

66958

$151-03$
E5-2003-151

Burdík Č., Navrátil O.

$$
3238
$$

THE q-BOSON-FERMION REALIZATIONS
OF THE QUANTUM SUPERALGEBRA $U_{q}(\mathrm{gl}(\mathrm{m} / n))$

Submitted to «Journal of Physics A: Mathematical and General»

[^0]
1 Introduction

Quantum groups or q deformed Lie algebras imply some specific deformations of classical Lie algebras. From a mathematical point of view, it is a noncommutative associative Hopf algebra. The structure and representation theory of quantum groups have been developed extensively staring from works by Jimbo [1] and Drinfeld, [2] and many authors.

In the course of studying quantum algebras, a lot of attention has been paid to the case of quantum superalgebras [3], [4]. These algebras provide solutions to the Yang Baxter equations and there may serve as a source of new exactly solvable models in statistical mechanics [5]. The applications in field theory are connected with the WZW models [6] and we can find some application of quantum superalgebra $U_{q}(g 1(m / n))$ for construction of the Alexauder Conway polynomial in the knot theory [7].

The Weyl and Clifford algebras also admit quantum deformation [8] with q analogues of the Bose, and respectively, Fermi oscillator operators as gencrators $[8,9,10]$. These quantized algebras have been used to construct oscillator realizations of the quantum algebras that correspond to all classical Lie algebras [8]. These realizations are of the Jordan-Schwinger type [11]. The realizations of this type for quantum superalgebras were constructed in [12]. In the literature there exist Dyson [13] and Holstein Primakoff [14] realizations which were first written for the algebra sl(2).

The first "quantum" version of Holstein-Primakoff was worked out for $U_{q}(s l(2))[15]$ and then for $U_{q}((\mathrm{sl}(3))[16]$. These realizations found immediate applications [17 22].

In our paper [23] we formulated the method starting from the Verma modules for obtaining boson realizations and in [24] we obtained explicitly a braid class of realizations which generalized the results from $[25,26]$.

Later the idea of boson-fermion realizations was extended to the Lie superalgebra, and the Dyson type boson-fermion realizations were explicitly given in [27], generalizing the results to $\mathrm{sl}(2 / 1)$ ([28], [29]).

In our papers $[30,31,32]$ we studied the Dyson realizations of the series algebras $U_{q}(\operatorname{sl}(2)), U_{q}(g l(n)), U_{q}\left(B_{n}\right), U_{q}\left(C_{n}\right)$ and $U_{q}\left(D_{n}\right)$. There is some special case [31] for which the realization of the subalgebra $U_{q}(g l(n-1))$ in the recurrence is trivial. Such special realizations of the quantum algebra $U_{q}(s l(n))$ of Dyson type were studied in [33].

The aim of the present paper is to show that it is possible to generalize our method [23] to deriving the boson fermion realization, too. This will be exrmplified by the quantum superalgebra $U_{q}(g l(m / n))$. This superalgebra can be applied to physical problems such as strongly correlated electron systems $[34,35.36]$. We explicitly see the recurrence with respect to $U_{q}(\mathrm{gl}(m-1 / n))$ and consequently we will show that again it is a generalization of the result from [37].

2 Preliminaries

We will use the definition of the quantum superalgebra $U_{q}(g l(m / n))$ which can be found in [37].

Let q be an independent variable, $\mathcal{A}=C\left[q, q^{-1}\right\}$ and $\mathcal{C}(q)$ be a division field of \mathcal{A}. The superalgebra $U_{q}(g l(m / n))$ is the associative superalgebra over $\mathcal{C}(q)$ generated by even generators $K_{i}, K_{i}^{-1}, i=1,2, \ldots, m+n, E_{k}, F_{k}$, $k=1, \ldots, m+n-1, k \neq m$, and odd generators E_{m}, F_{m}, which satisfy the following relations:

$$
\begin{array}{ll}
K_{i} K_{j}=K_{j} K_{i}, & K_{i} K_{j}^{-1}=K_{j}^{-1} K_{i}, \\
K_{i} K_{i}^{-1}=1, & K_{i}^{-1} K_{j}^{-1}=K_{j}^{-1} K_{i}^{-1} \\
K_{i} E_{i}=q E_{i} K_{i}, & K_{i}^{-1} E_{i}=q^{-1} E_{i} K_{i}^{-1}, \\
K_{i} F_{i}=q^{-1} F_{i} K_{i}, & K_{i}^{-1} F_{i}=q F_{i} K_{i}^{-1} \\
K_{i} E_{i-1}=q^{-1} E_{i-1} K_{i}, & K_{i}^{-1} E_{i-1}=q E_{i-1} K_{i}^{-1}, \\
K_{i} F_{i-1}=q F_{i-1} K_{i}, \quad K_{i}^{-1} F_{i-1}=q^{-1} F_{i-1} K_{i}^{-1} \\
{\left[E_{i}, E_{j}\right]=0, \quad\left[F_{i}, F_{j}\right]=0 \quad \text { for } j \neq i, i \pm 1} \\
{\left[E_{i}, F_{j}\right]=0 \quad \text { for } i \neq j} \\
{\left[E_{i}, F_{i}\right]=\frac{K_{i} K_{i+1}^{-1}-K_{i}^{-1} K_{i+1}^{-}}{q-q^{-1}} \quad \text { for } i \neq m} \tag{1}\\
E_{m} F_{m}+F_{m} E_{m}=\frac{K_{m}^{\prime} K_{m+1}-K_{m}^{-1} K_{m+1}^{-1}}{q-q^{-1}} \\
E_{i}^{2} E_{i \pm 1}-\left(q+q^{-1}\right) E_{i} E_{i \pm 1} E_{i}+E_{i \pm 1} E_{i}^{2}=0 \quad \text { for } i \neq m \\
F_{i}^{2} F_{i \pm 1}-\left(q+q^{-1}\right) F_{i} F_{i \pm 1} F_{i}+F_{i \pm 1} F_{i}^{2}=0 \\
E_{m}^{2}=F_{m}^{2}=0, & \text { for } i \neq m \\
\left\{E_{m-1} E_{m}-q E_{m} E_{m-1}, E_{m} E_{m+1}-q E_{m+1} E_{m}\right\}=0, \\
\left\{F_{m-1} F_{m}-q F_{m} F_{m-1}, F_{m} F_{m+1}-q F_{m+1} F_{m}\right\}=0,
\end{array}
$$

where $\left[X, Y^{\prime}\right]=X Y-Y X$ is the commutator and $\{X, Y\}=X Y+Y X$ is the anticommutator of two elements.

The Hopf structure of this superalgebra is defined by the following operations:

1. Coproduct $\triangle(k=1,2, \ldots, m+n, r<m$ and $s>m)$

$$
\triangle(1)=1 \otimes 1
$$

$$
\triangle\left(E_{r}\right)=E_{r} \otimes 1+K_{r} K_{r+1}^{-1} \otimes E_{r} \quad \triangle\left(F_{r}\right)=F_{r} \otimes K_{r}^{-1} K_{r+1}+1 \otimes F_{r}
$$

$$
\triangle\left(E_{m}\right)=E_{m} \otimes 1+K_{m} K_{m+1} \otimes E_{m} \quad \triangle\left(F_{m}\right)=F_{m} \otimes K_{m}^{-1} K_{m+1}^{-1}+1 \otimes F_{m}
$$

$$
\triangle\left(E_{s}\right)=E_{s} \otimes 1+K_{s}^{-1} K_{s+1} \otimes E_{s} \quad \triangle\left(F_{s}\right)=F_{s} \otimes K_{s} K_{s+1}^{-1}+1 \otimes F_{s}
$$

2. Counit ε

$$
\begin{aligned}
& \varepsilon(1)=\varepsilon\left(K_{r}\right)=\varepsilon\left(K_{r}^{-1}\right)=1 \\
& \varepsilon\left(E_{r}\right)=\varepsilon\left(F_{r}\right)=0 .
\end{aligned}
$$

3. Antipode S

$$
\begin{array}{lll}
S(1)=1 & S\left(K_{r}\right)=K_{r}^{-1} & S\left(K_{r}^{-1}\right)=K_{r} \\
S\left(E_{r}\right)=-K_{r}^{-1} K_{r+1}^{-} E_{r} & S\left(F_{r}\right)=-F_{r} K_{r} K_{r+1}^{-1} & r<m \\
S\left(E_{m}\right)=-K_{m}^{-1} K_{m+1}^{-1} E_{m} & S\left(F_{m}\right)=-F_{m} K_{m} K_{m+1} & \\
S\left(E_{s}\right)=-K_{s} K_{s+1}^{-1} E_{s} & S\left(F_{s}\right)=-F_{s} K_{s}^{-1} K_{s+1} & s>m .
\end{array}
$$

However we do not use these operations for construction of the realization.
The method of construction used is the same as in the case of the Lie algebras [23] or quantum algebra [32] and is based on using the induced representation. The difference from quantum algebra is that together with q deformed boson operators [9], [10] we also use fermion operators.

The algebra \mathcal{B} of the q-deformed boson operators is the associative algebra over the field $\mathcal{C}(q)$ generated by the elements of $a^{+}, a^{-}=a, q^{x}$ and q^{-x}, satisfying the commutation relations

$$
\begin{array}{lll}
q^{x} q^{-x}=q^{-x} q^{x}=1, & q^{x} a^{+} q^{-x}=q a^{+}, & q^{x} a q^{-x}=q^{-1} a, \\
a a^{+}-q^{-1} a^{+} a=q^{x}, & a a^{+}-q a^{+} a=q^{-x} . \tag{2}
\end{array}
$$

The algebra \mathcal{B} has faithful representation on vector space with the basic elements $|n\rangle$, where $n=0,1, \ldots$, of the form

$$
\begin{equation*}
q^{x}|n\rangle=q^{n}|n\rangle, \quad a^{+}|n\rangle=|n+1\rangle, \quad a|n\rangle=[n]|n-1\rangle, \tag{3}
\end{equation*}
$$

where $[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}$.

Because of odd generators E_{m} and F_{m} we construct realization by means of the algebra \mathcal{B} for even elements, and by fermion algebra \mathcal{F} with elements b^{+}and b for odd ones. These fermion clements commute with the elements of \mathcal{B} and together fulfil the relations

$$
\begin{equation*}
b b=b^{+} b^{+}=0, \quad b b^{+}+b^{+} b=1 . \tag{4}
\end{equation*}
$$

The algelora \mathcal{F} has faithful representation on vector space with the basis $|0\rangle$ and |1) of the form

$$
\begin{equation*}
b|M\rangle=\frac{1-(-1)^{M}}{2}|M-1\rangle, \quad b^{+}|M\rangle=\frac{1+(-1)^{M}}{2}|M+1\rangle . \tag{5}
\end{equation*}
$$

We use superalgebra $\mathcal{H}(r, s)$ for realization superalgebra. We mean the superalgehra of r copies of the algebras \mathcal{B} of q-deformed bosons and s copies of the algebras \mathcal{F} of the fermions. We suppose that the elements from \mathcal{B}_{i} commute with the clements \mathcal{F}_{k} for all i, k, and for clements $x_{i} \in \mathcal{B}_{i}$ and $y, \in \mathcal{F}_{i}$ the relations $\left[x_{i}, x_{k}\right]=\left\{y_{i}, y_{k}\right\}=0$ for $i \neq k$ hold.

As in the case of the Lie algebras or quantum groups our realizations coutain clements of quantum sub-superalgebra of $\mathcal{A}_{0} \subset U_{q}(\mathrm{gl}(\mathrm{m} / n))$ namely, quantum superalgebra $U_{q}(\operatorname{gl}(m-1 / n))$. The element x of this subalgebra commutes with the elements from \mathcal{B}_{i}, and for the fermion clements $b^{ \pm}$the relation

$$
\begin{equation*}
x b^{ \pm}=(-1)^{\operatorname{deg} x} b^{ \pm} x \tag{6}
\end{equation*}
$$

holds. This superalgebra is denoted by $\mathcal{W}\left(r, s, \mathcal{A}_{0}\right)$.
In general, we define
Definition. Realization of the quantum superalgebra \mathcal{A} is called the homomorphism ρ of \mathcal{A} to the superalgebra $\mathcal{W}\left(r, s, \mathcal{A}_{0}\right)$, where \mathcal{A}_{0} is the sub superalgebra of \mathcal{A}.

3 Construction of the realization

First, for construction of the realization we find the induced representation of $U_{q}(\mathrm{gl}(m / n))$. As subalgebra \mathcal{A}_{0} of $U_{q}(\mathrm{gl}(m / n))$ we choose a quantum superalgebra generated by $E_{k}, k>1, F_{r}, r=1, \ldots, m+n-1, K_{i}$ and
$K_{i}^{-1}, i=1, \ldots, m+n$. Let φ be a representation of \mathcal{A}_{0} on vector space V. Let λ be the left regular representation on $U_{q}(\operatorname{gl}(m / n)) \otimes V$, i.e. for $x, y \in U_{\eta}(\operatorname{gl}(m / n))$ and $v \in V$ the representation λ is defined by

$$
\begin{equation*}
\lambda(x)(y \otimes v)=x y \otimes v . \tag{7}
\end{equation*}
$$

Let \mathcal{I} be subspace of $U_{q}(\mathrm{gl}(m / n)) \otimes V$ generated by the relations

$$
x y \otimes v=x \otimes \varphi(y) v
$$

for all $x \in U_{q}(\mathrm{gl}(m / n)), y \in \mathcal{A}_{0}$ and $v \in V$: It is easy to see that the subspace \mathcal{I} is λ invariant. Therefore, (7) gives the representation on the factor space $W^{-}=\left[U_{\eta}(\mathrm{gl}(m / n)) \otimes V^{\boldsymbol{V}}\right] / \mathcal{I}$.

To find the induced representation of $U_{q}(\mathrm{gl}(m / n))$ explicitly we define the elements

$$
\begin{array}{ll}
X_{1}=E_{1} & \\
X_{k}=X_{k-1} E_{k}-q^{-1} E_{k} X_{k-1} & \text { for } k=2, \ldots, m \tag{8}\\
X_{k}=X_{k-1} E_{k}-q E_{k} X_{k-1} & \text { for } k=m+1, \ldots, m+n-1 .
\end{array}
$$

It follows from (8) that X_{k} for $k<m$ are even and for $k \geq m$ are odd elements. We can derive from generating relations (1) that the elements X_{k} fulfil the relations

$$
\begin{array}{ll}
X_{r} X_{s}=q^{-1} X_{s} X_{r}, & \text { for } s<r \text { and } s<m ; \\
X_{k}^{2}=0, & \text { for } r \geq m ; \tag{9}\\
X_{r} X_{s}=-q^{-1} X_{s} X_{r}, & \text { for } m \leq r<s .
\end{array}
$$

Let $\left|N_{1}, N_{2}, \ldots, N_{m+m-1}\right\rangle=|N\rangle=X_{1}^{N_{1}} X_{2}^{N_{2}}, \ldots, X_{m+n-1}^{N_{m+n-1}}$. Due to the Poincarć Birkhoff Witt theorem the space W of the induced representation is generated by the elements $|N\rangle \otimes v$, where $N_{k}=0,1,2, \ldots$ for $k<m$, $N_{k}=0,1$ for $k \geq m$ and $v \in V$.

To obtain the explicit form of the induced representation, we give some relations. They can be proved by mathematical induction from relations (1). Lemma 1. For any $n=0,1,2, \ldots$ the following formulae hold:

$$
\begin{array}{ll}
E_{r} X_{r-1}^{N}=q^{N} X_{r-1}^{N} E_{r}-q[N] X_{r-1}^{N-1} X_{r} & \text { for } r \leq m \\
E_{r} X_{r}^{N}=q^{-N} X_{r}^{N} E_{r} & \text { for } r<m \\
E_{m} X_{m}^{N}=(-q)^{N} X_{m}^{N} E_{m} & \\
E_{m} X_{r}^{N}=(-1)^{N} X_{r}^{N} E_{m} & \text { for } r>m \\
E_{r} X_{r-1}^{N}=q^{-N} X_{r-1}^{n} E_{r}-\frac{1-(-1)^{N}}{2} q^{-N} X_{r-1}^{N-1} X_{r} & \text { for } r>m
\end{array}
$$

$$
\begin{array}{ll}
E_{r} X_{r}^{N}=q^{N} X_{r}^{N} E_{r} & \text { for } r>m \\
K_{1} X_{r}^{N}=q^{N} X_{r}^{N} K_{1} & \text { for } r>1 \\
K_{r} X_{r-1}^{N}=q^{-N} X_{r-1}^{N} K_{r} & \text { for } r<m \\
F_{r} X_{r}^{N}=X_{r}^{N} F_{r}-q^{-1}[N] X_{r-1} X_{r}^{N-1} K_{r} K_{r+1}^{-1} & \\
F_{m} X_{m}^{N}=(-1)^{N} X_{m}^{N} F_{m}+\frac{1-(-1)^{N}}{2} q^{-N} X_{m-1} X_{m}^{N-1} K_{m} K_{m+1} & \\
F_{r} X_{r}^{N}=X_{r}^{N} F_{r}-\frac{1-(-1)^{N}}{2} q^{-N+2} X_{r-1} X_{r}^{N-1} K_{r}^{-1} K_{r+1} & \text { for } r>m \\
F_{1} X_{1}^{N}=X_{1}^{N} F_{1}-\frac{[N]}{q-q^{-1}} X_{1}^{N-1}\left(q^{N-1} K_{1} K_{2}^{-1}-q^{-N+1} K_{1}^{-1} K_{2}\right) & \\
F_{1} X_{r}^{N}=X_{r}^{N} F_{1}+q^{-N+1}[N] X_{r}^{N-1} Y_{r} K_{1}^{-1} K_{2} & \text { for } 1<r<m \\
F_{1} X_{s}^{N}=X_{s}^{N} F_{1}+\frac{1-(-1)^{N}}{2} X_{s}^{N-1} Y_{s} K_{1}^{-1} K_{2} & \text { for } s>m \\
\text { where } & \\
& \\
Y_{2}=E_{2} & \\
Y_{k}=Y_{k-1} E_{k}-q^{-1} E_{k} Y_{k-1} & \text { for } k=3, \ldots, m \\
Y_{k}^{-}=Y_{k-1} E_{k}-q E_{k} Y_{k-1} & \text { for } k=m+1, \ldots, m+n-1 .
\end{array}
$$

We omit the details of the calculations and write the result for the action of the induced representation on the basis elements $\langle N\rangle \otimes v$.
Theorem 1. Let $1<r<m, s>m, t>1$ and $S_{k}=\sum_{i=k}^{m+n-1} N_{i}$. Then the formulae

$$
\begin{aligned}
& E_{1}|N\rangle \otimes v=\left|N+1_{1}\right\rangle \otimes v \\
& E_{r}|N\rangle \otimes v=-q\left[N_{r-1}\right]\left|N-1_{r-1}+1_{r}\right\rangle \otimes v+q^{N_{r-1}-N_{r}}|N\rangle \otimes \varphi\left(E_{r}\right) v \\
& E_{m}|N\rangle \otimes v=-q\left[N_{m-1}\right]\left|N-1_{m-1}+1_{m}\right\rangle \otimes v+(-1)^{S_{m}} q^{N_{m-1}+N_{m}}|N\rangle \otimes \varphi\left(E_{m}\right) v \\
& E_{s}|N\rangle \otimes v=-\frac{1-(-1)^{N_{s-1}}}{2} q^{-N_{s-1}}\left|N-1_{s-1}+1_{s}\right\rangle \otimes v+q^{N_{s}-N_{s-1}}|N\rangle \otimes \varphi\left(E_{s}\right) v \\
& K_{l}|N\rangle \otimes v=q^{S_{1}}|N\rangle \otimes \varphi K_{1} v \\
& K_{l}|N\rangle \otimes v=q^{-N_{t-1}} \otimes \varphi K_{t} v \\
& F_{r}|N\rangle \otimes v=-q^{-1}\left[N_{r}\right]\left|N+1_{r-1}-1_{r}\right\rangle \otimes\left(K_{r} K_{r+1}^{-1}\right) v+|N\rangle \otimes \varphi\left(F_{r}\right) v \\
& \left.\left.F_{m}|N\rangle \otimes v=\frac{1-(-1)^{N_{m}}}{2} q^{-N_{m}} \right\rvert\, N+1_{m-1}-1_{m}\right) \otimes \varphi\left(K_{m} K_{m+1}\right) v+ \\
& \quad+(-1)^{S_{m}}|N\rangle \otimes \varphi\left(F_{m}\right) v
\end{aligned}
$$

$$
\begin{aligned}
& F_{s}|N\rangle \otimes v=-\frac{1-(-1)^{N_{s}}}{2} q^{-N_{s}+2}\left|N+1_{s-1}-1_{s}\right\rangle \otimes \varphi\left(K_{s}^{-1} K_{s+1}\right) v+|N\rangle \otimes \varphi\left(F_{s}\right) v \\
& F_{1}|N\rangle \otimes v=-\frac{\left[N_{1}\right] q^{S_{1}-1}}{q-q^{-1}}\left|N-1_{1}\right\rangle \otimes \varphi\left(K_{1} K_{2}^{-1}\right) v+ \\
&+\frac{\left[N_{1}\right] q^{-S_{1}+1}}{q-q^{-1}}\left|N_{1}-1\right\rangle \otimes \varphi\left(K_{1}^{-1} K_{2}\right) v+ \\
&+\sum_{r=2}^{m-1} q^{-S_{r}+1}\left[N_{r}\right]\left|N-1_{r}\right\rangle \otimes \varphi\left(Y_{r} K_{1}^{-1} K_{2}\right) v+ \\
&+\sum_{s=m}^{m+n-1} \frac{1-(-1)^{N_{s}}}{2}(-q)^{-S_{s+1}}\left|N-1_{s}\right\rangle \otimes \varphi\left(Y_{s} K_{1}^{-1} K_{2}\right) v+|N\rangle \otimes \varphi\left(F_{1}\right) v
\end{aligned}
$$

give the induced representation of the quantum superalgebra $U_{q}(\operatorname{gl}(m / n))$. We use the notation $\left|N \pm 1_{r}\right\rangle=\left|N_{1}, \ldots, N_{r} \pm 1, \ldots, N_{m+n-1}\right\rangle$.

To obtain the realization of quantum superalgebra $U_{q}(g l(m / n))$ we choose the representation φ, for which $\varphi\left(F_{1}\right) v=0$ and $\varphi\left(K_{1}\right) v=q^{\lambda} v$ and rewrite. the induced representation given in Theorem 1 by means of the elements from $\mathcal{W}\left(m-1, n, \mathcal{A}_{0}\right)$. It follows from (3) and (5) that we substitute

$$
\begin{array}{ll}
q^{ \pm N_{k}} \rightarrow q^{ \pm x_{k}} & \text { for } k<m \\
q^{ \pm N_{k}} \rightarrow b_{k} b_{k}^{+}+q^{ \pm 1} b_{k}^{+} b_{k} \equiv q^{ \pm x_{k}} & \text { for } k \geq m \\
\left|N+1_{k}\right\rangle \rightarrow a_{k}^{+} & \text {for } k<m \\
{\left[N_{k}\right]\left|N-1_{k}\right\rangle \rightarrow a_{k}} & \text { for } k<m \\
(-1)^{N_{m}+\ldots+N_{k-1}\left|N+1_{k}\right\rangle \rightarrow b_{k}^{+}} & \text {for } k \geq m \\
(-1)^{N_{m}+\ldots+N_{k-1}} \frac{1-(-1)^{N_{k}}}{2}\left|N-1_{k}\right\rangle \rightarrow b_{k} & \text { for } k \geq m \\
\varphi\left(F_{1}\right) v \rightarrow 0 & \\
\varphi\left(K_{1}^{ \pm 1}\right) v \rightarrow q^{ \pm \lambda} & \tag{10}\\
\varphi\left(K_{ \pm}^{ \pm 1}\right) v \rightarrow k_{r}^{ \pm 1} & \text { for } k \geq 2 \\
\varphi\left(E_{k}\right) v \rightarrow e_{k} & \text { for } k \neq m \\
\varphi\left(F_{k}\right) v \rightarrow f_{k} & \text { for } k \neq m \\
(-1)^{S_{m} \varphi\left(E_{m}\right) v \rightarrow e_{m}} & \\
(-1)^{S_{m} \varphi\left(F_{m}\right) v \rightarrow f_{m}} & \\
\varphi\left(Y_{k}\right) v \rightarrow y_{k} & \text { for } k<m \\
(-1)^{S_{m}} \varphi\left(Y_{k}\right) v \rightarrow y_{k} & \text { for } k \geq m
\end{array}
$$

The factors $(-1)^{N_{n, 1}+\ldots+N_{k-1}}$ reflect the fact that the corresponding elements are fermions.

By substitutions (10) we obtain the realization of the quantum superalgelma $U_{4}(\mathrm{gl}(m / n))$, which is given in the following theorem.
Theorem 2. Let be $r=2, \ldots, m-1$ and $s=m+1, \ldots, m+n-1$. The mapping $p: U_{q}(\mathrm{gl}(m / n)) \rightarrow \mathcal{W}\left(m-1, n, U_{q}(\mathrm{gl}(m-1 / n))\right)$ defined by the formular

$$
\begin{aligned}
& \mu\left(E_{1}\right)=a_{1}^{+} \\
& \rho\left(E_{r}\right)=-q a_{r-1} a_{r}^{+}+q^{\boldsymbol{r}_{r-1}-\boldsymbol{x}_{r}} e_{r} \\
& \rho\left(E_{m}\right)=-q a_{m-1} b_{r}^{+}+q^{r_{m-1}+r_{m}} c_{m} \\
& p\left(E_{,}\right)=q^{-1} b_{s-1} b_{s}^{+}+q^{T_{s}-r_{s-1}} \boldsymbol{e}_{s} \\
& \mu\left(\Lambda_{1}\right)=q^{\lambda+x_{1}+x_{2}+\ldots+s_{m+n-1}} \\
& \rho\left(K_{r}^{\prime}\right)=q^{-r_{r-1}} k_{r} \\
& \rho\left(K_{m}\right)=q^{-\kappa_{m-1}} k_{m} \\
& \rho\left(K_{s}\right)=q^{-s_{s-1}} k_{s}^{s} \\
& \rho\left(F_{r}\right)=-q^{-1} a_{r-1}^{+} a_{r} k_{r} k_{r+1}^{-1}+f_{r} \\
& \rho\left(F_{m}\right)=q^{-1} a_{m-1}^{+} b_{m} k_{k} k_{m+1}+f_{m} \\
& \rho\left(F_{s}\right)=-q b_{s-1}^{+} b_{s} k_{s}^{-1} k_{s+1}+f_{s} \\
& \rho\left(F_{1}\right)=-\frac{a_{1}}{q-q^{-1}}\left(q^{\lambda+x_{1}+\ldots+x_{n+n-1}-1} k_{2}^{-1}-q^{-\lambda-x_{1}-\ldots-x_{m+n-1}+1} k_{2}\right)+ \\
& +\sum_{r=2}^{m-1} a_{r} q^{-\lambda-x_{r}-\ldots-x_{m+n-1}+1} y_{r} k_{2}+\sum_{r=m}^{m+n-1} b_{r} q^{-\lambda-x_{r+1}-\ldots-x_{m+n-1}} y_{s} k_{2}
\end{aligned}
$$

is the realization of the quantum superalgebra $U_{q}(\mathrm{gl}(m / n))$.
In the formulae we used the aberrations $q^{ \pm x_{k}}=b_{k} b_{k}^{+}+\boldsymbol{q}^{ \pm} b_{k}^{+} b_{k}$ for $k \geq m$ and $q^{r_{r}+x_{s}}=q^{x_{r}} q^{x_{s}}$ for simplicity.
Proof: Siuce the representations of \mathcal{B} and \mathcal{F} given in (3) and (5) are faithful, the representation $\mathcal{W}\left(m-1, n, U_{q}(g l(m-1 / n))\right)$ is faithful on the vector space IV generated by $|N\rangle \otimes x$, where $x \in U_{g}(g l(m-1 / n))$. Theorem follows from the fact that the representation $U_{q}(\mathrm{gl}(m / n))$ on W, which we obtain by means of the inverse formulae to (10), is the representation given in Theorem 1.

4 Conclusion

In this paper we gave the method of construction of the q-boson-fermion realization of quantum superalgebras and applied it to the quantum superalgebra $U_{q}(\mathrm{gl}(m / n))$. Onc of the advantages of this method, in comparison with [37], is that we automatically obtain a realization and we do not need to verify the generating relation.

The other advantage we see in the fact that our realization is expressed by means of polynomials of q-deformed bosons and fermions. On the other hand, we can easily obtain the Dyson realization of quantum superalgebra. For this purpose, it is sufficient to choose a realization of the generators of the algebra \mathcal{B} in the form

$$
\begin{equation*}
a^{+}=A^{+}, \quad a=\frac{[N+1]}{N+1} A, \quad q^{x}=q^{N} \tag{11}
\end{equation*}
$$

where $\left[A, A^{+}\right]=1$ and $N=A^{+} A$. It is easy to verify that the realization of $U_{q}(\mathrm{gl}(m / n))$ from Theorem 2 with realization (11) of the algebra \mathcal{B} and with a trivial realization of the subalgebra $U_{q}(g l(m-1 / n))$ leads, after homomorphism of $U_{q}(\mathrm{gl}(\mathrm{m} / n))$, to the realization given in [37]. In this case, the realization is of course expressed by means of a series in the operators A^{+}and A. Therefore, we prefer our form of realizations.

Finally, our realizations contain, in contrast with those in [37], quantum sub superalgebras. Various forms of realizations of this sub-superalgebra give various realizations of the quantum superalgebra. For instance, by the presented method we can find realization of $U_{q}(g l(m-1 / n))$ on $\mathcal{W}(m-$ $\left.2, n, U_{q}(\operatorname{gl}(m-2, n))\right)$ and use this realization in our formulae. In this case we obtain the realization of $U_{q}(g l(m / n))$ on $\mathcal{W}\left(2 m-3, n, U_{q}(\operatorname{gl}(m-2 / n))\right)$. On the other hand, we can construct the realization of $U_{q}(\operatorname{gl}(m-1 / n))$ on $\mathcal{W}\left(n-1, m-1, U_{q}(\mathrm{gl}(m-1, n-1))\right)$. Using this realization in our formulae we obtain realization $U_{q}(\mathrm{gl}(m / n))$ on $\mathcal{W}\left(m+n-1, m+n-1, U_{q}(\mathrm{gl}(m-1, n-1))\right)$. The possibility of using similar recurrence is, in our opinion, one of the most important advantages of presented construction.

Partial support from grant 201/01/0130 of the Czech Grant Agency is gratefully acknowledged.

References

[1] M. Jimbo: Lett.Math.Phys. 10 (1985) 63; 11 (1986) 247.
[2] V. Drinfeld: Proc.Intern.Congress of Mathematicians, Berkeley, 1986, 798.
[3] P. Kulish and N. Reshetikhin. Lett.Math.Phys. 18 (1989) 143.
[4] M. Chaichian and P. Kulish, Phys. Lett. 234B (1990) 72.
[5] S. Sauler, Nucl. Phys. B336 (1990) 363.
[6] M. Bershadsky and H. Ooguri, Phys. Lett. 229B (1989) 374.
[7] L. Kauffiman and H. Saleur, Free Fermions and the Alexander-Conway Polynomial, preprint EFI 90-42.
[8] T. Hayashi Commun. Math. Phys. 128, (1990) 129.
[9] A.J. Macfarlane: J.Phys.A: Math.Gen. 22 (1989) 4581.
[10] L.C. Biedenharn: J.Phys.A: Math.Gen. 22 (1989) L873.
[11] J. Schwinger, in Quantum Theory of Angular Momentum, Acad. Press, New York London, 1965.
[12] R. Floreanini, V. P. Spiridonov and L. Vinet, Commun.Math.Phys. 137 (1991) 149.
[13] F. J. Dyson, Phys. Rev. 102, (1956) 1217.
[14] T. Holstein and H. Primakoff, Phys. Rev. 58, (1949) 1098.
[15] M. Chaichian, D. Ellinas and P. P. Kulish, Phys. Rev. Lett. 65,(1990) 980.
[16] J. da-Providencia, J. Phys, A: Math. Gen. 26, (1993) 5845.
[17] C. Quesne, Phys. Lett. A153,(1991) 303.
[18] R. Chakrabarti and R. Jagannathan., J. Phys. A: Math. Gen. 24, (1991) L711.
[19] .J. Katriel and A. I. Solomon, J. Phys. A: Math. Gen. 24, (1991)2093.
[20] Z. R. Yn, J. Phys. A: Math. Gen. 24, (1991) L1321.
[21] A. Kundu and M. Basu Mallik, Phys. Lett. A156, (1991) 175.
[22] F. Pan. (Own., Phys. Lett 8 (1991) 56.
[23] Č. Burdík: J.Phys.A: Math.Gen. 18 (1985) 3101.
[24] C. Burdík:, Czcchoslovak J. Phys. B36 (1986), 1235.
J.Phys.A: Math.Gen. 19 (1986) 2465.
J.Phys.A: Math.Gen. 21 (1988) 289.
[25] M. Havliček and W. Lassner, Rep. Mathematical Phys. 8 (1975), 391. Internal. J. Theoret. Phys. 15 (1976), 867.
[26] P. Exner and M. Havliček Ann. Inst. H. Poincare Sect. A (N.S.) 23 (1975) 335.
[27] T. D. Palev, J. Phys. A: Math. Gen, 30 (1997) 8273, hep-th/9607222.
[28] A. Angelueci and R. Link, Phys. Rev. B46,(1992) 3809.
[29] N. I. Karchev, Tcor, Mat. Fiz. 92, (1992) 988.
[30] C. Burdík and O. Navrátil: J.Phys.A: Math.Gen. 23 (1990) L1205.
[31] Č. Burdík, L. Černý, and O. Navrátil: J.Phys.A: Math.Gen. 26 (1993) L83.
[32] Č. Burdík and O. Navrátil: Czech.J.Phys. B47 (1998) 1301.
J.Phys.A: Math.Gen. 32 (1999) 6141. Inter. Journ. of Mod. Phys. Lett. 14 (1999) 4491.
[33] T.D. Palev: J.Phys.A: Math.Gen. 31 (1998) 5145.
[34] A. J. Bracken, M. D. Gould and J. R. Links, Phys. Rev. Lett. 74, 2768 (1994); cond mat/9410026.
[35] M. D. Gould, K. E. Hibberd and J. R. Links, Phys. Lett. A212, 156 (1996); cond mat/9506119.
[36] A. Kümper and K. Sakai, J. Phys. A34, 8015 (2001); cond mat/0105416.
[37] T.D. Palev. Mod. Phys. Lett. A 14 (1999) 299.

Received on August 1, 2003.

[^0]: ${ }^{1}$ Department of Mathematics and Doppler Institute, FNSPE, Czech Technical University, Trojanova 13, CZ-120 00 Prague 2, Czech Republic
 ${ }^{2}$ Department of Mathematics, FTS, Czech Technical University, Na Florenci 25, CZ-110 00 Prague 1, Czech Republic

