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In their papej 
1

/ Box and Hunter proved a furmula (formula ( 7) in this 

paper) which has been used for the design of experiments/ 1•2 / in the case 

of measuring in only one experimental point. The puprose of this is to inve­

stigate a more general case when: 

" .. 
a) An estimate () of 0 and the corresponding dispersion matrix D 

are known before the planning; 

b) The planned experiment consists of stochastically independent measure-

ments taken in several exp"!"imental points. 

A design which is based on the results of some previous experiments 

(assumption a)) differs from designs proposed for instance in/ 3- S/ • 

The case of correlated experimental data is mentioned in theorem 2 . 

It is reasonable to call the proposed design a sequential design of experi­

ments, because in the scheme: 

••• - experiment- analysis- design- experiment-

the results of the previous experiments influence the design of a new experiment 

by means of the dispersion rr~trix D • 

The usefulness of a sequential can be demonstrated by the NN- scattering 

experiments, where the purpose of many expensive experiments is only to obtain 

more prec ise results than the old one •. 

The problem of the optimal distribution of the measuring time ( or the price 

of the experiment) between the measurements in different exper !mental points will 

be investigated in detail. It will be proved, that the solution of such a problein 

is unique ( the oren 3). A solution in an analytical form will be given in the case 

of long measurement times. 

Some generalization of the continuous planning of experiments/ B/ will be 

given. 
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The investigated desig n of experiments fits the fo llowing structure: is a 

fixed integer, r(x
1
) , ..• , f(xn) are linearly inderpendent m x 1 vectors (m :::_ n) , Let 

t denote the time of the measurement in the experimental point x 0= ~) 
I I 

The result of the measurement in the point x
1 

is y
1 

; let us assume:E(y
1
)=f(x

1
)0 

D(y
1
) = 1/ >.

1 
t

1 
Here >. 1 is a known positive constant - the efficiency of the 

measurement in x 1 and the prime denotes the transp<;sition of a vector, The 

experimenter does not know the value of the vector 9 ·119
1
,. ·., 9 II but he knows 

~ m 

an unbiassed estimate 9 and the corresponding m x m nonsingular dispe~ 
~ ~ 

sion matrix o < D1 1 
= E t c 9

1 
- 9 1 )( 9 

1 
- e 

1 
ll l . 

A desidn of a n experiment specifies the experimental p o ints x 
1

, ..• , x. 

(that is f (x
1

) a nd >.
1

) and the measurement times t 
1

, • •• , tn , The used c r>­

terion for optimality is the variance of the best liner estimate of some variable: 

y 0 ~ f-cx
0
)0. ( 1) 

The optimal d esig n must satisfy the conditions ! 1" 
1

p
1
2 t

1
= T and O< a < t < f3 -= - 1- 1- 1 

(i = I , n) where at 

p2 
I 

and f3 1 
a re given numbers, T is the price of the whole 

experiments and is the p rice of the i - th measurement in a time unit. 

N o t e If E ( y
1 

) ~ n 
1 

( 9 ) is a nonlinear function, we must use the fo llowing 

approximation: 

where 

E(y )=f(x) iJ + r 
I I I 

f 
1 

(x 1 )= 
a,.,

1 
( ol 

a ef 
I >t ~I 

tJ=9 
r 1 ='7

1 
(fh 

The following notation will be used throughout the p a per: D (t) 

(2) 

( 3) 

is the 

rr x m dispersion matrix of the best linear estimate of 0 ( i,e, the erro r matrix, o r the 

matrix inverse to the information matrix/
8
/), where ;'= Ji t

1
, .• ,t. ll, V(t) is the 

( n+ 1 ) x ( n + I ) covariance matrix o f the best linear estimates of Y 
0 

, Y 
1 

, • •• , y n : 

V
11 

(t) =f'-cx
1
)D (;)f(x

1
) l,j=~ 

a is the (n+l) x {n+1) covariance matrix of y
0

, ... ,y.: 

a = 0 
If 

if i= 0 

=---1- s 
A t If 

I I 

or j ~ 0 

if i, j = 1, ... , n 

(8
11

=1 if i=i;S 1f=0 if i,li • 

4 
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We s hall use the abbreviations: 

.. .. 
0(0)=0 , V(O)~V 

( 6a) 

for the values before the experiment. and 

O(t 1,0, ... ,0) ~ 0(t 1 ). V(t 
1
,0, .. . ,0) = V(t

1
) ( 6b) 

f o r the values after the first meaurement, 

The following result is due to Box and Hunte) 1 / : 

'I' h e o r e m 1, If the measurement is taken in only one experiment po­

int then: 

O(t 
1
) = D 

.. .. 1 .. 
1 + .\ I t I [ f' ( X I) [' f (X I) - (X I )f'( X ) D I 

1 +A t 1-c X ) D f( X ) 
I I I I 

( 7) 

Corollary, From ( 4), ( 5 ) a nd ( 7 ) we get: 

V (V +o \ - ( V +o )(V +o) 
IJ II I { I I II I J II ( 8) 

V +o 
II II 

L e m m ~ 1, 

Let u s denote k 1 ( 0< k 1 < n , i = G ) 
to 1. Then: 

r differe nt inte g e r s one of which is equal 

+o IJ I = (V +O > I V (t)+ c:r I 
t , Jz-t 1, . .• ,kr 11 11 if 1 iJ 1, J = It

1
, • • • , kr 

( 9) 

I , J.f I 

P r o o f, Let u s deno te: A 11 = V 11 + o 11 • We o btain fro m ( 8 ) 

IV (t)+o I = - 1- I A />:-A A I 
IJ I IJ I , J=k1 , .. , k

1 
Ak -1 II tj II IJ t , J =k

1
, ... , k

1 
• 

l , J,t I II l , Jf I 

( 10) 

The determinant on the r ight s ide o f ( 10) i s e qual t o a s um o f determinants, 

the first of which i s equal to I A 11 A 11 I t, 1 = k .. . . , k , 1,
1 

,t 
1 

and the o thers are 
I ' 

o btained by subs tituting the c olumn-vector II - A A . II _ ' fo r the 
11 If i - k , . . , , k 

e - th column of the first determinant, We o btain: If II ' 

5 



I I AIIA ik , . .. ,AIIAik ,AliA tt'AIIAik , .. ,AIIAik ll=k ... )-
£- k I , .. , tr I t - I t+ I r 1 f 11 r 

t .,It 

t-t I A I 
=__!_ I (-1) A,t II I ,J~ t,, . .. ,k. 

A11 t..t 1 ,.,t, 1.,11, ; ./t 

~-1-IA 
A II ll,j a k , , , • , k ( 11) 

II I r 

Q.E.D. 

T h e o r e m 2, Let the variables Y 
1 

, •• ·, y n be correlated and let 

be o 
11 

- E { [ y 
1

- f' ( x1 ) B ][ y 1 - f- ( x 1 ) Oll ( !, j .1,";; ) 
estimate of y 

0 
• f' ( x 

0
) 0 can be written as: 

Then the variance of the 

... I v,, + 0 IJ I ~J-0 
V ( t) • n 

( 12) 

oo IVIJ+o 11 I,,J=I 

P r o o f . The assumption that D is definite positive is sufficient for 

the fraction in ( 12) to exist. 

Consider first the case of uncorelated Y 
1 

, • . • , Y n , For n •1 formula ( 12) 

i s identical with ( 8), If ( 12) is correct for n = k it is also correct for n- k + 1 . 

We can demonstrate this, it we include the first measurement (with the measu­

rement time t 
1 

) to the "old" experiments , W e obtain: 

k+l 
V {t , ... ,t )• IV ,,(tl)+o,,I,,J=O,t,J,/1 

00 2 k+l k+l 

I v <t l+ o I 
IJ I lj J,J = 2 

and from this and ( 9) follows ( 12), 

We can go over to the case of correlated measurements using an orthogo­

nal transformation, We shall use for this the following notations: 

1. "'( O)- II 0 IJ II 
( 0) 

2, C is an orthogonal matrix which satisfies the following e qua.Jjty: 

( o l' I o l ( o l I o l 
C o C - H ( 13) 

where 
H IOl is a diagonal matrix. 
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3, C is a (a+l)x (a+ 1) matrix: 

C oo•·1, COl- C IO- 0 for i =!,a 
( 0) 

C 1J ~C 1J for I,J•1,n. 

4, F is the following m x (a + 1 ) matrix: 

and 

F(
01

=11F II" 
IJ I.J = I 

5, We obtain the vectors g ( x 
0

) , • • ·, g ( x n ) from 

of the transfonnation 

G= F C 

where 

G = II K (X 0) • .. • • i (X n) II • 

by means 

( 14) 

It follows from ( 14) and the linear independence of f(x ), ... , f(x ) 
I n 

that g(x 1), ... ,g (xn) are linearly independent too, and that g(x
0
)=f(x

0
). 

The described transformation does not influence the dispersion matrix D(t). 

Tnis ca.n be demostrated by substituting ( 13) and ( 14) into a known equation 

( the sum of the information matrices/ B/ ) : 

( 15) 

Using (15), the e quality g(x
0

)=f(x
0

) and the correc tness of ( 12) for the 

uncorrelated case, we obtain: 

where 

and 

V9= G'HG, (0)9 9 n v =II v lj ll,,J =I 

Hot =H,o =0 

( 0) 

H IJ = H lj 

for I= 0, n 

for i,j=l,n 

Using the orthogonality of C we obtain 

9 I 
IV +HI=IG'DG+HI=IC'[F'DF+CHC'lCI=IV +al 

7 
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and 
I v(O)O + H( 011 e I v(O)I+U(O)I 

( 18) 

Substituting ( 17) and ( 18) into ( 16) we obtain the stateme~t of the theorem, 

Corollary 1, In an ana.Jogical way as in the theorem 2, we can demon-

strate the following statement ; If Y 
0 

c f'(x
0
)B and u

0
-¢'(x

0
)Q 

then 

n 
~ ~ ~ ~ IV + I 

cov[y
0

,u
0
;tl =f' (x

0
)D(t)cf>(x

0
)= I! u" ll•o 

I v + u I" 
lj lj I , J•I 

~ ~ 

where we must substitute f'(x
1
)Dcp(x

0
) for v,o(l-0,";.) in ( 4). 

Corollary 2, It is useful to write the time dependence of V00 (i) in 

an explicit form in tr~ case of uncorrelated y 
1 

, ••. , y" • Taking into acount, that 

u ,, = 8 ,, I A 
1 

t 
1 

( i = 1, n ) we can expand the numerator and demominator of 

( 12) in terms 1; A 1 t 1 , W e obtain: 

v 00 + ~ }: 

r• I k 1 •...• i: ,~ 1 

IV I A t ... A t 
1J l,J•O,k 

1
, ... ,t, t 1 t

1 
tr t, 

~ 

v 00 (t) = 
kl < . .. <k, 

n n 

1 + ~ ~ 
r~ 1 kl ' . .. ,t,""' 1 

I v lj 1,,,. kl •. .•• k, 
A 

k I k I 
••. A t 

k k 
r r 

k 1<. · .< t.r 

It will be supposed in the sequal, that fr>e experimental data y 1 , ••• , yn 

are uncorrelated, 

( 19) 

The general design problem (including the chois e of the op~um points x 1 

is difficult, since the way of solving it will depend on the form of f (x 1 ) as a 

function of X I . For this reason we investigate in a general way o nly the 

method of fitting t 1 ' . . , ' t n assuming, that the X I are fixed (i.e. f(x ) ) and 
I 

II 1 are fixed) . The probl em of the optimal fitting of X I is mentioned at the end 

o f the paper, 

T h e o r e m 3, Let D be definite positive, f(x 1 ), ••• , f(xn) 

linearly independent, Y I , •• . , Y n urycorrelated, Let a 1 • f3 1 (i-l,"ii) be given 

p ositive numbers, 

Then: 

1. 

a nd a 1 • fl, 

avoo (t) 
at 

2 ~ 

-A
0

V 0 .(t) 

8 

( 21) 

/"" 

l 
.J 

r 



( 22) 

2, The matrix of the second derivatives 

II 
r, a= 1 

( 23) 

is semidefinitive positive for all and is definite positive in the point where 

is extremal under the condition . 
3, Excluding the trivial case: for all i: 1 < I < n (the measu-

rements give no information) a unique extremum (minimum) of the function 

Y00 (~) under the condition ~" p 2 t = T exists, 
ir.t 1 I 

4, ln the nontrivial case a unique minimum of V ( ;) 
00 

under the conditions: 

f3> t >a 
k - k - k 

{k = 1, n ) @Xists. 

P roof, 

1. From 
_, .. 

D {t) D {t )=I 

where is a unit matrix, we obtain: 

-1 .. 
ao {t l 

iit (24) 

_, .. 
iiD {t) 

at. 
measurements takes the form: 

The derivatives can be obtained from ( 15), which for uncorrelated 

-1 -1 n 
D {t) = D + I 

1 =I 

Substituting these derivatives into ( 24) we obtain: 

.. .. 
Multiplying this by f"{ x 

0 
) and f { x, ) we obtain: 

(25) 

Derivating ( 25) once more we get ( 22) . 
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2. We shall use the Lagrange method to calculate the extremal points of 

V (i) subject to the condition l~=t p:t, =T. Applying ( 22) we get the following 
oo ~ 

equations (with respect to t and fl. ) : 

2 ~ 

->. i v 0 l ( t ) + fl. p ~ = 0 

n 2 
l p•t•=T 

k=l 

i = 1, n 

Eliminating the c o nstant fl. from these equations , we o btain: 

2-+ p2 n 2 -+ 
v (t)= - 1

- !. >. v (t)t 
01 A,T k=t k Ok k 

i = 1,n (26) 

~ ~ 

Since D is definite positive and f ' (x
1
). ••• , f(x n ) are linearly indepen-

dent, it follows from (4), tha t II V (t) lln is definite positive. It follows from 
ra r , a= 1 

this and ( 22 ), that M is semidefinite positive. It follows from ( 26) that in the 
~ 

e xtre mal point V
01

(t).f0 for i = l,n in the nontrivial case, so tha t 

the quadratical form: 

~ c, M re C • 
r , e-==1 

can be equal to zero only if c , = 0 for a ll r . 

3 . If follows from the positive definiteness ( semidefiniteness) of M that 

the second derivative of V
00 

(;) taken in an arbitrary direction in the space o f 

the vectors ~ is positive ( nonnegative). For this reason V 
00 

(;) has a 

unique extremum under the condition I n 
1
p 

2 
t = T which is a minimum. 

1= 1 1 

4. Let us denote the solution of ( 26 ) 't, .... 'n und let 

r < a 
l l 

for i = 1, s 

T J > f3 J for j-= s+ 1, r 

a• ~ Tk.:S f3k for k = r+ 1, n 

Let fl. be an a r b itrary point of the space of the vecto rs t such that 

fl. I > ~I 
and r 

• Let us denote by 
~ 

v the point in which the line going thro u g h ; 

intersects the hyperplane t =a 
I I 

• From the part 2 o f the theorem 3 

we get: 
V o/~) ~ V oo (it) 

i.e. the extremal point of v 00 (t) is in the hyperpla ne t =a 
I I 

• Since the 

same concideration is valid fo r t 2 , ..• , t, the optima l point lies in the inte rsection 

of r hyperplanes: t 
1
= a 

1 
( i = 1, s) and tJ=f3J (j=s+1,r). 

fo r tl , ... , t, into ( 19 ), we repeat After substituting a 1 , ••• , a 
0
,{3 o+t ' .. , f3, 

the considerations of part 3 of the proof for 

minimize V 00 (a 1 , . .. , a
8

, f3 •+ 1 , • • • ,~ r, tr+l, . .. , tn ) 

and subject to the condition 

n- r experimental points, i.e. we 

with respect to t 
•· · ·• t r+ 1 n 

10 



l=r+ 1 
p

2 
t c T­

I I 

. 
I a l p : 

I• I 

and so on. Aiter a finite amount of such interactions we o btain: 

a) either all t 1 are equa l to a 1 ({3 1 l, 

b) or some 

unique solution. 

t 1 are obtained by the Lagrange method, which gives a 

The theorem is proved. 

The s olution for large measurement times • 

.:L::.....;e::_:.:.m:._.:m.:.:_.:::a:.___.:2::..• If U is a definite positive pxp matrix and 

{k) p 

u ~I I u IJ Ill,)= I (l<k<p) 

I.J-1 k 

then 

(k )-1 -1 
U cU 

IJ I J 

P r o o f. For s i k we can write: 

-I -I -I p -I un ukJ 
p -I un p -I -I I (U IJ )U = I u u ( I u u -U u ) -I h I) J. - --=t 

k J J. H ks J •I UH J~ I u J ~I 
J i k J o/k H 

p 
- I 

I uiJ u ~ 0 I a J =I J. 

c 0 r 0 1 1 a r :t:• If X: IIU 11 11:. 1 ~ 1 ( ':. p ) such numbers a,{3 

and that: 

(s < r ) I X I r 
l , J=l 

and 

I X I;,)= I 
I , J., a, q ( 9)-1 -1 

X •• = {3 u •• (s,g_sr, si g) I X I r 
! ,J= I 

! , J,Lq 

11 
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( 28) 

exist1 

(29a) 

( 29b ) 



where 

that : 

and 

Lemma 3. u II vlf II n is non- singular and 
l,J-0 

z~ 
n 

v-• .. -x-, ( r c 1, n ) 

a is a given number: a > then such numbers b, 

a < b < c 
r- r 

and that the following equalities arG valid: 

I 

k •• . . . ,k,_.=l 

•,< . .. <•r-1 

Vlf ll,fcO,k 1 , .. , kr-1 
n x 

I 

1-=t ..... ,lt:J'-1 

b, 

I 

n 

I 
k l, ., ., It: T :o:::) 

•,< ... <•, 
I vlf II n x t 

,J-O,k
1

, .. • , lt:r 1 1 

l•lt: • .. ,It: 
1 r 

n 
tl , .. , • tr-1 =I 

k < .. . <• 

I v If 
I, f=k1 '· · ·' •r-l l=k 

1 
• · · ·' k r-1 

X t 
I 

1 r-1 

= _!_ 
c, 

I 
k 

1
, ..• , k r =1 

k 1 < . . . . <t t 

IV I 
lJ t,J=t

1
, .. ,kr 

n x t 

l=t 
1

, • • • ,t r 
I 

( 30) 

and c, exist 

( 31) 

(32) 

P r o o i. Subs tituting V for U in the lemma 2 we obtain from ( 30) 

a nd ( 29a): 

I v If !l , f = O 
a 1 r-1 

Xt- = - I V I 
r r a n lf l , J=O · 

r- I 

Let us define : br =_!_ • Multiply ing ( 33 )n b y n x t , substituting 
a t= 1 1 1 

(for i=l,r ) a nd laking the s um " we obtain ( 31). 
lr. 1 • ... , kr = 1 

Formula ( 32 ) can b e obtaine d from { 29b) analog ous ly. 

The o r e m 4 . lf 

1 . IV 1 f l : . f=o"o 

2 . T > II' OX 

t < a < n 

-1 

p 8 v B8 

vx-:-1 v~~ 1 

where a is a g iven number: a > 1. 

12 
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(33) 

kl for 

(34) 



Then: 

1. In the n -dimensional r egion: 

the function V 
00 

(t) 

~ v-1 

fl ~1 t: t > ..!.. -"-"- ; (s~l,n)l 
a • - n As 

can be oproximated by the function: 
n ( V -1) 2 
! 1 _____Q_L_ 

<~1 At v -1 
n m 00 

--=! • e 
v 

00 
The accuracy of this approximation is estimate d by the relation 

.. 
2 . The fuctio n 'II 00 ( t) a ttains' its minimum in fl s ubject 

! n 2 T at the point 
.. , 

~ It II where: 1=1 pi! 1 = r r 1 , ••• , r 
n 

I v -
1 I 

~ v-1 = T o. 
/k ! l I I ..;r:: P • ..;~ Ok 

(35 ) 

(36) 

to the conditio n 

(37) 

3 . The relative error due to applica tion o f ( 37) can be estima ted by the 

ine qualities: 

0< 
v ( ;) - v ( t ) 

DO 00 opt 

v 00 (i-") 
< ( 38) 

a 2 
- 1 

where t i s the point where V
00

(i) attains 
opl 

its minimum in f1 a 

p r 0 0 f. Neglecting the te rm with factors o f the form n t I ( p_:: n - 2 ) 
~~k.nl ''''' kp 

in ( 19) a nd dividing the numerato r a nd denominator of ( 19) by n >. t we 
1 = 1 1 1 

obtain for large t 
1 

n 
v-1 1 + ! 

.... :=:!; ...... 1 k = l k k 
,\ k 1• (39) v (t):.v (t):-- 1 ' 

00 oo v-
( 0 l-1 __ 1_ 00 1 + l v 

ic = 1 
H 

,\ k t k 

The a c ct.;r<tcy o f this appr oximatio n is the better the greater a r e the t 
1 

so tha t it i s s ufficie nt to compute the estimate ( 3 6 ) for 

t ~ -..!... 
v~-~1 

I n ,\I 

Using ( 31) a nd ( 3 3 ) to compute all te rm s in the s um, w ith respect to 

d e nominate r a nd nume rato r o f ( 19) we obtain: 

1 3 

, in the 



where 

and 

Voo(;) = Voo(t) 1+ cu(b) 
I +"' (c ) 

cu(b)= • + ... + • 
(bn+l) bn-l (bn+ 1) bn_1 . .• b 1 

cu(c)= + . . . + - ----'-'----
(cn+l)cn-1 (cn+1)cn-I """ CI 

It follows from lemma 3 that: 

1<a<b<c 
I-

I -1, n • 

From ( 40) and ( 41) we get: 

O< V (t)-V (t) < V (t)cu(b)< 
- 0 0 00 - 00 -

"" < v (t)-1- r -L = v (t)--1 - -
- 00 a + 1 1 = I a l DO a 2 _ 1 

Taking the logarithm of ( 39) and using the known inequalities: 

12 
0 < X - In (I + 1 ) < -- 0 < I < 1 

- 2 
we obtain: 

-I _ v<o>-1 
- I v k k .. 

0 < In V + I k k -In V (t ) < 
DO k =I A< tk oo -

-1 n ( 0 )-1 

< .!...( i ~)2 _.!_ ( I v.. ) 2< _1_, 
2 k=l A< t k 2 k = I A, tk - 2 a 2 

From ( 3 5 ), ( 43) a nd lemma 2 w e o btain: 

.. I 

Woo< t) -;> 
--- < e • 
V oo {f) -

1 < 

and from ( 41) a nd ( 44): 

fo r all t C 0 

I woo<;> - v oo <;> I 

voo (t) 

I 

< max I e -;:> - 1 · __ 1 _ l = __ 1_ 
' a

2
-1 a 2 -1 

14 
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2 , Minimizing In W (t) by the Lag range method w e o b tain ( 3 7 ). It 
00 

fo llows from ( a:4) , that this solution lies in 11 

Let 

3, From ( 4 5 ) and the definition of t 
opt 

.. 
and r we obtain: 

V (; )< V (t') < W (t')+ - 1- V (t') < oo ~•• oo oo 
8

2 _ 1 oo 

From these inequalities follow ( 38). 

The theorem is proved, 

2 .. 
+ --- V oo (r). 

a2 -1 

E x a m p 1 e. Let us discuss a simple example given in/ 4 / .. 
'I Ull~e +x e + x 3 e 

1 1 1 2 1 3 

y
0 

• 8
1 

and 

a ) Let u s plane measurements in two experimental p o ints: Y. 
1

, x 
2 

, We 

obtain fro m ( 3 7 ) : 

_' _I_ O 22 + X 2 (X I+ X 2) O 38 

O 22 + X I ( X I + X 2 ) O 33 

b) M easuring in three points x 
1

, x 
2

, x 
3 

which a re computed as optima l 

( des ig n witho ut previvou s info rma tio n) we o b tain the fo llo wing ra tio s o f 

o ptima l measuring times for 

w hereas in I 4/ 
r : r : r s 0. 51 : 0. 48 : 0. 01 

I 2 3 

r 
1 

: r 
2 

: r 
3 
~ 0. 84 : 0. 12 : 0. 04. 

C o ntin u ous pla nnin g o f expe rime nts 

S u bstituting ( 37) into ( 35 ) w e g et a fo rmula which is a functio n o f x
1

, • • • , xn. 

Minimiz ing this func tio n witn r esp e ct to the 

e xperime n tal p o ints , 

x 1 w e can o b tain the o ptima l 

T h e optima l experimen tal p o ints c a n a lso b e obta ined in the case o f 

continuou s p la n ning/ S/ , A s s u ming, that a u t 1 a r e e q ua l ( a ll measur e m e n ts 
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are simultaneous), the optimal experimental points must maximize the absolute vulue 

o f the derivative: 

[ _ d_ In V ( t - t , .. .. t · • t l · 
d t 00 I n t - 0 

It loliows from ( 19) and ( 4), that 

d -+ 1 n -+ -+ 2 
1[-lnV (t)l !=- ~ ,l.(xk)[f'(xJDf(x

0
)l 

d t 00 t =o V k = 1 • 
00 

The measurements should be perfomed in the points I , ••• , X 
I n 

given by: 

max 
n 

I 
k =I 

~ ~ 2 
>.(xk)[ f '( xk)Df(x

0
)], ( 46) 

:rl, .•• , :1[ 

The formula ( 46) is a generalization of ( 7) in / 8 /, For n = 1 ( 46) coin-

cides with / 
8

/ if one parameter is specified, Some fo rmal differences can be 

eliminated by simplify ing the s tatement of theorem III in/ 8 / by means of the 

lemma 2 of this paper, 

The author thanks G.A. Ososkov for helpful suggestions concerning this 

'investigation. 
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