1 l, 

a k 'I' <o> 

ap s ••• ap s 
1 k 

k 
where i=v'-l,'l'(pl=exp(-y), ')'=OI2l :£ p Q p For 

· r. s=l r · r s s • 

(15) contains only terms multiplyed by ay lap l • If k h 

k . 2 2 
a 'I' <pl 1aPs •.. ap s = :£ a rlaPs ap s ••. a r 1 a P s a P s 

1 k pairs 1 2 k .,- I k 

+ terms containing a y I a p s • Thus (14) follows. 
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>n if and only i/8/ 

(9a) 

'una , etc. From (9a) 

(9b) 

(10) 

'n x<n> is the rnJ.. es­

n.l~ estimate for the 

(11) 

hen ~n> C !f~(J §: . 
•+0 ° f is from !f ~ but 

(lemma 3, statement 3). 

,if z(n)_x<n>·~o 

Q 0 S 0
( g- x Cn >) implies 

)f lemma 3, Thus r<n> 

~ likelihood ratio (but 

te for Ey
0 

under H 8 • 

~ logarithm of the like-

;< nl we obtain >. * = 

ssed estimates for the 

f=(-l/2lltz'n> -x(n)ll2 

n) =<>-*-d/ lJI/2 

3,The properties of the test. 

usi,ng ( 9) we obtain 

Substituting (10) into (11) and 

(12) 

Let us denote 

(13) 
, (n) ( QD(;,(n)_f) r

2 
= m-;:._f, _...:.,....;.;; __ ..;_ __ 

IIOD(z<nLt)ll 

Evidently r(n)=rl(n)+r~n). Further denote ·q(n)=Q 0 (z(n)_f), 

v(n)=Q 0 (y-m~. Using (9) we ha~ r<f>=(v(n),q(n) >/llq(n)ll 

Lemma 4. The k -th moment of v<n> can be expressed as 

[.7.. 
0 if k is odd 

k (n) (14) En v 
r=l II 

D D 

if is Q I~ ••• Q I I k even, 
2 . k-1 k 

where 
(n) 

is the j I -th component of the vector v (n) and the v It • . 
summation runs over all possible groupings of the subscripts jl, ... ,jk 

into pairs •. 

Proof. The normal variable vCn> =Q0
(y-m) has zero mean and 

the covariance matrix Q 
0

Q
0 = Q n , We write/1/: 

k 
E ll v C n> = 0/ i k) 

r=l 11 apl ... apl 
I k 

(15) 

k 
where i =v'-1 , 'I' (p) = exp (-y) , . '}' =0/2) I p,. Qra p 

8 
• For k being odd, 

r,s=l 
(15) contains only terms multiplyed by ay ;ap 1 • If k is even then 

k ' 2 a 'l'<p>;ap1 ... ap 1 = I a y/ap 1 ap 1 ... a 2y/ap 1 ap 1 1 k pairs I 2 k-1 k 

+ terms containing ay I a pI Thus (14) follows. 
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Theorem 5. For any me }(, r \n> is normal N (0,1) and 

r~n) and r ~n> are independent variables. 

Proof. F 0 y and Q 0 y are orthogonal, hence independent com-

ponents of y n and v<n> and g<n> are therefore also i"1dependent. 

The k -th moment of r~n>, fL It can be expressed as 

n It It 

• fLit= I. E( n v~n) IE( n q!n)lllq(n)lll. 
J

1
, ... , !£" 1=1 I 1=1 I 

(16) 

Setting (14) into (16) we obtain after simple computation that fL ·k,.o 

if It is. odd, fL k = ( It -1 ) II if "' .. is even, since there are { k-1 ) II ways 

of grouping k terms into pairs. The moments . fL 't. .are the moments 

of an N(O,l) normal variable, thus r<;>G-N(O,l) /9/ .• -

From (13) we obtain 

El (n) ( (n) -E (n)) 1-(E (,;) E[ (n)( (n~E (n))/11 n 11-0 • 1 
T I q I q I - v ' q q I q I q - ' .t= •-• n 

(n) 
r 

2 
·. depends on y only through q<n>, thus r < n > and r ( n} are indepen-

1 . 2 

dent. Q • E • D • 

Let us denote 

(i=lala=G 0 b, bE-!fn I.!B=lblb=Q
0

a,a e(i 1- (17) 

n n.J. 
Evidently (I C § , !B C (!f ) and !B f. ~ • We assert that the dimen-

sion 

dim !B ~ 1 (18) 

Proof of (18):' Suppose dim !B ~ 2 • Then ttere are two-dimensional 

planes e 1 C (1, ell C !B SUch that ell =QDt) 1 , and the .straight line 

1 1 =e 1 n e2 is contained in both (I and (!f 0)~ • However 1 C (i 
I 

implies that a straight line 12 cj' n exists, such that 1 1 is the 

projection of 1ll (1 1 = G n 12 ) • On the <:)ther hand, :!i'mq!f') ~ implies 

1 1 l 12 which can not be true. Thus dim !B < I 

Let us denote H ~ the hypothesis that m nrc- 51 .. 

the hypothesis that . m n E- § :- j';. Consider the test .of 

10 

and 

un 
f 

Hn 
• 

against 

i 
'· I 

f' 
11 
I' 
·jli 

i, 

·:;' 
~ 

~~/ •I 

l 

lll 

H ~ taking the critical region of the test W 
0= [ r < n > > y ] 

y is arbitrary but fixed. Denote 

41 ( x) =(I I v~>i e _,
2
12 

d t 

" 

Theorem 6. 

1. W n is a similar critical region with the level of significc 

a • 41 (y ) 

2. The test is unbiasseci, i.e. for any m E !fr 

PtW·0 Im] <P[W 0 /m•] 

' 

m * E §.- !fr 

where P [ • I m] denotes the probability under the hypothesis fr 

3. The test is consistent , i.e ... if y<s>(sd,2, ••• ) are (independe 
• 

les from the process y ( t ,.., ) , Y< • > = (l I r> I. y < • > is a se 
/ • at 

from the averaged process and rc~ ~> is the statistic (11) cc 

ing to Y<r> , then .!!"' .. P[ r/.n/ > y I m 1 = 1 for every m ~ 
4. Let be h an arbitrary point from (i_j'n , k = F0 

h , 1 = G 
0

1 

The power function of the .test is 

( n) ll 2 2 -till 
P[r >ylm1=J41(y-(fjv+8 )(v +8) )p(v)dv 

where 

fj =fj(m)=l {m 0 -El<(n), (h-k>/11 h-kll) I 

8= mip,.n II Qnb-Qn(Gnb+Sng)ll 
b E::t 1 

and p (v ) is a nor1'1fll probability density
1 

E v = fj cos 2 </> , D v = cos ll tf> - cos 4</> , 

where 
cost/>=llk-111 lllh-k!l. 

11 



nol"'JJal N (0,1) and 

'lence independent com­

ofore ,also hdependent. 

sed as 

(16) 

:>mputation that p. ·k-o 

'lere are { k-1 ) II ways 

. p. ,. are the moments 

/9/ .. 

I =0,. 1~1.-, D ' 

and .r! n) are indepen-

(17) 

assert that the dimen-

(18) 

~re are two-dimensional 

:i the .straight line 

:~ 0 ).1- • However !P
1
C {j 

ICh that !J' I is the 

and, :!1'1qj= '} l. implies 

< 1 -
mn~ :!fn and HD 

1 ll 

test <Of un 
r against 

~ .. l' ' ~' 

1 

ll' 
[J 

..... 

H ". taking the critical region of the test W 
0= [ r ( n > > y ) 

y is arbitrary but fixed, Denote 

" 

Theorem 6, 

where 

(19) 

1. W n is a similar critical region with the level of significance 

a • (I (y) • 

2, The test is unbiassed, i.e. for any m E ~r 

PtW·
0

/m l<P[wn/m•l 

' 
where P [ •/ ml denotes the probability under the hypothesis that E y • m • 

3. The test is consistent , i.e~· if y(e)(s;..t,2, ••• ) are (independent) samp-
r 

les from the process .r<t,Ccl), Y<r>'"(1/r) .:. y<•> is a sample 

from the averaged process and rcC. ~> is the statistic (11) correspond-

• t then llDl" P[r<<n,>>y/m)·=1 • eli) cr tng o Y(r) r-ooo r •Or every m l1c-"'r• 

4, Let be h an arbitrary point from ~-~n , k .. F0 h, 1 .. G 
0

k • 

The power function of the ,test is 

where 

8 = mip,. n II Q n b - Q n ( G n b + S n g ) .II 
b E;r r 

and p (v) is a nornal probability density
1 

E v a {3 cos ll tP , D v • cos 2 tf> - cos 'tf> , 

where 
cost/>allk-111/llh-k.ll. 

11 

(20) 

(21) 

(22) 

(23) 

(24) 



I 

[ 

I 
I 
' t 

. . 

I 
l 
I 

Specially, if ~~ n § 
11 

f, f) then 

P [ r ( n)> y I m ] = cil (y-fJ ) - cil ({J cotg r/> )[ cil ( Y- fJ) - cil ( Y + fJ) ] (25) 

5, To every e . > 0 it exists fJ 0 so that any a -level test V ~a­

tisfies the inequality 

P [ r (n)>y I m] 2 P [ V / m ] - ( 

for every m.;; lt such that f3 (ml > fJ 
0 

, 

Proof.1. The proof. follows immediately from the theorem 5, 

2 If H n • t th ( n) 0. • (n) (n) ( n) , • • 
• · r 1s rue en r 2 = , Stnce r = r 1 + r 2 , 1t 1s suf-

<n> (n) 
ficientto show that P[r 2 >O/m]>P[r 2 <0/m] . if mE>§-~. 

i.e, to prove {see {13)) that 0 < E (m-f, z<n>_ x<n~= (m<n>-Ex<n>,Ez<n>_E;x<n> ), 

The triangle with verticies m n ; Ex <n>, E z < nl is rectangular, .since m E §: 
1 

(n) (<)D (n) , , , (n) (<)D 
E z E ~ 11 and E z 1s the proJection of Ex onto ~ 

8 
• ThLS 

(m0
- Ex(n) , Ez(n)- Ex(n)) =II E z (n)- Ex (n)ll 2 > 0, 

3, The averaged process y <, > has the covariance (I/ r l K ( t 1 , t 2 l • 

Hence we obtain r~n>(rl ·setting Y:(r) instead. of y into {10) and 

(13) and.using the inner product (a,b), .;,r(a,bl instead of(a,b). 

The operators F, 0 ,G n do not change, since {9) obviously hold also 

for the new inner product. From {10) it follows that Q0 (z<n>_x<n>) con­

verges in P.robability to Q '1E z(n)- Ex(nl) .' Therefore r~nl (rl=Vr (m-f , 

n (n) (nl.)/ II n( (n) (n)lll (n) Q ( .z -x-1 Q z -x and r 2 (rl converges to +oo .as r-+oo, 

since (m-f,Q
0

(Ez<n>_Ein>ll=IIEz<n>_Ex(n)ll 2 >0 , as follows from 

part 2 of the proof. This, together with 

r<~> (rl EN (O,I l 
1 

prove the consistency, 

4. Let us denote 

• (n) (n) (n) 
the relations r (rl =r1 (rl+r2 <•>, 

lt 8 =lala=G
0 b+S 0 g,bE>~rn I, ~ 8 =(b 1 lb=Q 0 a, aE>ltgj', {26) 

Comparing (26) with (17) we see that Clg.~g are ·translations of 

(t, ~ in the Euclidean . space !R n • Thus (t g is parallel to ll, 

~ 
8 

is parallel to ~ and dim ~~~~I {see {18)). 

Next we prove, that {21) and {24) are independent on the 

choice of h , Indeed, h - k = Q 0 h c;. ~ since h E (! • Hence the 

unit vector 

e =(h-kl/llh-k II 
I . 

(27) 

12 

• 
is parallel to ~ and is uniquely defined (for any h } u 

sign. Analogically. we can prove that ( k - I l is parallel to a 

line, 

Denote dE !R· g the point satisfying {see (22)} 

l[cl-Q 0 fll= min llb-Q
0
fll=8 

bE~ 
g 

and define 

e 2 = ( d- Q nf) /II d - Q nf II 

if 8 f. 0 , Let A be the orthogonal . projection onto lt 
11 

• I 

e 3 =(m 0 -Am 0 l/llm0 :..Am 0 ll 

if m n f, Am n , The three vectors e 1 , e 2 , e a form ap orthogonal 

in (~ 0 ).!. Indeed. e 1 ,e
2 
<;.(~j.l.. For any bE ~n we may writ« 

(m0 -:-Am0 ,b l=(m0 -AmU:.Ii-G,)+(m0 -Am 0 ,G 0 b)..0 since(m 0 -Am 0 l,! £t , G n 1 

and (m0 -Am0 lE~'l". §' 0 j(b-G0 b) • Hence e 3 E>(~ 0 ).j. • E 

it follows ( e 1 ,e2 l'=O • Since dE ~ 
11

, it exists 'b< dl E ~;, such I 

d=Q0 [G 0 b(d)+~gl , Hence, (m0 -Am0 ,d-Q
0
fl=(m

0
-Am

0
,G'\dJ+S 

thus (e2 ,e3 >=~ • Analogically, if a Elt then (m-Am, Q
0
al=(m-) 

hence, ( e 1 , e3 l = 0 

where 

From the theorem 5 it directly follows that 

P[r{nl>y/m]=Jcil(y-ulp (uldu ' 
r2 

Pr 2 (,) .is the probability density of (see {13)) 

r(n) =(m"'-E.x<n>,o cz<n>...:rll/IIQ.D(z<n>_n II· 
2 

Taking into account that Q 0z <n> e ~ 
8 

we may write 

Q n· \ z(n)- f ) = V e 
1 

+ 8 e 2 

where 
'n (n) 

V=(Q z -d,e 1 

13 



-<I>(r+fl)] (25) 

iny a -level test V !;a-

r from the theorem 5, 
>) (n) (n) . 

= r 1 + r 2. 1 it is suf-

m J , if m E- § - ~ , 
n~=(m(n)_Ex(nl,Ez(n)_Einl ). 

; rectangular, .since m E §: 
1 

(n) (<) n 
• x onto t1 

8 
, ThLS 

:>variance 0/ r l K ( t 1 , t 2 l • 

ad. of y into (10) and 

(a, b) instead of (a,b). 

~ ( 9) obviously hold also 

::>Ws that Q n( z (nl- x (n >j COn-

herefore ,<;> <rl=Vr (m-f , 

:onverges to + oo . as r ... oo , 

0 as follows from 
• (n) ( (n) (n) 

relations r rl =r1 (r)+r2 Cr>1 

18 are ·translations of 

Ci g is para}lel to Ci , 

(18)). 

independent on the 

"lee h E Ci • Hence the 

(27) 

\ 

is parallel to !it and is uniquely defined (for any h ) up to itS 

sign. Analogically. we can prove that ( k- I ) is parallel to a straight 

line, 

Denote dE !it"' the point satisfying {see (22)) 

(28) 

and define 

(29) 

if 8 .;, 0 • Let A be the orthogonal . projection onto Ci 11 • Define 

. (30) 

if mnf,Amn • The three vectors e 1 ,e 2 ,e 8 form an orthogonal system 

in (~n).!. Indeed. epe2 t;.(~")l, Forany bE~n we may write 

(mn:-Amn ,b l=(mn-Am";.Ji-G"')+{mn-Amn,Gnb)..O since(mn-Amnl.! Ci 1 G n b € Ci , 

and(mn-Amn)E~".§nj(b-Gnb) ,Hence e 3 E-(~n).! ,From{28) 

it follows ( e 
1 
,e

7
l=O • Since dE- !B 

8
, it exists 'be d) E ~;, such that 

d=Qn[Gnb(d)+ ~gl • Hence, (mD-Amn ,d-Qnfl=(mn-Amn,G~d)+Sng-~d)l=O, 

thus (e 2 ,e3 >=~ • Analogically, if a E-li then (m-Am, Qnal=<m-Am, a )cO, 

hence, ( e I , e3 l = 0 

From the theorem 5 it directly follows that 

(31) 

where p (,) .is the probability density of (see (13)) 
'2 

(32) 

Taking into account that Q nz <n> E- !B 
8 

we may write 

(33) 

where 

( 
'n (n) 

V= Q z -d,e 1 
(34) 

13 



' 

I 
. II 
I '' 

: 1 r 
i 11~ i I 
I, .1, 
' t, 
' ft 
i !I 

II 
il 

is a normal random variable, According to (21), (22) we may write 

{3 =I (m"-Ex(n>,e
1 

l 1, (35a) 

8 ,;, ( m11 
- E i" > , e a l • (35b) 

To prove (35b) we write (m"-Ex<">,e 2 l=«Am"-Ex("'l+(m"-Am" l,e 2 ) = 8 

as follows from (28) and from Q "Am" E ~8 , 

Equalities (32) - (35) show that 

ra<" > = < f3 v + sa ) I [ v2 + o 2 l 112 

where we have chosen h in the definition of e 1 , so that 

f3=1(m"-Ex(n) ,e
1
ll=(m"-Ex<n>,e

1
l, This is true e,g, if we take 

h = A~"-c(d) 1 

. (36) 

(37). 

n n n (n) n 
where c(d)=G b(d)+S g, Then k=F h=Ex +(d-Q ll-c(d) and 

I = G" k = E z<n>- c (d) • From the definition of e 1 and e2 we obtain 

II h - k II = ( m 11
- Ex<n>, . e 1 ) + (Am" - m 11

, e 1) + ( ( Q 11 f - d ) , e 1 ) = {3 , ( 3 8) 

We may write 

II k -Ill I II h- Ill = cos 4> =III- F "Ill I II k,... I IJ (39) 

since (h-I l is parallel to 0- F"I l , and from (37) - (39) we obtain 
• 'D (n) . 

cos</>=llk-IIIIf3=11d-E_Qz lllllk-III. (40) 

Excluding II k-Ill from (40) we obtain using (34) Ev=IIQ"Ez<">-d II = 
=f3 cos

2 4> • To compute the variance D v we write using (10) and 
n n n n n n n n,..n 2 

(34)v-Ev=(~ F (y -Ey l, ell , Hence Dv=<e
1
,G F G e 1 l=IIF "e

1
ll 

From (24) and (27) we obtain IIG"e 1 II= ~in 4> , since (k-I>.Hl".c"e 1~". 
and IIF 0G"e 1 ll=cos</>IIG"e 1 l~ since F"G"e 1 i:;~". (h-kl~~n and since 

( lc - I ) j_ G 
11 

e 'I • Thus, finally, D v = cos 2 4> sin 2 4> • 

rr 

~~~--------
14 

Setting (36) into (31) we. obtain (20). Specially, if ~; n S 
then O=O and from (36) it follows: r~"> =f3 if v> 0 , r~"'=-{3 

Thus P [ r (n > > y I m ] =Ill ( y- {3) - P [ v < 0 ]( Ill ( y- {3 ) - Ill ( y + {3 ) I 
and (25) follows from (19l) and (23). 

5. From (36) we compute a r\" > I a ~ ? o if v · ~ f3, lim r<:> (v) 
. ·<: '"> v,..... . 

r(2n)(v 1: (p2 -0 2 ) 12 {3) = {3, max r (n)( v) =r(n > ({3) = y 8 2 + {3 a.,. tJ. • 
'· 2 2 v -

From (20) using (19) we thus obtain 

K 

fll(y-tJ.)~ P[r<n>>ylm]_? lll(y-!J.)- J [lll(y-!J.)-

-fll(y-v )]p( v) dv -.J[IIl(y-!J.)-IIl(y-{3)]p(v)dv ~ 
. K 

> Ill ( Y- tJ. ) - p [ v < K] - !Ill ( y- tJ.)- Ill ( y- {3 ) I 

where K =«f3
2 

-8 2)1 2{3). According to (19) and (23) 

P [v < K] = Ill [ ( 8 
2 

+ 2 {3 2 
cos 

2 4>- {3
2 

) I 2 {3 sin 4> cos 4> ] -+ 0 

as p ..... 

ty (41) gives 

since from (24) foilows that 2 cos 2 ¢>l. Thus the 

lim P [ r< n > > y I m ] =Ill( y- tJ.) 
p ..... 

Denote m*=F"m"+ cff, We have llm-m*ll=vo 2 +f3 2 =tJ. , s 

m11 -m*=Q"(m-fl=(m"-Ex(n>,e 1 le 1 +(mn-Ex<n>,e
2

) e
2

={3e
1
+oe

2
• 

. For any a -level test V of H; against H;, we may writel 

since m * C ~~" • V is therefore an a -level test for the sim 

hypothesis E y 11 = m * against the simple alternative E y " = m n 

Thus the power P [VIm] must be smaller than the power c 

likelihood ratio test for simple hypothesis / 9/ which in this ca 

equal to lll(y-11 m-m*ll =Ill (y-tJ.) , Therefore 

P(VIm]~lll(y-t1) 

and the statement of the theorem follows from (42) and (43) 

15 



!1), (22) we may write 

(35a) 

(35b) 

(36) 

of e1 , so that 

~· if we take 

(37). 

'+ (d -Qnf)- C(d) and 

e 1 and e2 we obtain 

(39) 

>m (37) - (39) we obtain 

~<-I II • (40) 

(34) Ev=IIOnEz(n)_d II ~ 

! Wr-ite using (10) and 

( e I' G n F n G n e I)= II F 'l; n e 1112 

, since (k-Il.J.!:t.c"e 1~n. 
F n. (h-k) j..S: n and since 

Setting (36) into (31) we obtain (20), Specially, if s:;n§:~ r> 
then 8=0 and from (36) it follows:r~n>=/3 if v>O , r~n>=-{3 if v<O 

Thus P[r<n>>y/m)=ell(y-{3)-P[v<O){ ell(y-{3)-ell(y+/3)1 

and (25) follows from (191) and (23). 

5, From (36) we compute ar~n) ;a~~o ifv'5_{3, limr<:><v)=f3' 
. -~ "5 v, .. oo • 

r;n)(~ b(~ -8 2 )/2 {3) =f3, ~ax r (nl(v) ='(n) ({3) = y 8 2 + {3 2 ., f-. • 
v 2 - 2 

From (20) using (19) we thus obtain 

K 

-ell(y-v))p(v) dv'-.f[ell(y-l'.)-ell(y-{3))p(v)dv ~ 
K 

(41) 

: ell< r- t-. > - P [ v < K l - 1 e11 < r- t-. >- e11 < r- f3 > 1 , 

where K = (( {3
2 

-8
2
)/ 2 {3). According to (19) and (23) 

P [v < K] = ell [ ( 8 
2 

+ 2 {3 2 
cos 

2 cp - {3 2 
) / 2 {3 sin cp cos cp ) -> 0 

, since from (24) foilows that 2 cos 2 cp>l. Thus the ineql'':'.li-

ty (41) gives 

lim P [r<n>>y/m)=ell(y-l'.) 
(3 .... 

(42) 

Denote m*=Fnmn+ cfr. We have llm-m*ll=v8 2 +f3 2 = !-. , since 

mn -m*=Qn (m- f)= (m n_E x(n), e
1

) e
1 

+ (nl'- Ex<n>,e
2

) e
2 

= {3 e 
1
+8 e2 • 

. For any a -level test V of H; against H;, we may writeP[V/m"i~a , 

since m * C S:1 n , V is therefore an a -level test for the simple 

hypothesis E y " = m * against the simple alternative E y n = m n 

Thus the power P [ V I m l must be smaller than the power of the 

likelihoo~ ratio test for simple hypothesis 19/ which in this case is 

equal to ell(r-11 m -m* II =ell ( r- !-.) • Therefore 

(43) 

and the statement of the theorem follows from (42) and (43) Q.E.D 

15 
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(' 

If Hn 
f 

is false then H r is also false. The test W n = [ r<n> > y 1 

is therefore an a -level test for testing H 1 against H-8 • Howe-

ver its power function depends on n • The condition under which 

the power function converges with 

as follows. Cons~der the series (3) 

n ... oo can be heuristically stated 

y(tl= I [<m,n >+w·1o (t). 
l=l I I I 

The terms <m, o
1 

> are the "signal components'',. and w 1 are the 

"noise components". We can neglect\ in (3) the term ~ [<m, o 1> + - l=n+l 
+ w 

1 
1 o 

1
< t) if < m, .o 

1 
> 2 is ''very small" comparing to the variance 

of w 
1 

·for all i > n · • More exa~tly, · we need that /5/ 

lim I. <"m, u 
1 
> :i /A 

1
= 0. 

n~co 1-=n+l 

Theorem 7. If 

00 

sup · ( I. m ~ / I. m ~) = 0 
mEC":f"

1 
U § g l=n+l 1=1 

(44 ) 

lim 
n-+oo 

m~O 

then the power function P [ r (nl >y/m 1 converges with n-+ oo for 

every mE § 8 • 
00 2 

Proof. Let us denote II a II= I. a~, a E-H, a 1 =< a, o 1 >
2 

I A' 1 
1=1 

Further denote 

Let CA: 
or to Gn 

00 

e ( n ) = sup ( I. m 
2 

/ I. m 
2 

) 
mE:f"

1 
U § g l=n+l I 1=1 I 

m/=0 I: = 1 be a sequence of operators which are equal to . -
• For s < oo and for any a , II a II < oo , the limit 

lim A~ ••• A:a
0

=a* 
n-+ oo 

Fn 

(45) 

exists, and II a*ll ~II a II < oo 

for some 1 < 'P < oo then 

00 

• If moreover l=~;a ~/II all
2 ~ 'P 

2 
e ( n) 

(46) II A~ ••• A
0

an-a*ll 
8 ___ . ~1 

lim 
n-+OO (s+llllaii'Pve<nl 

16 

Proof of (45).and (46): Let be s= 1, A~= Gn, We write 

n+r + 
II G an+r -Gnanll ~~~ Gn '(a n+r_an lll + 

+II G n+r an - G nan II ~~~ a n+r -an II+ II G n+r an- G n a nil • 

Denote ( S{ r rl- the ( r -dimensional) orthogonal complement 

in S{u+r ( S{n+' : S{ n (!) ( S{r'i.! ). According to the definitior: 
. --n+r l<ln C1) ·~ l . l<l 

we write § C;:~ @(J\ ) • Further (an-Gnan}.l, tin and (J'-G" 

hence (an-Gnan) .).§n+•,i,e, Gn+r .(a 0-Gnan) = 0 • Thus we 

IIGn+r an-Gnanii=IIGn+rGnan-Gnanll=bEm!ifn+r II b- G n n 
a II :s 

~u 
n+r 

c 
n+r ~ 00 1/2 

(n)-G 0 a 0 11=(!. [c(nl]2 ) <(!. [c 1(nl1 2
), 

l=n+l I l=n+l 

where c ( n ) is one of the points from § satisfying the equc 

= G n a n ( c ( n ) exists, according to the definition of § .n I 

.;n+r (n) =un+rc(n) e §n+r ). 

Suppose that sup II c ( n) II= oo • Then a subsequence 

exists such that !imll:<n.lll=oo , Hencelimi[c1 ~8 l] 2/llcC• 
2 n n 2 ··d=8t.'-· 

=lim<llcCn8 lll -IIG 
8

a 
8

11 )/llcCn 8ljj
2
=,l,since II G 8a 8 11< llall < 

00 -. 2 
On the other hand !. [ c1 (n ) 1 /II c (n ) 11 2 < e {n ) ... 0 • 

l=n +1 8 8 
. s 

This contradiction pro\res that . sup 1l c { n ) II = y n <: oo fc 
n> n 0 

n 0 ?: 1 , and from (48) we obtain ° 
n+l' n-f-r -- ---

11 G a -Gnanii~J;,ye<nl~y 1V'Cnl. 

Finally from ( 4 7) and ( 4 9) we obtain lim II G n+r an+r- G nan 
n, r~ oo 

Thus the limit lim G 0 an = a * exists and II a* II < oo 

II Gn anll<lla II< oo n-+ ,
00 

The sa'11e can be proved taking An1 

(45) is proved for s = 1 • Let us suppose that (45) is true 

s>1 • 'l'hen IIA 0

1 .••• A 0 a0 .jj<oo and we ca:-1 take An ••• An 
- s 1 19 

instead of a n in ( 4 7). So we obtain ( 45) for s + 1 • If £ 
. l=n+l 

.:;II a 112 'P 2 ~ ( n ) then from ( 44), ( 4 7), ( 4 8) it follows that 

II G n a n- a * II ~ 2 max I 'P II a II ' y n I ..; e { D ) • 

17 



!, The test Wn=[rCnl >y] 

1 
against n-g • Howe­

condition under which 

Ln be heuristically stated 

(t). 

~nts", and w are the 
oo I 

he term ~ [ < m , u 1 > + 
l=n+l 

:omparing to the variance 

eed that /S/ 

= 0 
(44 ) 

rerges with n... .. for 

e-J{, a~=< a, u 1 >
2 

/ >.· 1 • 

; which are equal to F n 

11 a 11 < .. , the limit 

(45) 

i ·a 2/llall 2 ~'1' 2 e<n.l 
i=n+l I 

~1 
(46) 

Proof of (45) and (46): Let be s = 1, A~ = Gn , We write 

IIGn+rallff -Gnanll~ll Gn+r(an+•-anlll + 

(47) 

Denote ~ •yl· the ( r -dimensional) orthogonal complement of ~ n 

in ~u+r ( ·~n+• ~~n@(~'i.L ). According to the definition of §n 
Ji'"+r (<)n m -~ l . (<) 

we write § C;:1 (j)(J\ ) • Further (an-Gnan>l ;;in and (a"-G"an) E ~n , 

• Thus we may write 

~II 
n+r 

c 

b- G 
n n 

a II s 

(48) 

where c ( n ) is one of the points from § satisfying the ·equation un c (n) = 
= G n a n c ( n ) exists, according to the definition of § _n , and 

.;n+r (n) =Un+rc (n) e §n+r ). 

Suppose that sup llc<nlll=oo • Then a subsequence (c(n
8
l}.

8 
n oo 2 2 

exists such that lim II c (n 8 ) II = oo • Hence lim~ [c
1 

Cns )] /II c (n 
8

) II 
n n 2 ·-.,!=s"tl·· 

=lim<llc(n8 lii
2
-IIG 

8

a "II )!llc(n 8 lll
2
=,l,since II G 8~ 8 11< llall < oo. 

00 "2 -
Ontheotherhand ~ [c 1 (n 8 )]/llc(n 8 lll 2 <~(n ) ... O. 

l=n +I B 

This contradiction proV-es that . sup IJ c(n) II= y n <: .. for any 
' n> n 0 

n 0 ;:: 1 , and from (48) we obtain ° 

( 49) 

Finally fr~m (47) and (49) we obtain lim II G n+r an+r- G nan II= 0. 
n,r-+oo 

Thus the limit lim G n a n 

II en anll<lla II< 00 n-+ :-The 

= a * exists and II a* II < oo , since 

sa'lle can be proved taking An1 = F n , i.e. 

(45) is proved for s = 1 , Let us suppose that (45) is true for some 

s>l • Then IIA 0

1 .... A 0 a0 .ll<oo and we ca"l take An ... An a 0 

s 1 00 8 

instead of an in (47). So we obtain (45) for 8 + I • If ~ a~ s_ 
. l=n+l 

Sllall
2 '1' 2t (n) then from (44), (47), (48) it follows that 

(50) 
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i 
li 
!I 
' 

I'> 

i· 

~ ~ 
Further lim y 2 = 

"o n .. oo 
lim ...... sup (II G D a D II\ 

n·> n 
- 0 

.. 
:I 

l=n+l 

2 
[c 1(nl1)< 

0 0 

< 11 a!("+ lim sup II c < n > ll
2

ll' 
2 e < n > = II a 11 1 

• 
n 0 .... oo n~n 0 

From (50) we obtain 

1 > lim 
• II G "a" -a * II __ __;.:__ _______ =lim II G" a"- a* II 

-D ... 00 

2 v e (u ) ~ax I lp II a II' y D I 2ll'llallve<n> 
...... 

i,e, (46) is true for s = 1 

bitrary s 

and induction arguments prove (~6) for ar-

Let b be an arbitrary point . from ~- § ·, II b II < oo , Denote 

h ( ") = F " b , 1: (n) = G u F 0 b , I ( n) = F "G" F .; b , (51) 

According to (45) there exist limits ·lim h <n> , lim r<n> , lim 1<n> 

with finite norms, Therefore also cos cp < n> = III <n>- 1: <n> II I II h Cn> -1: <n> II 

(see (24)) and e<f> =<h<n>_l:<">llllh<n> -1:<"> II (see (27)) converge with n .. oo, 

Further e~"'=<l"'-Q"flllli"'-Qnfll (see (2'4)) where l"' is the projection 

of Q" f onto the straight line going through the point Q " [ G "r + S "g 1 

and parallel to e ~n> • According to (45) the limits with finite norms 

lim Q n [ G n r + s D g 1 = lim (I - F D)( G0 r + (I - G D ) g ) and 
n-too n-+oo 

lim Q" f=f- lim 'F Dr do exist. · Hence lim d <" > and the-...... .. .... 
lim e;n) exist. Now consider the n~~ameters (see (35)) refore also ...... 

.,g<n>=l(m"-Ex(n),e~") ll, 
(52) 

., (n) ( n E ( D) ( n) ) 
u = m- x ,e

2 
• 

Using (10) and (45) we may write 

II Ex(n+r>_Ex(n) II= II Fn+r m+ Qn+r f-

-(F"m+.Q"£>11=11 F"+'(m-fl"+• -F"(m-fl"ll .. o 

18 

with n,r .. ':". According to (52) I.S(n+r>_,g<n> I::SI<m"+•-E,.<"~ 

(n+r) e, -e~n) >I+I(Ex(n+r) -Ex(n) ,e~n) ll~llm-fllll e~n-r)-e~n) II 

+II E,.<n+•>-E,.<n>ll .. o ·• 

,e, lim ,s< n> exists, Analogically we prove the existence of Jim 
D ... DO .. • D ... 01 

Thus all the parameters cos cp< n>, ,S < ~> 8 < n> defining th• 

function P [,en>> y I m ·1 (theorem 6) converge and the llmit po 

function is obtained setting the limit values of the parameters i1 

the expression (20). Q. E. D 

Conclusion 

1. The inequality (46) shows that the rate of convergence or. a 

jection of any vector a E ~ r u § 8 or a E ~ u § is comparab 

with the rate of convergence of e (nl and the same ·must be theref 

valid·for lhe convergence of coscp<n>' ,s<n> • a<n> • 

2, Computationally the problem of constructing the test consists 

finding a finite number of eigenvectors and eigenvalues of the 

metric kernel K ( t 1 , t 2 l (see lemma 1). But from (11) and from · 

theorem 7. it follows that other methods giving the projections c 

~ and§ and.the limit of (a,bl= i Ja<t)u
1
(t)dt[b(t)u

1
(t)dtl>. 

1,.1 T 

can be used/5/ • The problem is especially simple if T is a 

set (see the expression for r in the introduction, and /61) • Tl 

last· case was used to solve approximately a problem in the ar 

si; of nuclear scattering experiments /6/, 

The author thanks Dr, G.A.Ososkov and Dr.E.P.Jidkov fo1 

their interest to this investigation. 
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§ , II b II < .. • Denote 

(51) 

lim rCnl 

III (n)- k (n) II I II h (n)- k (n) II 

~ ( 27)) converge with n-+ oo. 

ere _ln> is the pr:ojection 

thE1 point Q " [ G "r + s " g] 

limits with finite norms 

) g) and 

e lim d(n) and the-....... 
1e parameters (see (35)) 

(52) 

with n,r-+':", According to (52) IPCn+r> __ pCn) I::SI<m"+r_Ex(ntr>, 

e(;+r) -e~n) >I+I<Ex(n+r) -Ex(n) ,e~n) li::SIIm-fllll e~n-rl_e~n) II+ 

i~e. Jim p< n> exists, Analogically we prove the existence of Jim /3 c" > , 
D .... CIO ,. D .. 00 

Thus all the parameters coscpCn>,p <~>13 Cn> defining the_ power 

function P [,en>> y I m ·] (theorem 6) converge ;,nd the limit power 

function is obtained setting the limit values of the parameters into 

the expression (20). Q.E.D 

Conclusion 

1. The inequality (46) shows that the rate of convergence of a pro-

jection of any vector a E 5' 1 u § 8 or a E 5' u § is comparable 

with the rate of convergence of e (n) and the same ·must be therefore 

valid· for the convergence of cos cp<n> , pen> , /3 Cnl , 

2, Computationally the problem of constructing the test consists in 

finding a finite number of eigenvectors and eigenvalues of the sym­

metric kernel K ( t 1 , t 2 ) (see lemma 1), But from (11) and from the 

theorem 7 · it follows that other methods giving the projections onto 
n . 

5' and§ and.the.limit of (a,b)= I Jah)u
1
(t)dtfbhln 1(t)dtiA 1 1=1 T 

can be used/5/ , The problem is especially simple if T is a finite 

set (see the expression for r in the introduction, and /61} , The 

last· case was used to solve approximately a problem in the analy­

sis- of nuclear scattering experiments /6/, 
The author thanks Dr, G,A,Ososkov and Dr,E,P.Jidkov for 

their interest to this investigation. 
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