

E5-3247
V.V. Fedorov, A. Pázman

DESIGN OF EXPERIMENTS BASED ON THE MEASURE OF INFORMATION
1967.

V.V. Fedorov, A. Pázman

DESIGN OF EXPERIMENTS BASED ON THE MEASURE OF INFORMATION

In the case of a nonlinear dependence of measured quantities on the studied parameters (for example, in the phase shift analysis of scattering of elementary particles) a situation offen occurs when the likelihood function $/ 1 /$ has two or more peaks with nearly equal levels.

The position of these peaks is considered to define the sets of the possible estimates of the parameters. The height of the peaks defines, roughly speaking, the rellabllity of these estimates and the width of each peak corresponds to the error matrix (dispersion matrix) of the proper set of estimates.

If the aim of the experimenter is only to discriminate the sets of the estimates and he is not interested how the error of each parameter is decreased then plamning as has been described in refi/ is necessary. If the experimenter is going the maximal amount of information on some parameters he is to use a method which specifies and discriminates the estimates at the same time.

The earlier methods of design and comparison of experiments which are based on the error matrix are not applicable in our case. Therefore, a more general measure of our knowledge than the error matrix should be used, namely the measure of amount of information which is based on the notion of entropy. The investigation of the general properties of this measure applied to the comparison of our experiments is given in ref. $/ 3 /$. In planning experiments this measure was used for the first time in reis. ${ }^{|4|}$ ard $/ 5 /$, but in the particular relatively simple case when the measured quantities are linearly dependent on the parameters studied. This paper is aimed at using the ideas which have been develop-
ped in ref. ${ }^{13 /}$ in planning experiments in the case of nonlinear parametrization and developing some computing methods.

Let us denote $n(\vec{\theta}, x)$ the measured quantity,
the parameters and let $\vec{\theta}=\left(\begin{array}{c}\theta_{1} \\ \vdots \\ \dot{\theta}_{\mathrm{m}}\end{array}\right)$

$$
\vec{y}=\left(\begin{array}{c}
y_{1} \tag{1b}\\
\vdots \\
y_{n}
\end{array}\right)_{\text {riments }}
$$

be the results of experiments. Then

$$
\begin{equation*}
I(\vec{y})=\int_{\Omega} p(\vec{\theta} / \vec{y}) \ln p(\vec{\theta} / \vec{y}) d \vec{\theta} \tag{2}
\end{equation*}
$$

is the entropy amount of information which is contained in the experiments with results \vec{y}. Heref $(\vec{\theta} / \vec{y})$ is the normalized likelihood function,

$$
\begin{equation*}
\int_{\Omega} p(\vec{\theta} / \vec{y}) d \vec{\theta}=1 \tag{3}
\end{equation*}
$$

and Ω is the region of the possible values of $\vec{\theta}$
If the planned experiment consists in the measurements of η at some point x during the time t, then the amount of information is increased by
$\Delta I(x, t, y)=\int_{\Omega} p(\vec{\theta} / y) \ln p(\vec{\theta} / y) d \vec{\theta}-\int_{\Omega} p(\vec{\theta}) \ln p(\vec{\theta}) d \vec{\theta}$
where $\rho(\vec{\theta})$ is the value of the normalized likelihood function at $t=0$, y is the result of the measurement at the point x. The plaming consists in finding such a point at which the increase of the amount of information will be maximal. The function $\Delta I(x, t, y)$ depends on the value of y which is unknown before the experiment. We shall consider, therefore, as optimal the point x_{0} at which the expected value of the mean Increase of the amount of information is maximal, i.e.

$$
\begin{equation*}
\Delta \mathrm{J}\left(\mathrm{t}, \mathrm{x}_{0}\right)=\max _{\mathrm{x}} \Delta \mathrm{~J}(\mathrm{t}, \mathrm{x}) . \tag{5}
\end{equation*}
$$

Here

$$
\begin{align*}
& \Delta J(t, x)= \int_{Y} p(y) \int_{\Omega} p(\vec{\theta} / y) \ln p(\vec{\theta} / y) d \vec{\theta} d y-\int_{\Omega} p(\vec{\theta}) \ln p(\vec{\theta}) d \vec{\theta}= \\
&= \int_{Y} \int_{\Omega} p\left(y_{q} \vec{\theta}\right) \ln \frac{p(y, \vec{\theta})}{p(y) p(\vec{\theta})} d y d \vec{\theta} \tag{6}\\
& p(y)=\int_{\Omega} p(y / \vec{\theta}) p(\vec{\theta}) d \vec{\theta} \tag{7}\\
& p(\vec{\theta} / y)=\frac{p(y / \vec{\theta}) p(\vec{\theta})}{p(y)} \tag{8}\\
& p(y, \vec{\theta})=\rho(y / \vec{\theta}) p(\vec{\theta})=p(\vec{\theta} / y) p(y) \tag{9}
\end{align*}
$$

(see for example ref ${ }^{/ 6 /}$).
$p(y / \vec{\theta})$ is the conditional probablity density of y : assumed to be known a priori.

In the case of scattering experiments for a "sufficiently rich statistics":

$$
\begin{equation*}
p(y / \vec{\theta})=\frac{1}{\sqrt{2 \pi(\lambda(x) t)^{-1}}} e^{-\frac{1}{2}(y-\eta(\vec{\theta}, x))^{2} \lambda(x) t} \tag{10}
\end{equation*}
$$

where $\lambda(x)$ is the efficiency of the measurement of $\eta(\vec{\theta}, x)$.
Further we shall assume that (10) is true. If the experimenter is interested in the maximal amount of information on k required parameters, the increase of information on these "useful" parameters is given ac

$$
\begin{equation*}
\Delta J(t, x, \vec{\omega})=\int_{\gamma} \int_{\Omega} p(y, \vec{\theta}) \ln \frac{p\left(y_{,} \vec{\omega}\right)}{p(y) p(\vec{\omega})} d y d \vec{\theta} \tag{1:1}
\end{equation*}
$$

where
and

$$
p(y, \vec{\omega})=f p(y, \vec{\theta}) d \vec{\phi}
$$

In a general case for arbitrary functions $p(\vec{\theta})$ and $\eta(x, \vec{\theta})$ the direct computing of the mean increase of information $\Delta \mathrm{J}(\mathrm{t}, \mathrm{x}, \vec{\omega})$ is a aumbersome computing problem because one has to compute multidimensional integrals for each value of x. In this paper some approximate results are obtained.

Let us assume that the time required for the additional experiment is short, i.e.

$$
\begin{equation*}
\Delta \mathrm{J}(t, x, \vec{\omega})=\left.\frac{\partial \mathrm{J}(t, x, \vec{\omega})}{\partial t}\right|_{t=0} ^{t} \tag{14}
\end{equation*}
$$

In this case, as follows from (5), the optimal point corresponds to

$$
\begin{equation*}
\left.\max _{x} \frac{\partial \mathrm{~J}(\mathrm{t}, \mathrm{x}, \vec{\omega})}{\partial \mathrm{t}}\right|_{t=0} \tag{15}
\end{equation*}
$$

In Appendix I the following equality is proved

$$
\left.\left.\frac{\partial J(t, x, \vec{\omega})}{\partial t}\right|_{t=0}=\frac{\lambda(x)}{2} \int \frac{\left[\int \eta(\vec{\theta}, x) p(\vec{\theta}) d \vec{\phi}\right]^{2}}{p(\vec{\omega})} . d \vec{\omega}-\left[\int \eta(\vec{\theta}, x) p(\vec{\theta}) d \vec{\theta}\right]^{\eta}\right\}(16)
$$

In many cases of practical interest we can approximate the likellihood function by a superposition of the normal probablity densities:

$$
\begin{equation*}
p(\vec{\theta})=\sum_{i=1}^{N} W_{1} p_{1}(\vec{\theta}) \tag{17}
\end{equation*}
$$

Here

$$
\begin{equation*}
P_{1}(\vec{\theta})=\frac{1}{(2 \pi)^{\frac{m}{2}}\left|D_{1}\right|^{1 / 2}} e^{-\frac{1}{2}\left(\vec{\theta}-\vec{\theta}_{1}\right)^{\prime} D_{1}\left(\vec{\theta}-\vec{\theta}_{2}\right)} \tag{18}
\end{equation*}
$$

$\hat{\vec{\theta}}_{1}$ is the 1-th set of estimates,
D_{1} is the corresponding error matrix
and

$$
w_{1}=p\left(\hat{\vec{\theta}}_{1}\right)\left|D_{1}\right|^{1 / 2}
$$

The approximation of $\rho(\vec{\theta})$ glven in (17) corresponds to the quasi-linearity of $\eta(\vec{\theta}, x)$ in the neighbourhood of each estimate $\vec{\theta}_{1}$:

$$
\begin{equation*}
\eta\left(\vec{\theta}_{\theta}, x\right)=\eta\left(\overrightarrow{\vec{\theta}}_{1}, x\right)+\vec{f}_{1}^{3}(x)\left(\vec{\theta}-\overrightarrow{\vec{\theta}}_{1}\right) \tag{20}
\end{equation*}
$$

where

$$
f_{1, a}=\left.\frac{\partial \eta(\vec{\theta}, x)}{\partial \theta_{a}}\right|_{\vec{\theta}=\vec{\theta}_{1}}
$$

We shall compute the rate of the increase of the amount of information under the assumptions from (17) to (20) for the two most important cases:
$k=m \quad$ and $k=1$
\qquad
Substituting (17) and (20) into (16) we obtain

$$
\begin{equation*}
\left.\frac{\partial J}{\partial t}\right|_{t=0}=\frac{\lambda(x)}{2}\left[\sum_{i=1}^{N} W_{i} \sigma_{i}^{2}(x)+\sum_{i=1}^{N} W_{i}\left(\eta_{i}(x)-\sum_{k=1}^{N} W_{k} \eta_{k}(x)\right)^{2}\right] \tag{21}
\end{equation*}
$$

where $\eta_{1}(x)=\eta\left(\overrightarrow{\vec{\theta}}_{1}, x\right) \quad$ and $\sigma_{1}^{2}(x)=\vec{f}_{1}^{\prime}(x) D_{1} \vec{f}_{1}(x) \quad$ is the squared corridor of errors of the curve $\eta_{1}(x)$.

If only one set of estimates exists (i.e. $p(\vec{\theta})=p_{1}(\vec{\theta})$) then (21) coincides with (7) from ${ }^{/ 5 /}$. If the corridors of errors are narrow compared to the distances between the curves $\eta_{1}(x), \ldots, \eta_{N}(x)$, the measurement must be made at the point x which gives the maximal dispersion of these curves.

B. $k=1$

If one parameter is specified $\left(\vec{\omega}=\theta_{1}\right)$ then we obtain from (16), (17) and (20) (see Appendix 2)

$$
\begin{align*}
& \left.\left.\frac{\partial J\left(t, x, \theta_{j}\right)}{\partial t}\right|_{i=0}=\frac{\lambda(x)}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} W_{i} W_{j} \right\rvert\, \eta_{i}(x) \eta_{j}(x) a_{i j}+ \\
& \left.\quad+2 \eta_{i}(x) g_{j}(x) b_{i j}+g_{i}(x) g_{j}(x) c_{i j}\right\} \tag{22}
\end{align*}
$$

where

$$
g_{1}(x)=f_{1,1}(x)+\sum_{\alpha=2}^{m} \frac{D_{1,1 a}}{D_{1,11}} f_{1, \alpha}(x)
$$

and $a_{1}, b_{1,}, c_{1,}$ are constants (see Appendix 2: (A.23)-(A.25)).

APPENDIX I

Teorem
If $\vec{\theta}=\binom{\vec{\omega}}{\vec{\phi}}$ and if

$$
\begin{equation*}
p(y \mid \vec{\theta})=\sqrt{\frac{\lambda(x) t}{2 \pi}} e^{-\lambda(x) t \frac{\Gamma y-r(\vec{\theta}, x)]^{2}}{2}} \tag{A,1}
\end{equation*}
$$

then

$$
\left.\frac{\partial J(t, x, \vec{\omega})}{\partial t}\right|_{t=0}=\frac{\lambda(x)}{2}\left\{\int \rho(\vec{\omega})\left[E_{\vec{\phi} / \vec{\omega}} \eta(\vec{\theta}, x)\right]^{2} d \vec{\omega}-\left[E_{\vec{\theta}} \eta(\vec{\theta}, x)\right]^{2}\right\} \quad \text { (A,2) }
$$ and

$$
\begin{align*}
\left.\frac{\partial^{2} \mathrm{~J}(t, x, \vec{\omega})}{\partial t^{2}}\right) & =\frac{\lambda^{2}(x)}{4}\left\{\int p(\vec{\omega})\left[\mathrm{E}_{\vec{\phi} / \vec{\omega}}\left(\eta(\vec{\theta}, x)-\mathrm{E}_{\boldsymbol{\phi} / \vec{\omega}} \eta(\vec{\theta}, x)\right)^{2}\right]^{2} \mathrm{~d} \vec{\omega}-\right. \\
& \left.-\left[\mathrm{E}_{\vec{\theta}}\left(\eta(\vec{\theta}, x)-\mathrm{E}_{\vec{\theta}} \eta(\vec{\theta}, x)\right)^{2}\right]^{2}\right\} \tag{A.3}
\end{align*}
$$

where

$$
\mathrm{E}_{\vec{\theta}} \eta(\vec{\theta}, x)=\int p(\vec{\theta}) \eta(\vec{\theta}, x) \mathrm{d} \vec{\theta}
$$

and

$$
\mathrm{E}_{\vec{\phi} / \omega} \eta(\vec{\theta}, x)=\int p(\vec{\phi} / \vec{\omega}) \eta(\vec{\theta}, \mathrm{x}) \mathrm{d} \vec{\phi}
$$

Proof

By definition:

$$
\begin{equation*}
\left.\frac{\partial J(t, x, \vec{\omega})}{\partial t}\right|_{t=0}=\lim _{t \rightarrow 0} \frac{\Delta J(t, x, \vec{\omega})}{t} \tag{A.5}
\end{equation*}
$$

From(11) and (A.1) we obtain
$\Delta \mathrm{J}(\mathrm{t}, \mathrm{x}, \vec{\omega})=\int \rho(\vec{\theta}) \rho\{y / \vec{\theta}) \ln \frac{\int \rho(\vec{\theta}) \mathrm{e}^{\frac{1}{2} \eta(\vec{\theta}, x)[2 y-\eta(\vec{\theta}, \mathrm{x})]}}{\mathrm{p}(\vec{\omega}) \int \rho(\vec{\theta}) \mathrm{e}^{\frac{1}{2} \eta(\vec{\theta}, x)[2 y-\eta(\vec{\theta}, x)]} \mathrm{d} \vec{\phi}} \mathrm{d} \vec{\theta} \mathrm{d} y$

Let us denote

$$
\begin{aligned}
& \int p(\vec{\theta}) e^{\frac{t}{2} n\left(\vec{\theta}_{1} x\right)\left[2 y-\eta\left(\vec{\theta}_{1} x\right)\right]} d \vec{\phi}=u(t) \\
& \int p(\vec{\theta}) e^{\frac{t}{2} \eta\left(\vec{\theta}_{1} x\right)\left[2 y-n\left(\vec{\theta}_{1} x\right)\right]} d \vec{\theta}=v(t)
\end{aligned}
$$

and

$$
\ln \frac{u(t)}{\rho(\vec{\omega}) v(t)}=h(t, y, \vec{\omega})
$$

The Taylor expansion gives

$$
\begin{aligned}
h(t, y, \vec{\omega}) & =h(0, y, \vec{\omega})+t \dot{h}(0, y, \vec{\omega})+ \\
& +\frac{t^{2}}{2} \cdot h(0, y, \vec{\omega})+\frac{t^{3}}{6} h(r, y, \vec{\omega})
\end{aligned}
$$

where

$$
0 \leq r \leq t
$$

It will be readlly seen that

$$
\begin{aligned}
h(0, y, \vec{\omega}) & =0, \dot{h}(0, y, \vec{\omega})=\frac{\dot{u}(0)}{u(0)}-\frac{\dot{\dot{v}}(0)}{v(0)} \\
\ddot{h}(0, y, \vec{\omega}) & =\frac{\ddot{u}(0)}{u(0)}-\left[\frac{\dot{u}(0)}{u(0)}\right]^{2}-\frac{\ddot{v}(0)}{v(0)}+\left[\frac{\dot{v}(0)}{v(0)}\right]^{2} \\
\ddot{h}(r, y, \vec{\omega}) & =\frac{\ddot{u}(r)}{u(r)}-3 \frac{\ddot{u}(r)}{u(r)} \frac{\dot{u}(r)}{u(r)}+2\left[\frac{\dot{u}(r)}{u(r)}\right]^{3}- \\
& -\frac{\cdots(r)}{v(r)}+3 \frac{\ddot{v}(r)}{v(r)} \frac{\dot{v}(r)}{v(r)}-2\left[\frac{\dot{v}(r)}{v(r)}\right]^{s}
\end{aligned}
$$

From (A.10), (A.11), and (A.13) we obtain
$\dot{h}(0, y, \vec{\omega})=\frac{\eta(\vec{\theta}, x) \int p(\vec{\theta}) \eta(\vec{\theta}, x) d \vec{\phi}-\frac{1}{2} \int \rho(\vec{\theta}) \eta^{2}(\vec{\theta}, x) \mathrm{d} \vec{\phi}}{\rho(\vec{\omega})}$

$$
-\eta(\vec{\theta}, \mathrm{x}) \int p(\vec{\theta}) \eta(\vec{\theta}, \mathrm{x}) \mathrm{d} \vec{\theta}+\frac{1}{2} \int \mathrm{p}(\vec{\theta}) \eta(\vec{\theta}, \mathrm{x}) \mathrm{d} \vec{\theta}
$$

$$
\begin{gather*}
\bar{h}(0, y, \vec{\omega})=y^{2} \left\lvert\, \frac{\int p(\vec{\theta}) \eta^{2}(\vec{\theta}, x) d \vec{\phi}-\left[\int p(\vec{\theta}) \eta(\vec{\theta}, x) \mathrm{d} \vec{\phi}\right]^{2}}{\rho(\vec{\omega})}-\int \rho(\vec{\theta}) \eta^{2}(\vec{\theta}, x) \mathrm{d} \vec{\theta}+\right. \\
\left.+\left[\int p(\vec{\theta}) \eta(\vec{\theta}, x) \mathrm{d} \vec{\theta}\right]^{2}\right\}+\quad \text { (A. } 18 \tag{A.18}
\end{gather*}
$$

terms linear with respect to y.
Substituting (A.17), (A.18) and (A.1) into (A.14) we obtain after simple computation

$$
\left.\frac{\partial J(t, x, \vec{\omega})}{\partial t}\right|_{t=0}=\frac{\lambda(x)}{2}\left\{\int \frac{\left[\int p(\vec{\theta}) \eta(\vec{\theta}, x) d \vec{\phi}\right]^{2}}{p(\vec{\omega})} d \vec{\omega}-\left[\int p\left(\vec{\theta} \vec{\eta}_{\eta}(\vec{\theta}, \mathrm{x}) \mathrm{d} \vec{\theta}\right]^{2}\right\}\right.
$$

what is equal to (A.2)
The second derivation of the information (A.3) can be computed analogously. The value of $\frac{\partial^{2} \mathrm{~J}}{\partial \mathrm{t}^{2}}$ can be used for the estimation of the
accuracy of the relation (14).

APPENDIX 2

We shall compute $\frac{\partial J}{\partial t}$ for $k=1$. We obtain from (17) and (20)

$$
\mathrm{E}_{\theta_{2^{\prime}}, \ldots, \theta_{\mathrm{m}} / \theta_{1}}^{\eta(\vec{\theta}, \mathrm{x})=}
$$

$\left.=\sum_{i=1}^{N} W_{1} \int\left[\eta_{1}(x)+\vec{f}_{1}^{\prime}(x)\left(\vec{\theta}-\hat{\theta}_{i}\right)\right] p_{1}\left(\theta_{2}, \ldots, \theta_{m} / \theta_{i}\right)\right] d \theta_{2} . d \theta \theta_{m=1}^{\sum_{k=1}^{N} W_{k} p_{k}\left(\theta_{i}\right)}$

Here

$$
p_{1}\left(\theta_{1}\right)=\frac{1}{\sqrt{2 \pi D_{1,11}}} e^{-\frac{1}{2} \frac{\left(\theta_{1}-\hat{\theta}_{1,1}\right)^{2}}{D_{1,11}}}
$$

and $p_{1}\left(\theta_{2}, \ldots, \theta_{m} / \theta_{1}\right)$ is a conditional normal probability density. Computing the integral in (A.20) we obtain (about the mean value of a conditional normal distribution see ref. $/ 8 /$ p. 45):

$$
\begin{aligned}
& \mathrm{E}_{\theta_{2}, \ldots, \theta_{\mathrm{m}} / \theta_{1} \eta\left(\vec{\theta}_{1}, x\right)=}^{N} \sum_{1=1}^{N} W_{1}\left\{\eta_{1}(x)+\left(\theta_{1}-\hat{\theta}_{1,1}\right)\left[f_{1,1}(x)+\right.\right. \\
& \left.\left.\quad+\sum_{a=2}^{m} \frac{D_{1,1 a}}{D_{1,11}} f_{1, a}(x)\right]\right\} \frac{p_{1}\left(\theta_{1}\right)}{\sum_{k=1}^{N} W_{k} p_{k}\left(\theta_{1}\right)}
\end{aligned}
$$

Similarly, we obtain

$$
\begin{equation*}
\mathrm{E}_{\vec{\theta}} \eta(\vec{\theta}, x)=\sum_{1=1}^{N} W_{1} \eta_{1}(x) \tag{A,22}
\end{equation*}
$$

Substituting (A.21) and (A.22) into (A.2) we obtain (22). The constants $a_{i j}, b_{i j}, c_{i j}$ are equal to the following integrals

$$
\begin{align*}
& a_{i j}=\int \frac{p_{1}\left(\theta_{1}\right) p_{j}\left(\theta_{1}\right)}{\sum_{k=1}^{N} W_{k} p_{k}\left(\theta_{1}\right)} d \theta_{1}-1 \tag{A.23}\\
& b_{1 j}=\int\left(\theta_{1}-\hat{\theta}_{1,1}\right) \frac{p_{1}\left(\theta_{1}\right) p_{j}\left(\theta_{1}\right)}{\sum_{k=1}^{N} W_{k} p_{k}\left(\theta_{1}\right)} d \theta_{1} \tag{A,24}\\
& c_{1 j}=\int\left(\theta_{1}-\hat{\theta}_{1,1}\right)\left(\theta_{1}-\hat{\theta}_{1,1}\right)-\frac{p_{1}\left(\theta_{1}\right) p_{1}\left(\theta_{1}\right)}{\sum_{k=1}^{N} W_{k} p_{k}\left(\theta_{1}\right)} d \theta_{1} \tag{A.25}
\end{align*}
$$

References

1. Н.П. Клепиков, С.Н. Соколов. Аналиэ и планирование экспериментов методом максимума правдоподобия. "Наука", М-1964.
2. V.V.Fedorov, A.Pázman. Preprint E1-3066. Dubna, 1966.
3. D.Lindley. Ann.Math.Stat. 27, 986 (1956).
4. M.Stone. Ann.Math Stat. 30, 55 (1959).
5. С.Н. Соколов. Теория вероятностей п өе примененве. $\underline{8} 85$ (1883), 8,318
6. H.Cramér. Mathematical Methods of Statistics. Princeton, 1946.
7. Г.М.Фихтенголыц, Курс дифференцвальвого п пвтегральвого вычисления. Фиэматтнз 1959, т. II.
8. Т. Андерсон. Введение в многомерный статнстическпи .анадиз. Физматтиз $M-1963$ стр. 46.

Recelved by Publishing Department on March 30, 1967.

