


1 Introduction

Quantun groups or q deformed Lie algebras imply some specific deforma-
tions of classical Lie algebras. From a mathematical point of view, it is a
noncommutative associative Hopf algebra. The structure and representa-
tion theory of quantum groups have been developed extensively staring from
works by Jimbo [1] and Drinfeld, [2] and many authors.

In the course of studying quantum algebras, a lot of attention has been
paid to the case of quantum superalgebras [3], [4). These algebras provide
solutions to the Yang -Baxter equations and there may serve as a source of
new exactly solvable models in statistical mechanics [5]. The applications
in field theory are connected with the WZW models [6] and we can find
some application of quantum superalgebra U,(gl(m/n)) for construction of
the Alexander- Conway polynomial in the knot theory [7].

The Weyl and Clifford algebras also admit quantum deformation [8] with
¢- analogues of the Bose, and respectively, Fermi oscillator operators as gen-
crators [8, 9, 10]. These quantized algebras have been used to construct
oscillator realizations of the quantum algebras that correspond to all classi-
cal Lie algebras [8]. These realizations are of the Jordan-Schwinger type [11].
The realizations of this type for quantum superalgebras were constructed in
[12]. Tn the literature there exist Dyson [13] and Holstein-Primakoff [14]
realizations which were first written for the algebra sl(2).

The first "quantum” version of Holstein-Primakoff was worked out for
U,(s1(2)) [15] and then for U, ((sl(3)) [16]. These realizations found immediate
applications [17-22].

In our paper (23] we formulated the method starting from the Verma
modules for obtaining boson realizations and in [24] we obtained explicitly a
braid class of realizations which generalized the results from [25, 26}.

Later the idea of boson—fermion realizations was extended to the Lie
superalgebra, and the Dyson type boson-fermion realizations were explicitly
given in [27], generalizing the results to sl(2/1) ([28], [29]).

In our papers [30, 31, 32] we studied the Dyson realizations of the series
algebras U, (sl(2)), U,(gl(n)), Uy(By), Uy(Cy) and Uy(D,). There is some
special case [31] for which the realization of the subalgebra U,(gl(n — 1)) in
the recurrence is trivial. Such special realizations of the quantum algebra
U,(sl(n)) of Dyson type were studied in [33].



The aim of the present paper is to show that it is possible to generalize our
method [23] to deriving the boson fermion realization, too. This will be ex-
cmplified by the quantum superalgebra Uy(gl(m/n)). This superalgebra can
be applied to physical problems such as strongly correlated electron systems
[34. 35. 36]. We explicitly see the recurrence with respect to Uy (gl(m — 1/n))
and consequently we will show that again it is a generalization of the result
from [37].

2 Preliminaries

We will use the definition of the quantum superalgebra U,(gl(m/n)) which
can be fouund in [37].

Let ¢ be an independent variable, 4 = C[g,q7'] and C(g) be a division
field of A. The superalgebra U,(gl(m/n)) is the associative superalgebra
over C(q) generated by even generators K;, K7',i=1,2,..., m+n, Ex, Fy,
k=1,...,m+n—1 k # m, and odd generators E,,,, F,,, which satisfy the
following relations: :

KK, = KK, KK =K'k,
KK '=1, K/'K;'=K;'K[!
K.E; = qE:K;, K7 'E, =q 'EK',
K,F; = ¢ 'FK;, K['F, = qF,K;"
K,E,_, =q 'Ei_|K;, K'Eioy =qE;_ K[,
K.Fi_\ = qF,_\K,, K[ 'F,_y =q 'FL K]

[E,.Ej}=0, [F.F;)=0  for j#4,ix1
[E,‘,Fj]:() for 1-',6_]

K.K>| - K7'K; (1)
[Ei. F] = Ko 2 for i#m
q-q
KKy — K3 K

E,F, + FoEm = g
q9—q

E!E) —(q+ ¢ " )EE\E, + Exy \E} =0 for i#m

FFy - (q+q¢ WEFuF,+ Fu, FP =0 for 1 #m

Efn = F,gl =0,

{Em—lEm - quEm—laEmEm+l - qu+lEm} =0,

{Fm~1Fm - QEnFm~la FmFm+l - qu+1Fm} =0,



where [X.Y] = XY — Y X is the commutator and {X,Y} = XY + Y X is
the anticommutator of two elements.
The Hopf structure of this superalgebra is defined by the following oper-

ations:
1. Coproduct A (k=1,2,...,m+n,r<mand s> m)

=11 AKEY =K' @ K
(E.)=E.®1+ K, K, ®E, AF)=F®K 'K, +1®F,
(BEp)=Epn®@1 4+ KnKni ®FE, AFR)=F.9K,'K,;\,, +1®F,
(E)=E.®1+K'K,,,®FE, A(F)=F.QKK;+1®F,.

> D> DD

2. Counit ¢

3. Antipode S

S(1) = S(K,) = K[! S(K") =
S(Er) = —I‘"Il\’r+1E S(F;) = —F.K, Kr+l r<m
S(Em) - _K—le+1Em S(Fm) = —FmeKm+1

S(E,) = —K-"KH+IE3 S(F,) = _EsKs_le+1 s>m.

However we do not use these operations for construction of the realization.

The method of construction used is the same as in the case of the Lie
algebras [23] or quantum algebra [32] and is based on using the indnced
representation. The difference from quantum algebra is that together with
q deformed boson operators [9], [10] we also use fermion operators.

The algebra B of the ¢g--deformed boson operators is the associative alge-
bra over the field C(g) generated by the elements of a*, a= = a, ¢* and ¢77,
satisfying the commutation relations

¢¢T=q7¢ =1, = ¢'atq*=qa’, g"aq™" = q"'a,
aat — ¢ 'ata = ¢*, aat —gata=q7"
The algebra B has faithful representation on vector space with the basic
clements |n), where n =0, 1, ..., of the form

“in) = q¢*n), a*ln)=|n+1), aln)=njn-1), (3)
(]" _ q—n
here [n| = .
where [n] PR



Because of odd generators E;, and F,, we construct realization by means
of the algebra B for even elements, and by fermion algebra F with elements
b* and b for odd ones. These fermion elements commute with the elements
of B and together fulfil the relations

bb=0btbt =0, bbT +bTb=1. (1)

The algebra F has faithful representation on vector space with the basis [0)
and |1} of the form

(-1)"

1- 1+ (-1)M
],“\[):T L

M -1y, M) =

[M+1)y. (5)

We use superalgebra H(r, s) for realization superalgebra. We mean the
superalgebra of 7 copies of the algebras B of ¢-deformed bosons and s copies
of the algebras F of the fermions. We suppose that the elements from B;
commute with the elements F; for all 7, k, and for elements x; € B; and
y; € Fi the relations [r;, 2x] = {y:, yx} = 0 for i # k hold.

As in the case of the Lie algebras or quantum groups our realizations
contain clements of quantum sub-superalgebra of Aq C U,(gl(n/n)) namely,
quantum superalgebra Uy (gl(m — 1/n)). The element z of this subalgebra
commutes with the elements from B;, and for the fermion clements bt the
relation

bt = (—1)%8"p* g (6)

holds. This superalgebra is denoted by W(r, s, Ap).

In general, we define
Definition. Realization of the quantum superalgebra A is called the ho-
momorphism p of A to the superalgebra W(r, s, Ay), where Ay is the sub-
superalgebra of A.

3 Construction of the realization
First, for construction of the realization we find the induced representation

of Uy(gl(m/n)). As subalgebra A, of U,(gl(m/n)) we choose a quantum
superalgebra generated by E¢, k > 1, F,, r =1,..., m+n — 1, K; and



K7' i =1,...,m+n Let ¢ be a representation of Ay on vector space

V7. Let A be the left regular representation on U,(gl(m/n)) @ V, ie. for
x.y € Uy(gl(m/n)) and v € V' the representation A is defined by

Mr)y®v)=zyQuv. (7)
Let Z be subspace of Uy(gl(m/n)) ® V' generated by the relations
TY®v =1 p(y)v,

forall r € Uy (gl(m/n)), y € Ag and v € V: Tt is easy to see that the subspace
7 is A invariant. Therefore, (7) gives the representation on the factor-space
W = [U,(gl(m/n))® V]/T.

To find the induced representation of U,y (gl(m/n)) explicitly we define the
clements

4\') = E|
Xp=Xe By — ¢ 'E X for k=2,....m (8)
.\’A,:,\'kAlEk_—quX'k_] for k:m+1,...,m+n—1.

It follows from (8) that X, for & < m are even and for & > m are odd
clements. We can derive from generating relations (1) that the elements X
fulfil the relations

XX, =¢'X,X,, fors <rand s < m:

X;=0, for r > m; (9)

X, X, = —q "X, X,, form<r<s.

Let [Ny, Ny, ..., Nppym—1) = |N) = XfV‘XQNZ,...,X,’xI;’l‘,'. Due to the
Poincaré Birkhoff -Witt theorem the space W of the induced representation
is generated by the elements |N) ® v, where Ny = 0, 1, 2, ... for k < m,
Nie=0,1fork>mandvel.

To obtain the explicit form of the induced representatlon we give some
relations. They can be proved by mathematical induction from relations (1).
Lemma 1. For any n =0, 1, 2, ... the following formulae hold:

E. XN, =¢"XN |E, —q[N|XN'X, for r <m
E. XN =¢"XNE, ; for r<m
EnXq = (~0)" X3 En

E, XN =(-1)NXNE, for r >m
' - N g VX 1-(=D" _yona

EXY, = X Er — — 4 X,.0'X, forr>m



E. XN =¢"XNE, for r>m
K\ XN =q¢"XVK,

K.XN, =¢ "X} K, for r > 1
F,XN = XNF, — ¢\ [N) X, XN'K,. K}, for r <m
1 N
Fa Xl = () X8 Fn 4 2 g XN K
N _ wN 1-(-1)" v N=1g-1
FVY,. = ‘\r F,- - -2—q X,.._IX, K, K,-+1 forr>m

N - -
XY = XUF - L X KRG - YK )

F,X,N=X,"F|+q‘"+‘[N]X,""Y,.Kl"K2 for l<r<m
— (1IN
FXN =XV 4+ (2 D™ xv-1y, x50k, for s> m
where
Y; = By
Ye = Yi 1B — g7 ERYioy for k=3,...,m
Y. =Y By — qELY: for k=m+1,...,m+n—-1.

We omit the details of the calculations and write the result for the action
of the induced representation on the basis elements |N) ® v.

m+n-—1
Theorem 1. Let 1 <r<m,s>m,t>1and S = Z N;. Then the
i=k
formulae
E(NY®v=|N+1)®v
EN)® v = —q[N,i)IN = 1,1 + 1,y ® v + g% 17N |N) ® (o

EnlNY®v = —q[Nu_i]IN = 1ot + 1) @ v + (=1)5mgNm-1+Nm | NY @ o( Ep )v

—_— - Ns—a
E“IN) ®—” — _%

K\|N)® v =¢°|N) ® pK,v
K|NY®v=q M1 @K

FIN)®v=—¢ ' [N]IN + 1.1 — 1,) ® (K, K} )v + [N) ® p(Fr)v
1_ —_ Nin
leN) v = %)'—Q_leN +1p ~ 1m) ® ‘P(Kme+l)U+

+H(=1)%"|N) ® p(Fn)v

q—N.._n |N — 1, + 1:) Qv+ qN.,—N,_n |N) ® Lp(E,.,)‘U



1— (=)

FIN)®v=— 3 gV IN + 1,0 — 1,) @ o(K; Ky )v + [N) @ o(F,)v
N,
F]lN)@'U [q—l_]qTIN—l )®‘P(K1K21)‘U+
L [Nilgs+

+ Z ’I_S'“[Nr“N ~-1)® ﬂP(erl—lK2)"+
r=2
m+n-—1 1~ 1) _s '
+ 3 R g mnv - 1) @ KT Koo + V) @ (R
give the induced representation of the quantum superalgebra U,(gl(m/n)).
We nse the notation [N +£1,) = |Ny,...,N; £1,..., Npyn_y).

To obtain the realization of quantum superalgebra Uy (gl(m/n)) we choose
the representation ¢, for which ¢(Fy)v = 0 and ¢(K))v = ¢*v and rewrite
the induced representation given in Theorem 1 by means of the elements
from W(m — 1,n, Ag). It follows from (3) and (5) that we substitute

qENe 5 gt fork<m
g — bibl + gt b b = ¢+ for k > m
IN + 1) = a} fork<m
[N} IN = 1) = ax fork<m
(_I)Nm+..-+Nk N + 1) = b:‘ for k> m
(_I)Nm+...+Nk 1__(71_2,1\/—- 1 ) — bk for k >m
e(Fi)Jv >0

QK)o — g 1o
P(KE" ) — k! for k > 2
W(Ex)v — ex fork#m
o(Fe)v = fi fork#m

(- l)qm‘P(Em)v — en

(1) p(Fm)v = fm
e(Yi)v = me for k <m

(=1)5mp(Yi)v = yi fork>m.



The factors (= 1)¥»+-+Ne-t reflect the fact that the corresponding clements
are fermions.

By substitutions (10) we obtain the realization of the quantum superal-
gebra Uy(gl(m/n)), which is given in the following theorem.
Theorem 2. Let her =2, ...,m—-lands=m+1,...,m+n—1. The
mapping p : U, (gl(m/n)) — W(m - 1,n,Uy(gl(m — l/n))) defined by the

formulae

pF) = —’II’:—lbsk:ll‘sz + f;

ME) =af
) = —qar_af + ¢ e,
PEw) = —qap bF + M
PE) = g 'he | bF + q™ e,
/)(l\'|) — (I,\+11+.r2+...+r,,,+n_|
p(N,) =q "k,
/)(I\'m) =4q rm_lkm
PN = ¢ Tk,
/)(Fr) = ‘(I‘Ia:—la‘rkrkr_l] + fr
/)(P‘"l) - (['Ia;yiflhmkkkm+l + fm
(
M T mtn—1— - —A—IT1—...—Tm4n—
p(Fl):_q_q,l((f\+ |+t intn— 1k21_qA11 Tmy l+lk2)+
m—| m+n—1
+ Z "’ﬂ[ﬁkirr‘mA'r"Hufl+1.7/rk2 + Z [)rq7A71r+l_”'”'Tm)r”ili’/.s-k‘z
r=2 r=1m

is the realization of the quantum superalgebra Uy (gl(m/n)).

In the formulae we used the aberrations ¢=% = beb! + ¢t'bf by for k > m
and ¢t s = ¢*r¢® for simplicity.

Proof: Since the representations of B and F given in (3) and (5) are faithful,
the representation W(m—l, n, Uq(gl(m—l/n))) is faithful on the vector space
I generated by |N) ® z, where 2 € U,(gl(m — 1/n)). Theorem follows from
the fact that the representation Uy (gl(m/n)) on W, which we obtain by means
of the inverse formulae to (10), is the representation given in Theorem 1.



4 Conclusion

In this paper we gave the method of construction of the g-boson—fermion
realization of quantum superalgebras and applied it to the quantum super-
algebra Uy (gl(m/n)). One of the advantages of this method, in comparison
with [37], is that we automatically obtain a realization and we do not need
to verifv the generating relation.

The other advantage we see in the fact that our realization is expressed
by means of polynomials of g-deformed bosons and fermions. On the other
hand, we can easily obtain the Dyson realization of quantum superalgebra.
For this purpose, it is sufficient to choose a realization of the generators of
the algebra B in the form

_W+
T ON+1

where [4, A*] = 1 and N = A*A. It is easy to verify that the realization
of U,(gl(m/n)) from Theorem 2 with realization (11) of the algebra B and
with a trivial realization of the subalgebra U,(gl(m — 1/n)) leads, after ho-
momorphism of U,(gl(m/n)), to the realization given in [37). In this case,
the realization is of course expressed by means of a series in the operators
A* and A. Therefore, we prefer our form of realizations.

Finally, our realizations contain, in contrast with those in [37], quantum
sub superalgebras. Various forms of realizations of this sub-superalgebra
give various realizations of the quantum superalgebra. For instance, by the
presented method we can find realization of U,(gl(m — 1/n)) on W(m -

at = AT, A, ¢F=4", (11)

2,n,Uy(gl(m — 2, n))) and use this realization in our formulae. In this case
we obtain the realization of Uy(gl(m/n)) on W(2m —3,n,U,(gl(m — 2/n))).
On the other hand, we can construct the realization of U,(gl(m — 1/n)) on
W(n— 1,m—-1,Uy(gl(m-1,n— 1))) Using this realization in our formulae we
obtain realization U,(gl(m/n)) on W(m+n—1, m+n—1,U,(gl(m-1, n—l))).
The possibility of using similar recurrence is, in our opinion, one of the most
important advantages of presented construction.

Partial support from grant 201/01/0130 of the Czech Grant Agency is gratefully
acknowledged.
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