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P e 3 10, M e 

B pa6oTe-npHBOllHTCSI HOBhlA KPHTepHA npoBepKH cnO*HOA nHHeAHoA rH-

~ ' ' 

noTe3bJ npoTHB cno*HOA nHH8AHoA an1>TepHaTHBfole noKa3aHo, 'ITO BenH'IHHa r 

Ha KOTopoA OCHOBaH STOT KPHTepHA, HM88T HOpManbHOe pacnpeAeneHHe C napa­

MeTpaMH O, 1, OTKy Ila BbITeKaeT. npoCTOA cnoco6 Bbl'IHCneHHSI OnJH6KH nepBoro 

po/la. KpHTepHA HBmleTcH 6nH3KHM KpHTepHio OTHomeHHH npaBllOilOll06HH H npH 

6on6moM.'IHCne 9KcnepHM0HTOB cosnallaeT C onTHManl>HhlM KpHT8pHeM llnH 

npoBepKH npOCTblX. rHnoTe3. 

KpHTepHft none38H llnH Bhl60pa npaBHnl>HOrO pemeHHSI np~ H8O1lHO3Ha'IROM 

(j,a30BOM aHanH38 9KCnepHMeHTOB no pacceHHHlO sneMeHTapHblX 'la~THU. B cpaB♦ 
. :a . ' 
H0HHH C )('. .;:KpHT8PH_0M OH AaeT BbIHrpbllll B 'IHCne 9KcnepHM8HTOB,Heo6XollHMblX 

llnH onpeAeneHHH HCTHHHOro Ha6opa «pa3OBb!X CllBHroB. 
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Introduction 

The problem of testing hypotheses basing on the results of per­

formed physical experiments often occurs in experimental physics. 

The testing problem which is to be discussed here occurs for in­

stance in the NN- scattering experiments when the phase - shift ana­

lys!s is ambiguous, because of lack of experimental results. In such 

a c~se an ~fficient statistical test helps to define reliably the true 

set of phase shifts. 

The X 
2 

- test which has been often used to discriminate the 

false set of phase shifts is not optimal as it was shown by mathe­

maticians/ 1/ and by physicists/ 2,3/. Instead of the X 2 - test the 

likelihood ratio test has been proposed / l,3 , 4/ 
1 

but the computation 

of the characteristics of the test ( for instance, the probability of the 

Type I error) is cumbersome and it can be done only approximately/ 3/ . 
The test proposed further has good asymptotic properties of the 

likelihood ratio test, but on the other hand, the computation of the 

Type I error is as simple as for the X 2 - test. 

In this paper we ~hall mainly discuss the mathematical theory 

of this new test. The reader who is interested only in the applica­

tions of the test in the phase-shift analysis is refered directly to 

the paragraph 4. 
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I, A General Formulation 

the results of { independent) experi--Let us denote y 
1 

, ••• , y n 

ments which are distributed following the normal distribution with 

variances c,} , ... , c, ! , respectively, 

We have to test the hypothesis J<.; that the expected value15 

of the measured quantities_ Y 1 are equal to 

.. 
f.{y

1
1-.11

1
<8>, i • 1, .. •, D • 

( 1) 

'Ihe alternative is the hypothesis J( 1 that 

.. 
f,{y

1 
I -v

1
(8 ), i • 1, ... , n. 

( 2), 

The functions 711 ( > and v1 ( ) are known linear functions, but the 

parameters 6 • ( 6
1 

, ••• , 6 m) are unknown and they are to be estimated 
.. 

from the experimental results, We shall use the vector notation, for 

insta.nce: 

.. ( 11 . ) -t=1 (' 
71 ( 

D 

)) ➔ -l: I ) ➔ ( ~ 1 ) • y ~ , (J - .. 
) . . y 8 

D m 

(3) 

and we use the prime to denote· the transposition of a vector. Mat­

rices generally will be denoted by capital letters. 

Thus, it can be written: 

,j(O)-'FO 

.. ➔ .. 
v(6)mG6 

➔ 

+ CI 

➔ 

+ C 
2 

( 4) 

(5) 

where F, .G are known n x m matrices { n is the number 

of performed experiments, 
m is the number of 'unknowm1 parameters) 

and .; 1 • 1:2 are constant vectors. 

Obviously both the hypotheses J( o and J( 1 are complex_ and, 

generally speaking, we are to decide to what of two m - dimensional 

hyperplanes of an n - dimensional Euclidean space belongs the 

theoretical value of the results of the experiments. 
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In general the testing problems are solved in the following way/ 5/ : 

Let be r • r ( y ) an adequately choosen (measurable) function of 

the experimental data y , U;ually the function r ( 1 ) is one- dimen-, 
sional, but this is not necessary, Obviously r is a random variable 

taking values from an one- dimensional set n ., We choose a measu­

rable set W a CO ( usually W a Js an interval) so that 

p{r<;wal~a ( 6) 

under the assumption that J{ o is true, This can be done by several 

ways and a statistical test on the a - level is given if the function 

r ( y) and the set W a are chosen. If the number r ex computed from 

the experimental results is a point of W a ( r ex ~ W a ) , then the 

experimenter rejects the hypothesis' J(o ( i.e. accepts J( 1 ) • If 

r ex r:J. W a the amount Of experiments is not sufficient for accepting J{ I 

The value a is the probability of erroneously rejecting the 

hypothesis J( 0 { Type I error) 'and it can be chosen as small as it 

is needed by_ the experimenter, On the other hand, the probability 

of not rejecting J<o , when J<o is false ( the Type II error),· is de-

fined by the chosen test: 

- .. ➔ 
p { r r;. W a / J{ 1 is trne, 6 is true b• /3 ( 6 ) , ( 7) 

It depends not only on the hypothesis J{ 1 but also on the true 

value of 8 Obviously the optimal test is the test which for a 

given a ~ives minimal values of {3( ~) , 

It is often sufficient to know /3 (Ot) assuming a large amount 

of experiments (asymptotically). 'The region of possible values of 

~ is then reduced { with probability one) to a single point - the 

maximal likelihood estimate I / 7/ , and instead of the function /3(~) 

we have only one number f3 
A 

f3 - limp l r ~ Wal & J r I - i1 I i > I . 
D ➔ 00 

( 8) 
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It is our task to search a test which for a given ( non- asymp-

totical) a gives the smallest value· of /3 • 

2. The Construction of the r - Test 

In this and the following paragraph we shall assume that er 1
2 

• l , 

· i • 1, ... ,n • { If it is not true we have only to substitute y 1 for 

11 /cr"i , Fl.I for F 1l / u, . and C IJ for C IJ / (7 I ) • 

Assuming J( 
0 

is true, the likelihood function is given as 

L (6/y)a 
0 

l l ➔ 
c2rr>n/2 exp 1.- 2 [ r - i1 < 8 > 11 r -q < O> l I 

and the maximal likelihood estimate is equal tof 
6

/ : 

i .[F'F]-
1

F'y+const. 

On the other side, if J( 1 is true, then: 

L(i//y)• 
l 

exp I -+[ y -1' ( 8)] H - if ( 8 ) ] 

and the maximal likelihood estimate is equal to: 

(9) 

( 10) 

( 11) 

i • [ C'C ]-1 C'y + const ( 12) 

The ~ 2 - test is based on the fu~ction/ 1/ ~ ( chpt. 7 § 12) 

X ~ (y) - - 2 t'n L 
0

( i / y ) • [ y - q ( 3) ] '[y - 17 ( i) ] . ( 13) 

Followng the 
){ 2 - test J{ o is rejected if the value obtained from the 

experiments, ){ 2 , is, generally speaking, sufficiently large. 
ex 

'lhe likelihood ratio test is based on the quantity 

6 

'( 

>.--2£n Locd/y) .[y-,f(j)]'[y-q(i>] 
L, (if, It> 

... ... 
-[y -➔11<'~>] '[y -q(;f,)] 

( 14) 

and J< 0 iis rejected if >. ex is larger than a number k which depends 

on the probability of the Type I error a , i.e. k .k ( a ) • However 

the computing of k for given a is cumbersome, it has to be re­

peated after each experiment and can be done only approximately/ 3/ • 
The proposed r - test is a 

test. We substitute i~ ( 14) for $ 
variation of the likelihood ratio 

4 
another estimate, <I> 8 which is ob-

tained from the maximal likelehood method ( least square method) if 

substituting insted of the experimental data y1 , •··•Y n their estimates 

71 ( i ), ... , 71 ( i ) 
l D 

A A A 
:t. ➔ ... ... ➔ ... 

L 
1 

( W,. / 'r/ ( 8 )) • max L
1 

( 8 / 71 ( 8 )) • . 8 . . tr 

Following ( 12) we obtain 

... 
~; 

Let be 

.. 
-1 , ...... 

• [ C 'C ] C'71 ( 8 ) + const. 

L
0
cd/y) L

0
(i;; 

T • - t'n ---..-- +& 
9 
... , _ fn ___ __,_ __ J .. 

... ... ➔ .. 
L

1
(<1>0 /y) L 1 (<1> 8 /r) 

... ... .. 
➔ ........ ➔ ➔ ➔ 

=[y-71(8)]'[v (<1> 0 >-71(8) 

and let us divide T by the best ( unbic:J.sed and consistent! 7/) 

timate of the variance of T • We obtain the quantity .. .. .. 
➔ c1 -r;ce,1·ci1ci;i-.,,➔ cl,1 

T=T(y)a 

v C? c % 0 > - if< ff > 1 • n c it c ri 0 > - 1, 3)] 

7 \ 

( 15) 

( 16) 

( 17) 

es-

( 18) 



The matrix R is equal to 

R • I - F [ F' F ] -
1 

F', 
( 19) 

where I is a unit matrix. ~ : 
r depends on y also tnrough the estimates 8 and 4J8 ( see 

/ 10/ ,/ 12/, and/ 16/ ). The statistical properties of r are very simple 

as we shall show in the sequel, though this dependence is nonli-

near. 

3. The Probability of the Type I Error and the 

Optimality of the r - Test 

A basis meaning has the following 

Theorem: If J{ 0 is true, then r is distributed as a normal 

variable with parameters & I r I • 0 , !il l r I .. l , i.e~, 

x2 
1 00 --

p Ir > k I• - f e ll dx 
..[Ti, k 

( 20) 

under the hypothesis J{ o 

~ Assuming Ho is true we denote by i)~ the true ( un-

known> value of the parameters. We obtain from ( 10): 

A A 
-,. ~ -1 , .. .. .. 
t1 - ti O • [ F 'F ] F ( y -17 ( 0 0 )) ( 21) 

Multiplying ( 21) by F and using ( 4) we have 

"q < i l - q < 8 0 l - F l F ' F ] --
1 

r' < y - "q < 80 l l ( 22) 

By subtraction of Y from ( 22) we get 

~ .. ... 
y - q ( 0 ) • (I - C) (y - °q ( 0 

0 
)) • R ( y- if ( 0 0 )) {23) 

8 

I 
I 

d) 
. 1, 

~ '.t' 

\ 
·i, 
'I 
:• 

where 

C •·F[ F'F]-
1 

F ', R•l-C. (24) 

From ( 24) we deduce the following useful rules: 

CC • C , C '• C , RR • R , R ' • R ( 25) 

CR • RC • 0 • 

Following the assumption that J{ 0 is true 

& 111 -l<Bo> 

and the variable 

.. 
z: -

.. .. .. 
y-17(80> 

is distributed as an n - dimensional normal variable with p;:,.rameters 

&I 1 I • o !il!'i 1-1, -

1n an analogical way ,as we obtained ( 23) from ( 10), we can 

get from ( 16) a~ ( 22) the expession 

(26) ... .t' .. ..." ... ... 
v c 4;i A > - 17 ·c o > - s c b - c z 1 

0 

Here 

S • I - G [ G 'G r 1 
G' 

( 27) 

s ·-s . s s - s 

and i: is a constant ( non randon) vector 

A 
➔ ... a, ➔ ... 
b•V( 

00
)-17(0 0 ). ( 28) 

A . 

The ( constant) vector i Oo is derived from ( 15) substituting i/ 0 in-

steati of f . 
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Substituting ( 23) and ( 26) into the definition of r ( formula 

( 18) ) we obtain 

r a 
't'RS[b -ct] 

( 29) 

V [ It - Ct ] , SRS [ b - C t ] 

Let us compute the k - th moment of r : µ k = & { r k I •. 

For this purpose define two random vectors 

ti = C -: 
(30) 

1 =SR't. 

In this notation 

-/l k • /j; { [: '(t - ; ) ] k 

[ ( rt - it l ' SRS ( b-+ - it ) ] k/2 
I. ( 31) 

Being linear functions of ~ the variables 1 and v-+ are also 

normally distribut~d. Moreover, u1 and v l are independent variables 

( i a 1 , ••• , n , j • 1 , ... , n ) • Indeed, 

n n 

COY I ul • vi 1- & { I elk z k I s1f Rfh zh I -
k•1 f.h-1 

= I elk slf Rfh 81k-Is a Ro cltl-o 
k,f.h k.f IL Lk 

because Clk =Ckl and ~ R fk C kl • 0 

From ( 31) and from the independ~nce of 

ta.in 

n 
µk= I &{ 

11, ··:\. .. 1 

(b 1 -u 1 ) .... (b
1 

-uJ) 
I I . k k 

( [ t: - ; ] ' SRS [ b - ; ] ) k/2 

10 

( 32) 

( see ( 25) ). 

;; and t we ob-

IX &(v .•• v 1)(33) 
. JI Jk 

ff 

Th~ following equality is valid: 

& I VI ... VI ·1 - 0 
1 Ir. 

if k is odd 

I(Is R s .: .. Is R 
pairs f.h J1 f fh hl 2 fb l1r.-l fh 

Sh ) ( 34) 
lk 

if k is even, where the first sum is taken over all possible order­

ings of the indices j 1 , ... ,j Ir. into pairs. 

-To prove ( 34) we shall use the characteristic function ¢ ( t ) 
·of the multidimensional normal variable .. v / 7/. We have 

&r; 1-·o, ~{ ; I - ~ { SR z .. I - SRS • 

and/ 7/ 
,L .. Ii .. , .. I 
'I" ( t ) • exp - -

2 
- t SRS t 

The k - th mixed moment of -; is obtained from the relation/ Bf : 

k -+ 
&tv .... v 1- ..!_ a <b<1> I 

1 , 1.. 11r. a1 ••••• ·a I t - o 
I I I Ir. 

( 35) 

Computing ( 35) we obtain ( 34) and substituting into ( 33) we get for 

k even 

ll1r. • I 
pairs 

&( 
( b - ; ) , SRS ( b-+ - ;: ) 
➔ ➔ . ... ➔ 

( b - u ) ' SRS ( b - u ) 

There are (k -1 l II possibilities of ordering k 

Thus we get_ 

0 if k is odd 

I k/2 

indices into pairs, 

µk= 
(k-l)ll,. 1.3,5.,.,(k-llif k is even ( 36} 

11 



what coincides with the moments of a one-d.imensional normal variable 

with parameter O and If 7 / , The theorem is proved. 

The Type I error, To a given. a we choose 1: • 1: ( a l 

the equation 
:a 

oo l -L f-e 2 

k ,,/2" 
dx •a. 

If the experimental value 

rex > a 

we can reject J< 0 with a probability of error equal to a 

from 

( 37) 

A ➔ A A 

The optimality. If n ➔ 00 , then 'i • Oo and ~ o"➔ ¢1 80 
( convergence in probability/ 7/ ), . We have thus two fixed vectors 

A 
➔ ➔ 

qi .. .,, (Ool 
➔ ➔ .. 

71ll •7l ( (1)8 ) 
0 

and the testing problem consists of testing ij 
I 

against if II 

If n ➔ oo , then 

R ➔ I 

Proof: 'laking the limit of ( 23) we get 

for every 

If n 

➔ 
y 

➔ 00 

➔ ➔; ➔•➔ cl» Y - 11 ( . o.> ➔ R ( Y - 71 o 

, i,e, R ➔ I 

then r converges ( in probability) to 

r 
as 

[ Y - if 1 ] , [ qII - ~ I 

{Ci - ;j l'[;j -ii l 
II I II I 

( 38) 

( 39) , 

( 40) 

When multiplying r as by a constant number or subtracting a con­

stant number from r as the test based on r.. remains invariant, So 

we can obtain from ( 40) an identical test based on the variable 

12 

(1 

I ➔ .. I ,.. .. 1· :a 
2 'ff -71 r - ( T/ -T/ ) 

II I aa ·II I 

( 41) 

-<1-if )'(y-if )-(y-71➔ )"(y-if). 
I I 11· II 

But ( 41) is the likelihood ratio for simple hypothesis and the test 

based on it ( the Ne,mgn - Plarsen test) is the optimal test/ 1/ , i.e. 

the test with the 'smallest probability of Type II error fJ , Thus 

a.) the r -test is optimal in the sence defined in paragraph I. 

b) for large n the r - test and the likelihood ratio test ( s_ee 

( 14) ) coincide. 

4, The Phase Shift Analysis 

Toe described method of testing can be advantageously used 

in the phase-shift analysis, if there is an ambiguity of the phase 

shifts. Still there is a slight difference between the formulation of the 

problem in the paragraph I and in the phase-shift analysis. 

1, Let be y , • ., y the experimental data ( the results of measur-
1 n 

ing the cross section, the polarization et':_,) and let be 71 1cih , .. , 71n ( 0) 
the. theoretical values of y 1, ••• y n depending on the phase shifts 

8
1 

••• , 0 m , The functions 71
1 

( di are substantially nonlinear and 

the amount of performed experiments, though large, is not sufficient 

to obtain a single solution of the maximal likelihood method. Say, 

there are· two solutions, two sets of phase-- shifts, i and i . On 

the other hand, the amount of performed experiments is usually suf~ 

ficient to suppose that Y I are normally distributed and that in the 

neighbourhood of i and $ { in the ellipsoid of concentratk n/ 7/ 
around i an«=! ~ ) , the functions 71 1 ( 0 ) are approximatively 

linear { 'l'aylor,s' formula): 

m " ~ 
71

1 
( 0 ) = }: F ( 0 - 0 ). + 7J ( 0 ) 

k=l lk k k I 

and 

13 



.. m . ,. ~ 
77(8).l:G

11
,(8 -ell )+77

1
(ell), 

I kwol k k 
( 42) · 

w-iere .. .. 
Fil<• 

a111 < o > 
18 _; • G lk -

d7l 1 ( 8) 
111_; ... (43) ao .. ao .. 

The expression ( 42) coincides with ( 4) and ( 5) if we denote 
➔ .. ... ➔ ~ 

77 ( 8 ) by 11 ( 8 ) in the. neighbourhood of qi 

The assumption of quasilinearity ( 42) is needed if using the 

X 
2 

- test or the likelihood ratio test/ 3/ as well. 

2. The quantity r is computed_ in the following way. J,,et be i 
th•:? better of the two sets of phase shifts, i.e. 

2 2 
X A > X A 

8 ell 

An auxiliary set of phase shifts· $ 8 is co~puted from: the least 

square program/9/ substituting in·itthe 77
1 

(°d), •·.··• 77n<1> 

instead of y I • •• • y D and performing only the first iterative 

step· of the program. Then 

D 

:s 
1,,,1 

r 
ex 

. l 
--;i [ y 

I I 
77

1
(j)]x

1 

( 44) 
n x2 tr 

y:S-1..-l: 
l•I c, 2 I ,1,.1 

I 

I __ x_l~ F D x 
k, f .. 1 c, 2 lk k f FI f ___:,:_,1,_ 

I c, 2 
l 

v.here 

c,~ is the variance of y 
1 

, 

A A 
-+ A ➔ 

XI .. 111 ( qi 8 ) - 711 ( (1 ) 

and D is the error matrix of 8 If r > k ex where k is defined· 

from the tables of normal distribution as 

a r 
k 

1 
V 2 rr e 

-~ 
2 dx 

14 

i 

--J 

then the phase shift set 

error equal" fo a • 

i can be rejected with a probability of 

3. We- note that the probalility of TYPe I error is even smaller 

than the computed one, because we test every time only the worse 

set·, i ( ,/11
,;. > X 2

,.. ) and 
8 qi 

p Ir> k and :,(
2 
.. >x 2 

.. }:::;pl r> k I-a 
8 qi 

But it can be shown that for small value of a the difference is 

negligible. 

4. The meaning <;>f the Type II error i_s obvious. f3 is the pro .. 

bability that we . make superfluous experiments. The optimal test is, 

in certain sence, the most economical test. 

· 5. Generalizations 

The quantity r in· ( 18) _depends only on some scalar products 

in an n - dimensional vector space. Evidently the , r - test can be 

used also if the experimental results y 
1 

, ... , y n are mutually depen-

dent, or if a continuous function of time y(t) is measured· (y ( t ) 

being an element of a Hilbert space). 

The author thanks Yu, M. Kazarinov and F. Lehar for their 

interest in this investigation. 
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