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ON THE SPECTRUM OF A SINGULAR
INTEGRAL OPERATOR



Let Q be a bounded domain in the n-dimensional Euclidean
space with a sufficienly smooth poundary 9 Q0 . By G(x;vy)

x =(xl...xn), y=(yt..yn)is denoted the Green function of the problem

Au = f 2 3
A-—-—a—~+ cesest 9 .

9 x? dx?2

t/90 =0 ! a

In this paper we shall study the spectrum of the operator

2
Tum [ G(x,y) —% _ 4.
0 dy? (1)
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Our problem is coming from the investigation of S.L. Sobole\/j 1 on
the movement of a body with cavity filled by perfect liquid, It has been

considered already m/ 2,3/ .

§1. H (1) are, as usual, the Sobolev's spaces which consist of
all the functions having square summable generalized derivatives of order
S in @ . Let us denote by HZ(O) the set of functions of H (Q)
vanishing on the boundary dQ .

Expression(l) defines a linear operator T mapping comtinuously

HO,(Q) into itself, One can easily see that'(l)may be written in the

following form



2
nef 28 wipay, wenlm)

O 3y12’ (

™
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We used the fact that u{y) +VvVanishes on the boundary. Now it is clear
from (2) that T is a singular integral operator,

Let us remember on some definitions/ 4’5/:
Suppose A is a closed operator in a Banach space, A is called an

operc*~~ f Fredholm’'s type if the following conditions are fulfilled:

1. The dimension of Ket A . the latter being the set of zeros of A,
is finite,

2. In A , i.e. the range of A, is closed.

3. The codimension of ImA is finite,

The essential spectrum of A is defined as the zet of points A

on the complex plane for which A -2 is not an operator of Fredholim’s

type.

Theorem 1, The spectrum cf +re operator T s identical to its es-

sential spectrum both coinciding with the interval [0,1] .

Proof, First of all there is no point of the spectrum besides of the

interval [0,1 . Indeed, let for instance A <0 . We perform the following
transformation

x,’= 1 x X;" "'—‘-‘1_._ x ,---,X'=_“"1.._"‘-, . (3)

V1-2A ! v-a " V-1

In this way 0 is transformed into a new domain QA , whereas the
function n(xl,...,xn) 3 Hﬂ(o) into u)\(x l,....,)(“")G-H:_,(Q)‘) .
We denote by 6)\ the operator transforming u into LY .

Let

Ve(T=-2A)u , u,vG—HOQ(D).

Applying to both sides the operator A , we obtain
’ 2
Av= -2 _ A,
ER

By means of (3) the last equation is transformed into
L v, - Lav, =Ae, -
A1 = a) A




Inverting the operator A one obtains

. . 3%, n
u=8 (T-2)" = [ Gy ) Sy - Ly ()
A A A(l—A)pA gy’ ? A A
1
where GA(x',y’) is the Green function of the Dirichlet's problem for

the Laplace’s operator in Q)‘ . From (4) it can be seen that (T- Ay

is bounded, Hence A dcn't belong to the spectrum,

Now we shall prove that every point A & (01 belongs to the
essential spectrum of T . For this purpose we consider the boundary
problem

o2
2 - A A u = F
* (5)
/90 =f
and define the operator $,  mapping H:(Q) into H (0)
0
9 3%
U= ~AAu , ve HO(0).
dz3 2
1

It is easy to see that problem (5) is not an elliptical one/ 6/, hence the
operator 9"\ is not of Fredholm’s type (elhpt1c1ty is necessary for ?

to be of Fredholm’s type/ /) Moreover from this follows that T - ) is
also not of Fredholm's type. Let us prove for instance that if Im® is

not closed then Im(T-)) is not closed too. Indeed, let f ¢ lmfP’\, f Ii"(
"

We denote
-1
¢.=0 f = [G(x,y)f,(y)dy. '
0
-1
. ¢,n@lm(T-o\)CH: and ¢, 32 A f=¢ . . As  Im(T = A)

is closed, so ¢ € Im(T -~ A) . Hence

f=A¢€-AIm(T-—}\)zlmA(T—A)glmfP'\

and this was to be proved.
Thus every point of the interval [0,1] belongs to the essential

spectrum of T.



§2. In §1 wesaw that the essential spectrum of the operator T does
t depend on the domain ! . The more detalled structure of the spec-
m and particularly the cxistence of eigenvalues, depend on the domain,
is proved ir{/ 2,3/ that if © is an ellipsoid or a cylinder, the spectrum
nsists of an everywhere dense set of eigenvalues of infinite multiplicity,
'w we are going to costruct some domains for which the o{aerator has
t eigenvalues at least on some subinterval ofv[O,l] B

Suppose that for some 0 < A <1 and some Ut & H° ()
2
Tu -du =20,

1en it follows

ch’

2

7]
i AT = 0 u/80=90 .
] (6)

t L perform the substitution

P 1
LI X, x;=-—!—-—-:x2,..,,,x'=r 1 x . (7)
V2(1-2 V22 toovaa "t
this way the function 1 ( x g x ) is transformed into uﬁ,\(x;."' x "),
» domain inio a new Q, and (6) into
A L)
9 L)
DY d % A 3% A )
- - t e me—m— =0 g /90 =
9 x°2 dx’3 PR , Uy =0 (8)
1 2 n
L)
us ul\satisﬁes the wave equation and vanishes on the bourdary of
'y . In order to prove that A iz not an eigenvalue it is sufficient
L
prove that from (8) u, = 0 follows. This latter means the uniqueness

the solution of the Dirichlet's problem for the wave equation in HQ(Q) ,
led in what follows shortly "uniqueness”,

First of «ll we shall consider the two-dimensional case, moreover

! pe a triangle, The domain Q)‘ is also a triangle for every
e[ 0,1] . we shall show the uniqueness for arbitrary triangle, fi
ich follows that T has no eigenvalues,

So, let Q be an arbitrary triangle, At least one of the angles

Y must lie inside of a characteristic angle (an angle determined



by two characteristics of the wave equation). Indeed, let us draw the three
straight lines parallel fo the sides of the triangle through the origin of the
coordinate system (Fig.1.). As there are two characteristic angles whereas
three straight lines, at least two of these latters must be inside of one of
the characteristic angles,

let P be an arbitrary point in the triangle, We draw through P
the characteristics as shown in Fig.2, Suppose now u G—H: satisfies

the wave equation. Then the following relations hold

u (P) +n(P,)= u(Al) + u(BE)

v (P) + u(Py) =u{Ag) +u(B,) (9)

u(P ;) +u(P ) =u(A )+ u(B ) .

The right-hand sides of (9) are equal to zero because g vanishes
on the boundary of 0 » Let us multiply the first equation of (9) by
+1, the second one by -1, the third one again by +1, and so on and add

them together, We then obtain

P) (=D wr o (10)

Obviously P converges tu A and as g is continucs by virtue of
the Sobolev’s Imbedding Theorem from(1G) follows u(P)=0, Thus the
uniqueness is proved,

We can proceed in a similar way in the three dimensional case. Let

us consider the cone ) enclesed by the surfaces (Fig,3)

[ !t-(1+as)(x:+x:)=0

where a and h are arbitrary constants. 0 lies inside of the cha~

racteristic cone of the wave equation



We shall prove the uniqueness for such arbitrary cones,
QO . Let this point coincide with the vertex of ¢

Let P be a point of
cut off by the charac~

characteristic cone, We denote by m; the partof o,
the part of this latter cut off by o (Fig.3).

teristic cone and reversely by o

Then the following relations are fulfilled:;

b
v v? oy ay [
1 H 3
2 1 2 2
v et (¥ "4+ ") =0 w0,
1 4+qg? 2 L] 1

where v, are the direction cosines of the normal of the surfaces in ques~

tion,
Next we use the identity
2 2 2
0-2-90 3, o 2 . A LS . Y S B
dx, 9 x, !91!2 dx , dx , dx ,  dx,
du du .

99 ( Ju du )y -2
c?x2 ax’ 6x2 dx

enclosed by o¢ and w; one obtains

Integrating over the domain 1’

du du 2 u 2 u
0=/2 ThdD = [ {(¢ N SR AN A AL __zau auv_
0 dx, w'+o iz, ox, axu t Ix ale
1
du Jdu 1 du 2 Jdu 2 a du 2 2 2
N JR-3L U -1 R B [P, | +( ) ) -
dx dx Vew=J v g dx A dx ) ]yl 0 x tv +ya
1 ] 4 1 1 L] t
_2_3_‘1___‘9_3..‘,‘, - 9gd8 _duw Jdo +f 1 ,[(_GL)?+
Ix 9z, 1 2 dx, 9x, 13 o v, 9 x
1
)
NN EANSS W PR, Pty g9y, 2,2y g du du v -
Xy 1 X, [ c?xl 2 ) axl‘axn. P
—2 98 98 L V4w -
¢9x1 ax8 12



Jdu dJ du u
el L PP G S LR P
x t 2
o 1 1 g ot Jx y 8
2 1 du 2
YR —— (=) iy 4e
, dx
© 1 1
1
du 2
+ f l[( y——-auw)+(c”l u~auv)2}dm.
, v x 1 dx, 2 0x ! S x 8
@ 1 2 t ] 1
1
We used the notation
2
._-‘.._2__ . 1 - B
1 +¢
Since 4 e Hz( 0) y all integrals exist in these formulae, The laast integral
vanishes because of the presence of the tangential derivatives of u on w’
in the integrand , Since & lies inside of the characteristic cone, vl> 0
holds on o and v <40 on g ’l . From this follows that
1 gu d 2
J —=—1¢ — v ——J—v)+(~—a—u——~—v —~ﬂ~v)2]dm =0
o Y, dx, ! dx, 2 dx t dx 8
3 1
thus both of the linear independent inner derivatives —a\“_ vy - Ou y and
X 1 x 2
—(;2—3-——1/' — g“ v are equal to zero on o . Therefo?‘e the funcfion u
xa b4 1 a
is a constant on ¢ and as it vanishes along the intersection of o and o
10
it is zero on the entire o , Hence t(P)=9 and the uniqueness is
proved,
By means of substitution ( 7y 0 is transformed into a cone Q A
determined by the surface
2
, 2 1 -2 ;
X! "'(14—& )—\_(‘\(2’4.)('2)=0‘7
A E 8
Obviously Q/\ lies inside of the characteristic cone if and only if

9



1+ a?

2+ q? (11)

walues in the interval (11),

oposed a method to construct some domains
> wave equations has a weak solution, the solva-
2formations of the domain, It is easy to see that
of T contains interval without eigenvalues,
efly this method applying to our case,

ations

ies the equation fu =0 and vanishes on the
x), A(x) be real sufficiently smooth func-

lowing identities may be proved/ 8/ :

du
Ak +Ae)dx =
9 x,
i dA dA
Y L L e B
dx, 1,k=1 ax, axk
1k
BzA 2 i
2 2 2
c,——~)u dx+[ N X Ay E ¢, vy, (12)
ax, ETo) ke =1

>sines of the surface 90?7, N, is a function
son 90, [As u/HKl=0, N (x) exista/.
u

(x) and A(x) so that the quadratic form

10



: " A a A 3 2 a 3 A d A
e (s 2 IRV VOSSR E_c Jy0u du

1 k=3 0 X, Oxj d x $, k=) ’5", * 6xk dx I xy

» strictly positively definite and the inequality

" a’a
by [ ———— > (O
i = 14
=1 3 axz = ( )
]

is fulfilled, Furthermore we determine the domain ! so that on an

n n

S A, f o v >0, (15)
k=1 1=1

As a consequence of {12-15) for such a domain u=0 holds. Moreover if
little alteration of 0 and A k(x) are made the positive definitness of (13) and
the inequaties (14), ( 15) keep true so consequentely the uniqueness remains valid,
As seen from (7) @ A S 0 when A= ——;— , sowhen A liess in a
sufficiently small neighbourhood of —12~ , ), differs litde from 0 and
the uniqueness holds, This means that there are no eigenvalues in a sufficiently

small neighbourhood of A = -—;— .

/8

we have explained, Teke A =~x,, A =x ,(k=2,..., n) . Consider

As an example let us nowdescribe a domain constructed in in the way

the four branches of hyperboles X, x, =h onthe x 0 x, plane ( Fig.a)

and close them with curves A Ax , AA 27 BB‘ wee These latters can be arbitrary,
the only restriction on them is the following, Place a hyperbola x (5, h

2
through an arbitrary point M of these curves, We then obtain two angles a

or B , both determined by the coordinate axe ( see E‘ig.4) and by the tangent
of the curve or by that of the hyperbola, respectively, a and B obey the
r=lation fB< ac< ——1’—7— . -

In this way one receives a bounded domain @ 1 on the x ) 0 x_ plane,

2

s where E _ means an

Consider now a cylinder Dl =0, x E .

n-2

n -~ 2 dimensional space built up of all coordinate axes with the exception of

ox, and ox, . Similarly, we construct 92 on the x, ox, plane with the cor-

responding cylinder !, , etc,Let Q be the intersection of all these cylin-

11



ders constructed,  is bounded, iis boundary consists of amooth surfaces

of finite number. The boundness of Q follows from the fact that x,

and x, are bounded in @ x

., x, and x, are bounded in{l, etc. Choosing
the constant h in the equations of the hyperboia sufficiently small in mo-
dulus and the points A, 13, C, D sufficiently near to 0 we receive A domeain
for which the quadratic formula (13) is strictly positive definite and inequalities
(14, 15) are valid, consequently the uniqueness holds. At the same time this

property remains unchanged in case of small deformations of the domain cho-~

sen., As a conseguence, for this domain the spectrum has no eigenvalues in

1

some neighbourhood of the noint A= ———

The author wishes to express his gratitude to A,S, Dynin for stimulating
discussions and valuable suggestions, and to E,Nagy for reading the marus-

cript and comments.
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