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INTRODUCTION 

We shall use the following notation: N is the natural numbers set, Pn or p(n) 
is the nth prime, Pn = Pn+ 1 - Pn - 1 is the number of composites in the interval 
(Pn,Pn+1), lP' is the prime numbers set, n(x) is the prime counting function, Li(x) 
is the logarithmic integral , i.e., 

X 

N={l,2,3, ... },lP'={p(n):nEN},n(x)= L l,Li(x)= /1~:r (1) 
p$x, pEIP 2 

The main objective of this paper is to show that the following pair of one-to-one 
mappings 

p(n) : N - JP>, p-1 (q) : lP' - N 

could be extended to a pair of diffeomorphisms over the real semi-axis (0,=). 

Definition 1. The pair of functions J(x) E c(I)(o, 00), g(x) E c(l)(l,=) is called 
prime number diffeomorphic if the following conditions hold: 

J(n) = Pn, nEN, (2) 

J(n+~) 
1 . 

= l (Pn + Pn+1), nEN, (3) 

J(g(x)) = X Vx E (l,oo), (4) 

g(J(x)) = X Vx E (0,oo), (5) 

n(x) = lg(x)J. (6) 

The diffeomorphisms J(x) and g(x) are called the prime curve and the prime 
counting curve, respectively. 

The function nR(x) of Riemann-Von Mangoldt ([l], p. 34, (2), (3)) which 
can be expressed in terms of the zeros of the Riemann zeta function is the 
closest, among all known function, to the prime counting curve. However, the 
function nR(x) is not invertible and cannot be used for the correspondence to 
the appropriate prime curve. It turns out that one can take the opposite way: 
construct an invertible interpolation of the prime series and then obtain from it a 
smooth counting curve. In this paper we describe such an invertible interpolant 
which is found among differentiable polynomial splines of minimal degree. 
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These diffeomorphisms allow us to use in a natural way Fourier analysis as 
well as iterative methods for the solution of nonlinear problems in the case when 
it is necessary to account for the specific character of the nonasymptotic behavior 
of the primes. As an example of the application of the above diffeomorphisms 
we consider in Sec. 2 an approximate method for the solution of Diophantine 
equations over JP'. 

We shall prove in Sec. 3 that the diff~renti;ble function p-1(x) has the same 
asymptotic behavior as n(x) for x - 00• This could be used for the analysis of the 
validity of the von Koch estimate in the form Jp-1 (x) - Li(x) I/ y'xln(x) ~ const, 
which is known to be equivalent to the Riemann hypothesis (RH) [1,2]. 

1. PRIME NUMBER DIFFEOMORPHISMS 
BASED ON A QUADRIC SPLINE 

Let us define the following functions: 

a;;-(x) = -2fJn-1(x-n)2+ (x-n) + Pn, x > 0, n = 2,3, ... , 

+ A 1 A 1 Pn + Pn+I 
( )

2 ( ) an(x) = 2pn x-n- 2 +(2Pn+l) x-n- 2 + 
2 

• 

Their derivatives are 

da-;;(x) =4Pn-i(n-x)+l, 
dx 

da;;(x) = 4fJn(x- n) + l. 
dx 

For any n = 2, 3, ... the functions are sewed together 

a;;-(n) = a;;(n) = Pn, 

da-;;(x) I = da;;(x) I = 1 
dx=n dx=n' 

_ ( 1) + ( 1) 1 an+I n+ 2 = an n+ 2 = 2(Pn + Pn+I), 

da-;;+1(x) I 
dx =n+½ 

da;;(x) I = 2fJn + I. 
dx =n+½ 

(7) 

(8) 

(9) 

(10) 

Equations (7), (8), (9) and (10) define the following continuously differentiable 
quadric spline: 

! 
x+l, 

p(x) = a-;;(x), 

a;;(x), 

3 
0<x~ 2, 

1 
n-- <x<n, 2 - -

1 
n~x~n+ 2, 

n=2,3, ... , 

n=2,3, .. . 

~

f>bE . · EYlf 3- 1~11cr ·-yr r 
.DE~ bl cc~:~ :'·; .!i~. 

cVi6flVIO I EK-: 
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1, 

with the first derivative 

I 
1, 

dp(x) = 4ftn-t(n-x)+1, 
dx 

4fan(x-n)+1, 

. 3 
O<x:5 2, 

1 
n - 2 :5 x :5 n, n = 2, 3, ... , 

1 
n:5x:5n+

2
, n=2,3, ... 

(12) 

Inverting the function a;; (x) in the interval n -½ :5 x :5 n and a; (x) in the interval 

n :5 x :5 n + ½ gives the following inverse functions and their derivatives: 

b;;(x) 

b;!"(x) 

db;;(x) 

dx 
db;;(x) 

dx 

= n+ l-(8ftn-t(Pn-x)+l)i 
4ftn-1 ' 

n+ (8ftn(X-pn)+1)i 1 
4pn ' 

(8ftn-1 (Pn -x) + 1 )-f , 

(8ftn(X- Pn) + 1)-f. 

The functions b;;(x), b;;(x) and their derivatives are sewed together in a similar 
way like Eqs. (7), (8), (9) and (10): 

b;;(Pn) = 
db;;(x) I _ -- -

dx X=Pn 

b- (Pn+Pn+l) = 
n+l 2 

db;;+l(x) I 
dx :x= Pn+~nt1 

b;!"(pn) =n, 

db;;(x) I = 1, 

dx X=Pn l 

b;;(Pn+;n+l) =n+2, 

db;;(x)I 1 
--;[;- x=Pn+~n+I = 2ftn+ 1 · 

(13) 

(14) 

(15) 

(16) 

Finally Eqs. (13), (14), (15) and (16) define the continuously differentiable inverse 
spline 

x-1, 

p-l(x) = n+ I-(8ftn-1(pn-x)+1)i 
4ftn-1 ' 

n+ (Sftn(X-Pn)+l)i 1 
4ftn ' 
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5 
l<x:5 2, 

Pn-t+Pn <x:5pn, n=2,3, ... , 
2 -

Pn+ Pn+l n = 2,3, ... < X < --;;:-- , 
Pn - - 2 (17) 

.. 

,, 

.-.. 

with the first derivative 

1
1, 

dp-1(x) 
~= (8ftn-t(Pn-x)+1)-f, 

(8ftn(X - Pn) + 1 )-½ , 

1 <x< ~ - 2' 
Pn-1 +Pn 

2 :5x:5pn, 

Pn :5 X :5 Pn + Pn+ I 
2 ' 

n=2,3, ... , (18) 

n=2,3, ... 

Lemma 1. The derivatives of p(x) and p-1 (x) satisfy the following inequalities: 

1 < dp(x) < oo 
- dx ' 

x>O, (19) 

0 < dp-l(x) < 1 
dx - ' 

x> 1. (20) 

Proof· The above inequalities follow directly from definitions (12) and (18). D 

In the rest of this section we shall prove the following 

Theorem 1. 

(i) The pair (p(x),p- 1(x)) is prime number diffeomorphic. 

(ii) The specific behavior of the prime and counting curves are traced by the 
invariants 

I=dp(x)I =dp-l(x)I 'n=2,3, ... , 
dx dx x=pn X=n 

(21) 

. (d2p(x)I ) . (d
2
p(x)I ) -1 =sign --2- sign -d 2 , n=3,4, ... , 

dx :x=n-0 X :x=n+O 
(22) 

. (d2p-l(x)I ) . (d
2
p-

1
(x)I ) . -1 = sign dx2 sign dx2 , n = 3,4, ... (23) 

X=pn-0 x=pn+O 

Proof: 

(i) According to definitions (11), (12), (17) and (18) we have the inclusions 
, p(x) E c(l>(O,oo) and p-1(x) E c(l>(l,oo). The validity of the interpolation 
conditions (2) and (3) follows from Eqs. (7) and (9). The mutual invert
ibility of p(x) and p-1(x) followsfrom the fact that these functions are 
ccintinuoµs and monotonically increasing (see (19) and (20)) and conditions 
(4) and (5) can be checked directly. Equations (13) show that the fonctions 
n(x) and p-1 (x) are related by identity (6). 
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(ii) Equations (21) follow from Eqs. (8) and (14). The discontinuity of the 
second derivatives 

3 

[ 0, 
0<x:::; 2 , 

d~~x) = -4fin-1, 
1 

n-- <x<n 2 - - ' 

and 

d2p-l(x) 

dx2 

4fin, 
1 

n<x<n+-, - - 2 

0, 

4fin-1 (8fin-1 (Pn -x) + 1)-312, 

-4fin(8fin(X- Pn) + 1)-3/2, 

n=2,3, ... 

n=2,3, ... 

5 
0<x:::; 2, 
Pn-1 +Pn <x< 

2 
_ -Pn, 

n=2,3, ... , 

< < Pn+Pn+l 
Pn _x - 2 ' 

n=2,3, ... 

implies Eqs. (22) and (23). This completes the proof. □ 
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Fig. I. The Riemann-von Mangoldt counting step function trR(x) and its continuously 
differentiable analog p-1 (x) 
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Fig. 2. The derivative of p-1 (x) 

Remark 1. The fact that the coefficients of p(x) are integers as well as its 
invertibility follow from Eq. (3) in Definition 1 (i.e., from Eqs. (9)). 

The comparative plot of the functions p-1(x) and nR(x) is shown in Fig. l. 
The derivative dp-1 /dx is shown in Fig. 2. Its oscillating nature as well as the 
fact that it takes values between O and I is obvious from this figure. 

The diffeomorphisms p(x), p-1(x) and their derivatives are realized in a 
Fortran90 program package called pp_. f 9 0 which can be found at this URL (3). 

2. APPROXIMATE SOLUTION OF DIOPHANTINE EQUATIONS 

Definitioii 2. Given a set of strictly increasing functions h;(x) E c(l)(0, 00), i = 
I, ... n the system · 

f1(x1,••·,xn) =0, 
n 

fz(h1(x1), ... ,hn(xn)) := Lsin2(nh;(x;)) =0, 
i=I 

(24) 

(25) 

where Eq. (24) is a Diophantine one is called real-Diophantine on the real semi
axis (0,=). 
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The real-Diophantine systems allow us to find solutions of Diophantine equa
tions in terms of real approximations of integer numbers. For this purpose one 
should apply numerical methods which work even when the derivative is degen
erate at the solution (see, e.g., [4] and [5]). 

Let us write system (24), (25) in a vector form as follows: 

Fx=0, (26) 

where J 
T T 11 Fx=f (x)fx, fx=[fi(x),J2(x)] , f:D1cR.n-R.m, xER.n, n>m, J 

f'(x) is the Jacobi matrix and D1 is an open convex domain in R.n. 
Here we shall quote an autoregularized version of the Gauss-Newton me

thod [6, 7] as one of the possible methods for the solution of Eq. (26): 

x0 E DJ, co> 0, (fT (x!')f (x!') + Ek/)(xf'+l -xf') = -Fxf', k = 1,2, ... , (27) 

Ek = ~ ( ✓ 'rf + 4cpk - 'rk) , 

'rk = 11/T (x!')f (x!')ll00 , Pk= IIFx!'lloo, co+co-ro c=--
Po 

where 11 · lloo is the uniform vector or matrix norm, and the SVD method [8] 
is assumed for the solution of the linear problem in (27). · 1n order to find all 
solutions of Eq. (26) in the domain D1 the vector Fx!' is repeatedly multiplied by 
the local root extractor 

e ·(x x-U)) - 1 
1 ' - ( II -(·>112)' 1 - exp - x - x J 2 

in which .xU> is the jth solution of Eq. (26). In the repeated solutions of the 
transformed problem 

Fix:= (n ej(x,.xU>)) Fx=0, J ~ 1, 
J=l 

(28) 

process (27) is executed with a new Fx := Fix. For every solution process (27) 
is started many times with different :xP and fo. Each time when J increases the 
derivatives f'(xk) are computed analytically and the matrices f'T (xk)f'(xk) are 
adaptively scaled [9]. The necessary last step of the method consists in a direct 
substitution check whether the Diophantine equation residual vanishes exactly 
when the found solutions are rounded to integers. 

System (24), (25) has been considered in Refs. [10] and [11, p. 285-286] as 
undecidable. In Table 1 we present some examples in which real-Diophantine 
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Table 1. Real-Diophantine systems: when hi(xi) = Xi the solution is looked for among 
the integers while hi(xi) = p-1(xi) means that the solution would be among the primes 

Case Ji (x) n m hi(xi) Source 

1 xr+~-~ =0 3 2 Xj Pythagoras 

2 xr+~-~-1 =0 3 2 . p-1(xi) Sierpinski 

3 xf+~+~+~=n, nE N 4 2 p-1(xi) Lagrange 

9 
Xi, p-1(xi) 4 "f.xf =n, nEN 9 2 Waring, Khinchin 

i=l 

19 
5 "f. x1 =n, n EN 19 2 Xj Waring 

i=l 

6 (xifx2)2- (x3/x4)3 -x5 ·= 0 5 2 hi(x;) = p-1 (x;), Fermat-Bache 
i= 1, ... ,4, h5(xs)=x5 

system (24 ), (25) is solvable including the case when it is solvable over the 
primes (see cases 2, 3, 4 and 6). Here we shall describe in more detail two 
special examples which emphasize the crucial role of the last step of the above 
method. In the first one we represent the prime number 5081 as a sum of 9 
cubes of primes (case 4 in Table 1 with hi(xi) = p-1(xi)). We find two different 
solutions: 

{ 
2 X 23 + 3 X 33 + 53 + 2 X 113 + 133 

5081 = 33 +3x53 +2x73 +3x113 • ' 
(29) 

Notice that this problem has been solved as a real-Diophantine system on a 
machine with 16 significant figures. The unknowns 2, 3, 5, 11 and 13 in the first 
line of Eq. (29) have been found with 9 significant figures at residual 11ft (x)lloo = 
10-14. A convergent process of the kind (27) has been built after 36 unsuccessful 
attempts which costed 5634 iterations with 4 different initial guesses xo combined 
with 9 different initial regularizators fo. The last step of the method yields an 
exact equality in Eq. (29). It would be interesting to investigate whether the 
number or' primes which can be represented as the sum of 9 prime cubes is 
infinite. 

In the second example we consider the equation 

(;:) 2 - (;:) 3 =xs, (30) 

where Xi, i = 1, 2, 3, 4 are sought as primes while x5 as integer (special case 
of the unsolved Fermat-Bache problem in which the solutions are a rational 
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pair (xi/x2, x3/x4) and an integer x5). The approximate solution found under 
<;:onditions similar to those in the previous example, Eq. (29), 

Xt = 787.000011, X2 = 348.99999357, X3 = 457.00002128, 

X4 = }049.0000001, X5 = 5.0024058062 

leads to a nonzero residual after rounding to integers 

(
787)

2 
( 457 )

3 

349 -. 1049 ~ 5 = 0.002405488240. 

This example is an illustration of the crucial importance of the last step of the 
method - the vector (787, 349, 457, 1049, 5) is not a true solution of Fermat
Bache equation (30). 

The above method fo,r the solution of Diophantine equations works because of 
a combination of factors: autoregularization, SVD method, adaptive scaling, root 
extraction and because the solutions of Diophantine equations are well isolated. 
There is a semi-local convergence theory [6] in the non-degenerate case however 
no justification in the degenerate case is available by now. The methods of 
Refs. [4, 5] are applied to this problem with little success. 

Remark 2. Method·(24), (25) for the solution of Diophantine equation (24) does 
not contradict the negative solution of the 10th Hilbert's problem [ 12] because 
our solutions are approximated in a bounded domain. 

3. THE FUNCTION p-1(x) AND THE RIEMANN HYPOTHESIS 

Lemma 2. The functions p-1(x) and n(x) are related by 

jp-1(x)-n(x)I ~ 1 Vx> 1. 

Proof: Let us assume that Pn ~ x ~ Pn+l for some n. According to Eq. (20) 
the function p-1(x) is strictly increasing, i.e., p-1(x) ~ p-1(Pn+d- On the other 
hand, n(pn) ~ n(x) ~ n(Pn+t) so that 

jp-1 (x)- n(x)I ~ jp-1 (Pn+1)- n(pn)I = In+ 1-nl = 1, 

where we have used that p-1(pn) = n which follows from Theorem 1 and 
Eq. (5). D 

Theorem 2. The asymptotics of p-1 (x) is the same as that for n(x) when x-+ 00• 
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Proof: Let us consider the relative difference of n(x) and Li(x). According to 
Lemma 2 we can write 

ln(x)-Li(x)I ln(x)- p-1(x)I jp-1(x)-Li(x)I 1 jp-1(x)-Li(x)I 
Li(x) ~ Li(x) + Li(x) ~ Li(x) + Li(x) 

Therefore in the limit x-+ oo we can ignore the term 1/Li(x) and investigate 
p-1(x) instead of n(x). □ 

3.1. Differential Equation and the von Koch Estimate. L(.!t us consider the 
following function: 

K(x) = P-
1 
(x) - Li(x) 

Jxln(x) ' x> 1, (31) 

where Li(x) is defined in Eq. (1). According to the von Koch estimate (see 
[1], p. 90) the Riemann hypothesis is equivalent to the statement that K(x) is 
asymptotically constant, i.e.; 

lim K(x) = const {::=} RH. 
X--+eo 

Because the function p- 1 (x) is continuously differentiable we can write the fol
lowing differential equation for K: 

( 

1 1 ) dp-l(x) 1 

K'(x)=- -+-- K(x)+ dx -iii(x) 
2x xln(x) Jxln(x) · 

(32) 

The derivative dp-1(x)/dx is strongly oscillating as shown in Fig. 2, however it 
is restricted between O and 1 according to Eq. (20). Therefore we shall consider 
the solution of Eq. (32) in the interval Pn ~ x ~ (Pn + Pn+i)/2, n-+ 00, and shall 
use the fact that (see Eqs. (14) and (16)) 

dp-l(x) I = 1, 
dx x=pn 

dp-l(x)I 1 

dx x=(Pn+Pn+il/2 = 2f}n + 1 · 
(33) 

Thus, for x-+ Pn we can substitute dp-1 /dx = I in Eq. (32), neglect the term 
1/ln(x) iri the limit~-+ 00 and solve the equation 

, (1 1 ) 1 
K(x)=- 2x + xln(x) K(x)+ Jxln(x)' (34) 

The general solution of this equation can be written as 

Ji ~ ' K(x) = ln(x) + Ji ln(x) 
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where the first term on the right-hand-side is a partial solution of inhomogeneous 
Eq. (34) while the second one is the general solution of the homogeneous equation 
and c~ is a constant. 

At the right-hand border x-+ (Pn + Pn+d/2, we can neglect, for x-+ 00, the 
term dp-1 /dx = (2pn + 1)-1 and keep only 1/In(x) assuming that Pn ~ p~ with 
a > 0. In this case we should solve the equation 

( 
1 1 ) -1 

K' (x) = - 2x + x In(x) K(x) + y'x In2(x) · (35) . 

The general solution of (35) is again the sum of a partial solution (the first term 
below) of the inhomogeneous equation and the general solution (the second term) 
of the homogeneous one 

Li(x) c"n 
K(x)----+~-

- y'xln(x) y'xln(x)" 

Substituting the logarithmic integral with its leading term for x-+ 00, i.e., Li(x) ~ 
x/In(x) we can finally write 

l 
y'x c' 

In(x) + y'x l~(x)' x-+ Pn, 

K(x) ~ 
_ y'x + c" n X -+ Pn + Pn+ 1 

ln2 (x) y'xln(x)' 2 

It is tempting to regard the general solution of the homogeneous equation as 
subleading in the limit x -+ oo and the first terms as expressing the oscillations of 
K(x) close to the borders of the considered intervals. However, let us note that 
the constants c~ and c'' n might depend on the primes gap Pn which on its own 
depends on Pn and this last dependence is currently unknown. 

3.2. The l'Hospital Rule. Here we shall consider the limit 

Jim p-1(x)-Li(x) = Jim p-
1(x) -1. 

X-+OO Li(x) X-+00 Li(x) 

Because the function p-1 (x) is differentiable we can apply the )'Hospital rule if 
the limit 

dp-
1(x) d -1 ( ) 

Jim---¥-= Jim In(x)-S-- x 
X-+00 iii(x} X-+00 X 

exists. Now let us_ show that if the RH is true then this limit does not exist. 
Indeed, let us choose two subsequences of x -+ oo, namely 

(i) 

(ii) 

n __., oo, X=Pn, 

Pn + Pn+l n-+ oo. x= 2 , 

12 

(36) 

Then, using again values (33) of the derivative over (i) and (ii) we get 

(i) 
dp-1(x) 

In(x) dx ~ In(pn) -+ oo, 

(ii) 1 ( )dp-1(x) ~ ln(pn) -+ O 
nx d 2A 1 . 

X Pn+ 
(37) 

• I 
The second limit follows from the statement that if the RH is true then Pn ~ p;+e 
for any f > 0 when n -+ oo [2]. Most of the current estimates of the primes gap 
Pn lead to the non-applicability of the l'Hospital rule. Nevertheless we cannot be 
sure until a rigorous estimate is found. 

CONCLUSIONS 

We have constructed a pair of diffeomorphisms p(x) and p-1 (x) which in
terpolate the prime series and the prime counting function, respectively, which 
are convenient for both numerical and analytical applications. To the best of our 
knowledge this is the first differentiable and invertible interpolation of the prime 
series. 

The function p-1(x) can be effectively used for the solution of Diophantine 
equations which can be exploited in many cases where the other methods do not 
work and could be particularly useful when Diophantine equations are subsystems 
of more complex real systems. 

Because p-1(x) has the same behavior as n(x) for x-+ 00 it could give more 
information about the asymptotic and non-asymptotic distribution of primes. Per
haps, this could be used to draw some conclusions about the Riemann hypothesis 
when more information about the primes gaps becomes available. 
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AneKcaH.[(pos JI., feoprnes JI. ES-2004-181 
.!lmpcpeoMopcpH3Mbl, HH.UYUHpOBaHHbie rrpOCTbJMH 'IHCnaMH, 
.UHOcpaHTOBble ypasHeHH51 H rnrroTe3a PHMaHa 

Ha OCHOBe KBa.upaTH'IHO-crrnaiiHOBOH HHTeprron5IUHH p51,1la rrpOCTblX 'IHCen rro
CTpOeHa .UHcpcpeoMopcpHM rrapa cpyHKUHH (p(x),p- 1(x)). 3TH HerrpepbIBHO .UHcpcpe
peHUHpyeMbJe cpyHKUHH, 5JBJI5IJOIUHeC51 rna,!lKHMH aHMOraMH p51,na rrpOCTb!X 'IHCen H 
cpyHKUH5IMH HOMepos npoCTbJX 'IHCen, co.nep)KaT OCHOBHYJO HHcpOpMaUHJO O crreuH
(pH'IeCKOM rrose,neHHH rrpoCTblX 'IHCen. <DyHKUH51 p-1 (x) npHMeH51eTC51 ,nn51 rrpH6nH
)KeHHOf0 perneHH51 ,nHocpaHTOBbIX ypasHeHHH Ha MHO)KeCTBe rrpOCTbIX 'IHCen. O6c~
.naeTC51 B03MO)KHOCTb ee rrpHMeHeHH51 K rnrroTe3e PHMaHa C HCIIOITb30BaHHeM 3KBH
saneHTHOH oueHKH cpoH Koxa ,nn51 OCTaTO'IHOfO qneHa B aCHMIITOTH'IeCKOM 3aKOHe 
pacrrpe.neneHH51 rrpOCTbIX 'IHCen. 

Pa6oTa BbmonHeHa s Jia6opaTOpHH TeopeTH'IeCKOii cpH3HKH HM. H. H .. EoronJ06osa 
OIDII1. 

IlpenpHHT 06-be)1HHeHHOro HHCTHT)Ta ll)1epHLIX HCCJle)1oBaHHii. ,lly6Ha, 2004 

Alexandrov L., Georgiev L. ES-2004-181 
Prime Number Diffeomorphisms, Diophantine Equations 
and the Riemann Hypothesis 

We explicitly construct a diffeomorphic pair (p(x),p- 1(x)) in terms of an appro
priate quadric spline interpolating the prime series. These continuously differentiable 
functions are the smooth analogs of the prime series and the prime counting func
tion, respectively, and contain the basic information about the specific behavior of the 
primes. We employ p-1 (x) to find approximate solutions of Diophantine equations 
over the primes and discuss how this function could eventually be used to analyze 
the von Koch estimate for the error in the prime number theorem which is known to 
be equivalent to the Riemann hypothesis. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical 
Physics, JINR. 
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