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Introduction

The problem of testing hypotheses basing on the results of per-
formed physical e'xpferiments often occurs in éxperimental physics,
The testing problem which is to be discussed here occurs for in-
stance in the NN-scattering experiments when the phase - shift ana-
lysis is ambiguous, because of lack of experimental results. In such
a case an effidient statistical test helps to define reliably the true
set of phas.e shifts, ‘

» The ¥ 2 ~test which has been often used to discriminate the
false set of phase shifts is not optimal as it was shown by mathe-
maticians/ 1/ and by phys1c15ts/ 2,3/, Instead of the x?~test the
likelihood ratno test has been proposed [13, 4f , but the computation .
of the characteristics of the test (for instance, the probability of the
Type 1 error) is cumbersome and it can be done only apprqximately/ -3_/ .

The test proposed further has good asymptotic properties of the

- likelihood ratio test, but on the other hand, the computatmn of the

Type I error is as simple as for the X *_test.
In this paper we shall mainly discuss the mathematical theory
of this new test. The reader who is interested only in the applica-

tions of the test in the phase-shift analysis is refered directly to
the paragraph 4.



1, A General E‘ormndati{an

the .results of (independent) experi-

Let us denote ¥, sees¥
ments which are distributed following the normal distribution with
variances 0} ,..- .‘0: y respectively.

We have to test the hypothesis Hs that the expected values

of the measured quantities Yy, are equal to v
' ' | (1)

6{Y'}-,Yl‘(-é). jel,...,n.

The alternative is the hypotnesis i that

(2)

Ely, )=y, (), i=l....m

The functions m{ ) and ¥ () are known linear functions, but the

parameters §m (0, ,..0p are unknown and they are to be estimated

from the experimental results. We shall use the vector notation, for

instanée: v o o
’ : . é
7,0 ) Y, - ¢,
-ﬁ ( ) =3 ! ’ ; = . ’ 0 hd :0 , ' (3)
7,00 2 .
and we use t;he prime to denoté the transposition of a vector. Mat-
rices generally will be denoted by capital letters.
Thus, it can be written:
S ard el (2)
MO)=FO + e,
-» -»>
l-: ( 0 ) = G 0 + -:: 2 s . (5)
where Fi & are known & Xx ® matrices ( ® is the number

i i ‘unknowm parameters)
of performed experiments, m  js the number of P

and 3, .'5, are constant vectors.

Obviously both the hypotheses Ky and X, are complex and,

generally speaking, we are to decide to what of two m ~ dimensional

hyperplanes of an 'n —dimensional Euclidean space belongs the

theoretical value of the results of the experiments.

In general the testing problems are solved in the following way/ 5/:
Let be rar (y) an adequétely choosen (measurable) function of
the experimental data ¥ . Usually the function r(3}) is one-dimen-
sional, but this is not necessary. Obv;ously r is a random variable
taking values from an one-dimensional set f{l. We choose a measu-

rable set WoCQ (usually Wa js an interval) so that

. ) p{rGwalg_a (6)

under the assumption that Ko is true. This can be done by‘several
ways and a statistical test on the a -level is given if the fl;xnction
r(7) and the set W, are chosen, If the number fox computed from
the experimental results is a point of W, (r, & W, ) | then the
experimenter rejects the hypothesis Mo (i, accepts Hi . ). It
TV, the amount of experiments is not sufficient for accepting ¥, .
The value ¢ is the probability of erroneously rejecting the
hypothesis H, (Type I error) and it can be chosen as small as it
is needed by, the experimenter. On the other hand, the probability
of not rejecting Ho , when Mo is false (the Type 1I error), is de-

fined by the chosen test
p{vr'q(wa/l(, is troe, -é is troe kam ﬂ(-é). (7)

It depe-'nds not only on the hypothesis X, ~ but also on the true
value of -é . Obviously the optimal test is the test which for a
given a gives minimal values of B .

It is often sufficient to know B (&) assuming a large amount

of experiments (asymptotically). The region of possible values of

8 is then reduced (with probability one) to a single point - the
maximal likelihood estimate $ |/ 7/, and instead of the function 8(9)
we have only one number B : ’

BalmplrGWg/EIT 1=/ 0. (8)

n-» ™
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It is o;,u' ﬁsk to search a test which for a given ( non-asymp-

totical) & gives the smallest value of B .

2. The Construction of the T - Test
. a2
In this and the following paragraph we shall assume that o =1,
el n (1f it is not true we have only to substitute vy, for
Wy /a] . F” for F“ /al ’ and G“ for cu /a! ).

Assuming J, is true, the likelihood function is given as

> 13 (13 -1l (9)
Lo(a/y)"’(z—:)—nﬁ__”"!’"?[y "ﬁ(e)]'[)' ?1( .

and the maximal likelihood estimate is equal tol 6/ ;

5 -[F"F ]--l F’y + const . . : . (10)

On the other side, if H, is true, then:

-+ > 11)
* ! Lig-v@11y-¥erl, (

L (8 /7)) @ ——p— exp L =1 _

l( /ly 2 s b

and the ma.'ximal likelihood estimate is 9qual to:

(12)

A -1
d =[c’c] G’y + const .

The x? -test is based on the function/ 1/‘(chpt. 7§ 12)

.
A

. 2 - > - 3 ;"__"3)]. (13)
x%(;)-_zano(a/y)-[y-ﬂ (e I’y -n¢

Following the x’ —~test Ho is rejected if the value obtained from the
experiments, x3 , is, génerally speaking, sufficiently large,
ex

Mhe likelihood ratio test is based on the quantity

r=r(y) =

Am -2 O/

———a——-—-[?—ﬂ’(-é)]’[;-ﬁ(a)] -
L, (D/y")

£ 3 (14)
-3 =107 -F(d))

and X, is rejected if A, is larger than a number ¥ which depends

on the probability of the Type I error a , i,e., k=k(a)
the computing of k

. However
for given a is cumbersome, it has to be re-
peated after each experiment and can be done only approximately/ 3/ .

The proposed T -test is.a variation of the lik;alihood ratio
. >
test. We substitute ir} (14) for 5 another estimate, ®3 which is ob-

tained from the maximal likelehood method (least square method) if

substituting insted of the experimental data y,,--y, their estimates

r]l(g(')....,' qn(é')

L(dy/ 76Namx LG /708N, (15)
.0 G
Following (12) we obtain

~

sé\ -[G'G]‘-1 »CL;I.(-é’)-fconst. (16)
Let be
L8/ 7) L8
b4
T SVt Lk sem ot
'Ll((bé‘/y)- L,(Qa/y)

(17)

=[_;'4-r;(5)]'[;(5é\)—ﬁ'(a)],

and let us divide T by the best (unbiqsed and consistent/ di ) es-

timate of the variance of T ., We obtain the quantity
A A A

>, % Pt d A - >
R ['i‘—r](o)][v(d)e)-—r,(é’)]

(18)

A

Vi@, = FCF1 RIFC B - C 6]



The matrix R is equal to
Re I-FLF'F]~' F’, (19)

where 1 is a unit matrix, ) ) n

r depends on } also tnrough the estimates -5 and 65 (see
[10/,/ 12/, and/16/ ), The statistical properties of r are very simple
‘as we shall show in the sequel, though this dependence is nonli-

near,

3. The Probability of the Type 1 Error and the
Optimality of the r -Test

A basis meaning has the following
Theorem: If H, is true, then r is distributed as a normal

variable with parameters lrl=0, Dir }=1, jel

. 1 0 '
plr >k }= kfe 2 dx (20)

under the hypothesis Ho ,
Proof: Assuming Ho is true we denote by 36 the true (‘un-

known) value of the parameters. We obtain from (10):

~ ~
>

B - -lFFTT PG 76, . (21)

Multiplying (21) by F and using (4) we have

fﬁ -» i , -1 , -+
B) =7 (6) = FIF'FI™ F(T-7 (6)). (22

By subtraction of ¥ from (22) we get

Y -F0) e U=CI(F=H(F N = R(F- 7 (G ) , (23)

where

ceF[F'FI”" F’, Ra=l1-C. (24)

.
From (24) we deduce the following useful rules:

CC=C, C’=«C, RRAaR, R°= R
: (25)

CR = RC = 0.
Following the assumption that K, is true.
Et7l =8y
and the wvariable
: - ;" - ﬁ (50 )
is diétributed as an 1 -dimensional normal variable with parameters
iz -0 , DiE har.

In an analogical way ,as we obtained (23) from (10), we can

get from (16) and (22) the expession
£ s - '
3(¢é-)-ﬁ‘(0’)-s[b—cfz']. : (26)

Here

se1~-clc’cl™ c*

(27)
S’=S , SS = §
and b is a constant (non randon) vector
Tes(d r-50d,. (28)
6o ° :
2 ‘ . :
The (constant) vector ¢, is derived from (15) substituting 6, in-

stead of g .
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Substituting (23) and (26) into the definition of r (formula
(18) ) we obtain

;e C2’RS[D -c¢2) (29)

VIB ~c21’sRS [ 5 - ¢z ]

Let us compute the k —~th moment of r . =&{r*y .

For this purpose define two random wvectors

T -c7?
(30)
VvV =SRZ .
In this notatidn
k
[v4F -3}
k=61 }. (31)

[(B—2) SRS (B” =~ T )]u/2

Being linear functions of '2 , the variables % and v are also
normally distributed. Moreover, v, and v, are independent variables

(i=1’4,---.n‘.i-l....,n) . Indeed,

n n
cov{ul ' Yy = G { kElC"l zkl,hzl S‘z Rg, =z, } =
(32)

=2cC, Si0 Rgy 6“("55

eln i€ Rfk Cu- 0

because Cv"‘ =Cy and % Ry C, =0 (see (25) ).
From (31) and from the independence of % and ¥ we ob-
tain

: s . (b, - gy )
2, = &1 k x Px &fv, v D(33)
1 k

f Y .... (b
. 1 .
k=t ([P =31 sRS [T - 3 ])2

10

The following equality is valid:

6{v, v, = 0 if ¥ is odd
1 k. . .
N - (34)
,,?,,(Lzh»s:,lnthshs’"'g% ssk__ll R on vsh!k)

ifk is even, where the f{irst sum is taken over all possible order-
ings of the indices j, »ewjy  Into pairs,

To prove (34) we shall use the characteristic function ¢ (¥ )

‘of the multidimensional normal variable ¥ 7/, We have

G{v}a0, D7V | =D{sRz™}=SRS,

and/ 7/

¢(-l’)-exp{--;—-t"SRS-t.] .

The k -th mixed moment of v is obtained from the relation/ 8/ :

L
Ly, womrv, 1m Lo 9 ¢ (1) b, . (35)
1 Iy i* It e dt t=0
1 x

Computing (35) we obtain (34) and substituting into (33) we get for

k even

. -»_-» , +_-» s
p, - I &1 (,b_’ u )’SRS (b = u) !k/
-> . - -
vairs (b -w)’SRS (b -u )

There are (k-1)1 possibilities of ordering k indices into pairs. -
Thus we get.
' 0 if & is odd

‘,l =
¥ (k=11 =135 (k~-Dif ks even(36)

11



what coincides with the moments of a one-dimensional normal variable

with parameter 0 and I/ 7/, The theorem is proved,

The Type I error, To a given @ we choose Lk = k(a) from

the equation

L e
—_—e 2 daima. . (37)

va2rn

f
k
If the experimental value

fox > @

we can reject Ho with a probability. of error equal to a .
. . A -

The optimality, f n +e , then €& = 6, and (gaﬂ-; 36

. v °

( convergence in probability/ 7/ ). We have thus two fixed vectors

Sy

A,=000, T an( R (38)

and the testing problem consists of testing 7 . against 7 u

If 0 9e , then
R+1 . v (39)
Proof: Taking the limit of (23) we get

nd .
T -7 s RGTIFCE, N

-

for every ¥ , e, R »1

I 2+« then r converges (in probability) to

A S A R N TR (20)

VT -3 105 -7 )

When multiplying .. by a constant number or subtracting a con- -
stant number from Tss the test based on 7,, remains invariant. So

we can obtain from (40) an identical test based on the variable

, (41)
- (7 - R & 2 )_("_-' R .
R RIS A v=1 )" G- 0

But (41) is the likelihood ratio for simple hypothesis and the test
based on it (the Neymgn - Plarsen test) is the optimal test/ 1/, i.e,

the test with the smallest probability of Type Il error B , Thus

a) the r ~test is optimal in the sence defined in paragraph L
b) for large & the T -test and the likelihood ratio test (see

(14) ) coincide,

4, The Phase Shift Analysis

The described method of testing can be advaniageously used
in the phase-shift ana.IYsis, if there is an ambiguity of the phase
shifts, Still there is a slight difference between the formulation of the
problem in the paragraph | and in the phase-shift analysis.

1. Let be y ..,y the experimental data (the results of measur-
ing the cross section, the polarization etc,) and let be '71(5) ""’7.,(5)
the . theoretical values of y... y depending on the phase shifts

0, ... 0 . The functions 17’(5) are substantially nonlinear ‘and
the amount of performed experiments, though large, is not sufficient »
to obtain a single soit,;tion of the maximal likelihood method. Say,
there are two solutions, two sets of phase- shifts, é and zi? . On
the other hand, the amount of performed experiments is usually suf-
ficient to suppose that Y; are normally distributed and that in the
neighbourhood of g ‘and ) (in the ellipsoid of concentrati.n/ 7/
around 3 and q‘? ), the functions g, (& are approximatively

linear (Tayloms formula):
. ) .
7,48 = 2R (8, -0, )4 ‘qi(a)

and

13



- m ‘A -3
"1(0)',5,6&(01: -0 e (0,

(42)-

where

- .___I G - 37“(9) | "
I 36, §.8 '°n 36, -0 - (43)

The expressxon (42) coincides with (4) and (5) if we denote
- -
n(0) by (0 in the. neighbourhood of & .

The assumption of quasilinearity (42) is needed if using the

xa -test or the likelihood ratio test/ 3/ as well,
. "

2. The quantity * is computed in the following way. Let be )
the better of the two sets of phase shifts, i.e.

2 3
X2 >Xa

0 ¢ R
An auxiliary set of phase shifts  ® 0‘ is co'nputed from: the least
square program/ 9/ substituting in- it the n, (5) cevn 7 (3\)
instead of yl s Y and performing only the first iterative

step’ of the program. Then

1
oom , (44)
e . x, * x
vy 2L o3 % FuDyeFg —%5
S al ga L=l k. fat ol o?
i i !
vhere

9 . .
¢y is the variance of y,,

x, =9 (D5 1 -p (8)

and D is the error matrix of 8 R (N >k where k s defined

ex
. from the tables of normal distribution as

2
x
00 1 - ——

e dx

o)

r

A

. then the phase shift set 8 can be rejected with a probability of

error edqual to @ ,
3. We- note that the probalility of Type I error is even smaller ‘
than the computed one, because we test every time only the worse

Set'b(x >x‘) and
0 [ I

pir>k and XZ‘ >x%l$p{r>kl-a

But it can be shown that for small value of & the difference is
negligible,

4, The meanmg of the ’Iype Il error is obv1ous. B is the prow
bability that we make superfluous experiments, The optimal test is,

in certain sence, the most economical test.

'5. Generalizations

The quantity r in (18) AdepeAnds only oh 'some scalar products
in an = n -dimensional vector épace. >Evidently the . r ~test can be
used also if the experimental results vy, sewy  are mutually depern-
dent, or if a continuous function of time y{t) is measured -{y(t)
being an elément of a Hilbert space).

The author thanks Yu, M, Kazarmov and F, Lehar for their

interest in this investigation,
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