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Let n be a bounded doma in in the n- dimensional Euclidean 

space with a sufficiently smooth b oundary a n . By G(x;y) 

X a (x, ••• x .. ), y a(y, •• y .. )is denoted the G reen function of the problem 

+ • •••• + 
a x 2 

u I an .. o n 

In this paper we shall study the spectrum of the operator 

Cl ~ u 
Tu•f G(x,y) ---dy. 

n a y2 ( 1) 
I 

Our problem is coming from the investigation of S.L. SoboleJ 1 / on 

the movement of a body w ith cavity filled by perfe ct liquid. It has been 
. d . I 2 ,3/ cons1dered a lrea y 1n • 

§ 1. H < n ) are, as u sual, the Sobolev' s spaces which consist of 

all the functions having s qua re summable generalized derivatives of o rder 

S in 0 Let us denote by H ~( 0 ) the set of functions of H 
2

( !1) 

vanishing on the b o undary an 
Expression ( 1)' defines a linear operator T ma pping continuously 

0 
H 2 ( 0 ) into itself. One can easily see that{ 1 )may be written in the 

following form 
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Tu = f 
0 

a 2G u < Y> dy , 
0 

u8'H
2
(0) 

( 2) 

We used the fact that u ( y) vanishes on the boundary. Now it is clear 

from ( 2 ) tha t T is a singular integral operator, 

Let us remember on some definitions/ 
4

•5 / : 

Suppose A is a closed operator in a Banach space, A is called an 

operator of Fredholm's type if the following conditions are fulfilled: 

1. The dimension of Ker A , the l atter being the set of zeros of A, 

is finite. 

2, 1m A , i.e. the range of A, i s closed. 

3 . The codimension of lm A is finite. 

The essential spectrum of A · is defined as the s et o f points ,\ 

on the complex plane for which A-.\ is not an operator of Fredholm's 

type. 

Theorem 1. The spectrum of the operator T is identical to its es­

sential spectrum both coincidin.g with the interva l r 0111 • 

Proof. Firs t of a ll there is no point of the spectrum besides of the 

interva l [ 0,1J • Indeed, let for instance .\ < 0 

transformation 

• We perform the following 

X ~-----X 
I 

1 
v- ,~. x., (3) X 

2 v-.\ 
X , • • •, X 

2 n .,;~ 

In this way (l is transformed into a new domain n,~. whereas the 

function u ( x 
1

, ... , x ) G- H ( () ) into ~ , ( x' , .... , x ' ) ~ H ( 0 , ) 
n 2 1\ 1 " 2 A 

We denote by () ,\ the operator transforming u into ~ ,\ 

Let 

v.,(T-,\)u 

Applying to both sides the operator 

u , v <:- H0 
( 0 ) I 

a 

/';. , we obtain 

a2 
/';. v = __ u_ - ..\ /';. u I 

(jx~ 
By means of ( 3 ) the last equation i s transformed into 

,\ ( 1 
v 

A) ,\ 
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Inverting the operator !J. one obtains 

" - 1 -1" u=O(T->.) e v 
.\ .\ .\ .\ ( 4) 

where G.\ ( x ' , y' ) is the Green function of the Dirichlet' s problem for 

the Laplace's operator in 0.\ . From ( 4) it can be seen that (T- .\) -t 

is bounded. Hence .\ dcn't belong to the spectrum. 

Now we shall prove that every point .\ E- ' [ 0,1 ) belones to the 

ess ential spectrum of T 

pro blem 

• For thi s purpose we consider the boundary 

afJu 

and define the operator 

a x 2 
I 

u I an = f 

mapping p.\ 

a\ 
P>. u c - >. ~J. u , u E- H 0 < n ) . a x 2 2 

(5) 

into H < n > 
0 

It is easy to see that prob~em ( 5) is not an e lliptical one/ 6 /, hence the 

operator P .\ is not of Fredholm's type (ellipticity is ne c essary for P .\ 
to be of Fredholm's type/ 

7
/ ) • Moreover from this follows that T _ .\ is 

also not of Fredholm's type. Let us prove for instance tha t if I m 5' .\ 
not closed then I m ( T - >.) is not c losed too. Indeed, let f E- Imp f ~o f 

D ).. I D 

i s 

We denote 

Then ¢ E- Im(T-.\)C H
0 

and 
.. 2 • As Im(T-A) 

is c l osed, so ¢ E- I m ( T - ,\ • Hence 

and this w:ls to be prov ed. 

Thus every point o f the interval [ 0, ~] belongs to the essential 

spectrum of T. 
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§2, In §1 wesa.w that the essential spectrum of the operator T does 

not depend on the domain n . The more detailed structure of the spec-

tr•Am and particularly the e xistence of eigenvalues, depend on the domain, 

It is proved irf 2
•
3

/ tha t if 0 is an ellipsoid or a cylinder, the spectrum 

consists of an everywhere dense set of eigenvalues of infinite multiplicity. 

Now we are going to costruct some domains for which the operator has 

not eigenvalues at l east on some subinterval of [0,1] ~ 

Suppose that for some 0 < A < 1 a nd some u ~ H 0 
( 0 ) 

2 

Tu - A u ~ 0 • 

Then it follo\116 

a 2u 

a x 2 

t 

- .\ ~U eO u / CJOeO ( 6 ) 

Let us perform the s ubstitution 

1 ( 7) ][ = ---x , . . • , r =---X ][' e ---=====::::-x 
y2(1-.\ v-;;:;:- 2 n n y2.\ 

I 

u(xl•· · ·•n) is transfo rme d into u (X'' .. X '), 
A r · n 

In this way the function 

the domain 0 in~o a new n.\ and ( 6) into 

o2 u • .\ 
. 

0 2
; >. ; an ~ o ~- ____ ~o u.\ >. 

( 8) 
---- . . . . . ax' 

2 
• a x ' 2 a x' 2 

n I 2 

Thus ~.\ satisfies the wave equation and vanishes on th '? b o unda ry of 

0>. • ln order to p rove tha t .\ i s not an eigenvalue it i s sufficient 

to prove tha t from ( 8) u .\ "' 0 fo llows. This latter means the uniqueness 

of the solution of the Dirichlet's problem for the wave equatio n in H
2
(0), 

called in what follows s hortly "uniqueness". 

F irs t of a ll we shall consider the two- dimensiona l case, moreover 

let n be a triang le, The domain n .\ i s a lso a tria n gle fo r every 

>.E-[0,1] We shall show the uniqueness for a rbitrary tria ngle, from 

which follows that T has no eigenvalues, 

So, l et n be an arbitrary triang le. At least one of the a ngle s 

of " mus t lie ins ide of a characteri s tic a ngle (an angle determined 
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I 

by two characteristics of the wave equation). Indeed, let us draw the three 

straight lines parallel fo the sides of the triangle through the origin of the 

coordinate system ( Fig.l.). As there are two characteristic angles whereas 

three straight lines, at least two of these latters must be inside of one of 

the characteristic angles. 

Let p be an arbitrary point in the triangle. We draw through P 

the characteristics as shown in Fig,2, Suppose now 

the w:1ve equation, Then the following relations hold 

U ( P ) >+- U ( P 
1 

) • u(A I ) + U ( B 
1

) 

... •' .. 

The right- hand sides of ( 9) are equal to zero because 

satisfies 

( 9) 

u vanishes 

on the boundary of 0 • Let us multiply the first equa tion of ( 9) by 

+ 1, the second one by - 1, the third one again by + 1, and so on and add 

them together. We then obtain 

11 ( p ) + ( -1) Il-l u ( p ) "' c ( 10) 
ll 

Obviously p 
ll 

converges to A and as u is continuos by virtue of 

the S obol e v's Imbedding Theorem from ( 10) follows u ( P) ""0. Thus the 

uniqueness is proved. 

We can proceed i n a similar way in the three dimensional case. Let 

us consider the cone n enclesed by the 

I 2 t 
"' : X - ( 1 + Cl )( X + X r 2 • 
"' : X - h . 2 

where a and h are arbitrary constants. 

racteristic cone of the wave equation 
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X -x 2 -x
2

- 0. 
2 

We shall prove the uniqueness for such arbitrary cones. 

Let p be a point of n • Let this point coincide with the vertex of a 

characteristic cone. We denote by 

teristic cone and reversely by 11 

"' ; the p~rt of cu 1 cut off by the charac-

the part of this latter cut off by cu ( Fig.3). 
I 

Then the following relations are fulfilled: 

II 

II 2 

I 

- · II 

+ Cl 2 

II 2 
c 0 

• 
(11 2 +11 2 )~0 

2 3 

(1 

I)) 

I 

where 11 k are the direction cosines of the normal of the surfaces in ques­

tion. 

Next we use the identity 

a au 2 a au 2 0=2~["Jlu 
a X I 

---(--) +-(--) + 
ax, ax2 ax, ax3 

a au 2 

--(--)­
ax I ax I 

-2 _a_<~ 
ax ax 

2 I 

-.E.!_ ) - 2 _a_ < -2.!_ ~). 
U X ax ax a X 

2 a 1 a 

Integrating over the domain 0 ' enclosed by u and "' I 

au o., f2 --D do 
0' axa ·-

au 2 au 2 au 2 
f I r <-a--) +<-a-)+ <-a-) 111 

CU '+u X I X 2 X 3 I 
I 

one obtains 

au au 
-2----11-a X ax 1 

I 2 

21..L ~ l dl))=f _1_, [(__Q_J!_)2 + (J...!!_)2]112 + (....i.L)2(112+112)-
ax ax 11 1 iJx ax I ax 2 a 

I 3 11 I 3 I 

au ~1111 -2-- I 
ax, ax2 

_ 2 _u ~~~~~ ldcv +{ 
· r a ax, axa I)) Ill 

I [ (~)2+ 
·ax 

I 

au 2 au 2 2 2 2 au 2 2 2 au au 
+ (--)]112+(--)(11 +11 )-{J(--)(11 +11 )-2---1111-

axa I ax 1 2 8 ax
1 

2 3 ax
1

. ax
2 

I 2 

-2~ 
ax 

I 

au v v 
·-- I 

ax a 
dcu 

8 



, au au eJ~[(--11 
II a X I 

---- ~· 
au 
ax II -

u· I 2 

2 

+ f3 

We used the notation 

ax 
a I 

au 
)2 + (-a_u_ 

11 

----:1 -f3 
I +" II 

a X I 
a 

au 2 
- --~~) ]dru. ax a 

, a ll integra l s exi s t in these formulae. The l ast integral 

vanis hes because of the pres ence of the tangentia l derivatives of u 
on CiJ ' _ 

in the integ rand • Sine e 0 

holds on u and IJ < 0 
I 

lies inside of the char acteristic cone, 11
1 
> 0 

on "' • From this follows that 

IJ 
I 

~~~ )
2 

ldcu 
a X a 

thus both of the linear independent inner derivatives ~ 
11 

_ .1..!__ 
11 

and 

a ax 1 ax 2 -L 11 - · .£.!!__ v at·e e qua l to zero on u . Therefo~e the funclion u ax8 I ax. 
i s a consta nt on u 

e O 

and as it vanishes a l ong the intersection of (1 and "' 
it is zero o n the entire u • Hence 

proved, 

By means of substitution ( 7 ) 

determined by the surface 

X - ( 1 2 
+ a 

I • 
u(P) = O a nd the uniqueness is 

0 

1 - · A 

A 

i s transformed into a cone 0 A 

(X 
2

' + X ' 
2

) = 0 , 
2 3 

Obviously 
lies ins ide of the characteristi c cone if a nd onl y if 
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0 < >. < 
1 + "2 

"' 2 + "2 ( 11) 

consequently there are no eigenvalues in the interval ( 11), 

Yu.M. Berezansky / 
8

/ proposed a method to construct some domains 

\'\here the problem of Dirichlet for wave equations has a weak solution, the solva­

bility being stable against little deformations of the domain, It i s easy to see that 

for such domain the spectrum of T contains interval without eigenvalues. 

In V\.hat follows we describe briefly this method applying to our case . 

Let us introduce the notations 

a 2 
u a 2 

u a 2 u n 2 a u 
fu =---- - 0 0 0---- = ~C · ' c,, -1. c; = 0 0 0 0 c~~ e -1. 

ax · 2 2 a x 2 ~-~ ~ a x 2 a x 
1 2 " I 

Suppose that u -E· H ( {} ) satisfies the equation f u • 0 and vanishes on the 
2 

boundary, Let A 
1 

(x), o o o , A., (x), A ( x) be real sufficiently smooth func-

tions, Integrating by part the follo~ng identities may be proved/ 8 /: 

" au 
o.O=Jfu(~ A --- +A u)dx• 

k 
0 tel a xk 

" aAt iJA 1 au 2 
D 

= Jl I cl o: ---2 --· -2A)( --) + I 
n I= I k=l a xk ax I iJ x I J,k=l 

iJAt iJA
1 (-c

1 
---ell- ---)x 

ax, axk 

1-l k 

2 au au " " n 

X I dx + r ( ! c J 
n , • . , 

a A 2 
---) u dx +f 

2 ax, an 
2 2 

N, I At Y t I c 1 Y 1 ~ ( 12) 
ax, akk t=l J•l 

where y k . are the direction cosines of the surface a 0 ' 
au • 

s uch that -- = N " y I holds on an .. /As u/ an- 0, N (x) exists I . a x1 , 
Let us choose the functions At ( x) and A( x) so tha t the qua dratic form 

N" , i s a function 
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aAI:. aA 1 au 2 
! c

1
(I -- -2 ---2A)(-- ) + 

J=l 1:.=1 ax.. iJxJ axJ 

n 

is s trictly pos itivel y definite and the inequa .lity 

n a 2 A 

c J > 0 
= 

J =I 

-
aAk 

( -c 
J a 

X J 

f)AJ au au 
-c--)--

t a Xt a X a X 

(:b) k 

( 14) 

is fulfilled, Furthermore we d e termine the doma in r. s o tha t on an 
n 

n 

I 
J= I 

2 
C II 

J J 
> 0. ( 1 5 ) 

A s a c onseque n ce of ( 12- 1 5 ) for s uch a doma in u = 0 holds , Moreov er if 

little a lte r a tio n o f a nd A ( x) are ma d e the pos itive d e finitness o f ( J 3 ) and 
t 

the ine quaties ( 14), ( 1 5 ) keep true so cons e quentely the uniquenes s rema ins v a lid, 

A s seen from ( 7) n A = 0 when A= + I so w hen A lie c-; in a 
1 

2 
s uffic ie ntly .sma ll n e ighbourhood of differs little from and 

the uniqueness h o lds . This mea n s tha t there are no eigenva lues in a s uffic iently 

s mall neig hbourho od of A=+. 

. d . d . I sf . As an example let us nowdescnbe a oma1n constructe In m the way 

we h a ve expl ained, Take A 1 = - x 1 , A t = x t ( k = 2, ... , n ) • Consider 

the four bra n c he s o f hyperboles x 1 x 
2 

= h o n the x 
1 

0 x 
2 

p lane ( Fig.4) 

and close them w ith curves A A 
1 

, A A 
2 

, B B 
1 

... • These latters can be a rbitrary, 

the only restriction on them is the following . Place a hyperbola x x = h 
I 2 

through a n arbitrary point M of these curves, We then o btain two angles a 

o r f3 , both determined by the coordina te axe ( see Fig.4) a nd by the ta ngent 

of the curve o r by that of the hyperbola, respectively . 

" r elatio n f3 < a < -;r . 
In this way o n e r eceives a bounded doma ip n I 

" a nd 8 obey the 

on the x 
1 

0 x
2 

plane. 

Consider now a cylinder P 1 = 0 
1 

x E n _ 
2 

w here En_ 
2 

means a n 

n - 2 dime n s i o nal spa ce built up o f a ll c<2_ordina te axes w ith the exception of 

ox 
1 

a nd ox 
2 

, Simila rly, ~ construct r. 
2 

on the x 
1 

ox 
3 

plane w ith the cor-

responding cylinder P. 2 , etc, Let n be the inters ectio n of a ll thes e cylin-
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ders constructed, P is bounded, i ts buundary consists o f s mooth s urfaces 

o f finite number. The boun dness o f 0 f ollows from the fact tha t x 1 

and x 
2 

a r e b ounded in \! 1 , x 1 a n d x 3 a re bou nded in n 2 etc . Choos ing 

the con stant h m the equ a tions o f the hyperbola s ufficiently small i n mo-

dulus u.n rl. the point s A , B, C , D sufficiently near to 0 we re c eive a d o main 

for w hich the qua dratic formula ( 13) is s tric tly p ositive definite a nd i n equalities 

( 14, 15) a re v a lid, consequently the uniqueness holds, A t the same t ime this 

property r e m a ins u nchanged in c ase o f small deforma tions o f th e d omain cho-

sen. As a c o nsequence, for this domain the s pectrum h as no eige n values in 
1 

some n e ighb o urhoo d of the !'oint >-~ 
2 
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