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I Introduction

Quatiluin groups o q eformed Lie agebras iply some specific deforma-
tions of' classical Lie algebras. From a mathematical point of vw, it is a
noncomnintative ssociative Hopf algebra. Te structur ad representa-
tion heory of qantum groups have been developed extensively staring from
wotks bv Jimbo 11 ad Drinfeld, 21 and any athors.

In te. course of studying quantum algebras, a lot of attention as ben
paid to i cse of quantum superalgebras 3 4 These algebras provide
solutions to the Yang -Baxter equations a tere my serve as a sourc of
new exactlY solvable models i statistical mechanics 5]. The applications
in field theory are connected with the WZW models 6 and we (.,all find
some application of quantum superalgebra Ugl(in/n)) for construction of
the Alexander Conway polynomial i the. knot theory 7.

The Weyl and Clifford algebras also admit quantum deformation [8] with
q analogues of te Bose, and respectively, Fermi oscillator operators as gen-
erators [8 9 10) Tse quantized algebras ave been used to construct
oscillator realizations of the qantum algebras that correspond to all cassi-
cal Lie agebras [8]. Tese realizations are of the Jordan-Schwinger t ype [111.
The realizations of this type for quanturn superalgebras were constructed in
f12] I the literature tere xist Dyson 113] and Holstein Primakoff 141
realizations which were first written for the algebra s2).

The first quantum" version of Holstein-Primakoff was worked out for
(J,(sl(2)) [15] ad ten for ,((sl(3)) 16]. These realizations found immediate
applications 17 22].

In or paper 23] we formulated the method starting from the Verma
modules for obtaining boson realizations and in 24] we obtained explicitly a
braid lass of realizations wich generalized the results from 25, 26].

Later te iea of boson-fermion realizations was extended to the Lie
superalgebra, and the Dyson type boson--fermion realizations were explicitly
given ill 27], generalizing the results to sl(2/1) 28], 29]).

In or papers 30, 31, 32] we. studied the Dyson realizations of the series
algebras ,(sl(2)), ,(gl(n)), ,(B,,), ,(C,,) and ,(D,,). There is some
special case 31] for which the realization of the subalgebra ,(gl(n - ) in
the ecurrence is trivial. Stich special realizations of the antum agebra
U,,(sl(n)) of Dyson type were studied in 331.

1



The aiin of the present aper is to show that it is possible to generaliz or
inethod 231 to driving te boson ferrnion realization, too. This will b x-
vinplifi(xi by te quantinn superalgebra Ugl(m/n)). This superalgebra can
b aplied to physical problems sch as strongly correlated electron systerns
[34. 35. 36]. We explicitly see the recurrence with respect to Ugl(m - 1/n))
and consequently we will show that again it is a generalization of te result
from 371.

2 Preliminaries

M, ill s(, the definition of the antum superalgebra Ugl(m/71)) which
call be folind in [37].

Let q be a idependent ariable A = C[qq-'] and C(q) be a division
field of A. Te superalgebra U(gl(m/n)) is the associative superalgebra
over C (q) generated y ve gnerators Ki, KZ-', i = 1, 2_ m + n, Ek, Fk,
k 7n - k 7� m, ad odd generators E, F,,,, which satisfy te
following relations:

IICI K., K.7 Ki , Ki K3-1 = K7- 1 K ,

KiK,- I, K-1KJ-1 = Kj-'K-1

IA',E, qEK, KZ-'E = q-'EiK,-'

KF� q-'F�Kj, K-' F = q�K- 1

Ki Ej I = q-'Ei-,Ki K,-'Ej-, qEi-,Kl-'

KjFj I = j-1K, KI-'Fj-l q-'Fi-,Kt-'

[E,, Ej = 0, [F, j = for j y- i, i ± I

[Ej� Fjj = for i j

KiK-' - A-'Kt+l
[Ei. F] -- 1+1 for i 5 m

q- q I

+ E. K.K.+ - K;lK�;+'I
q - q-1

F,"E,± - q + q-')EE�±jE, + E±,E, = for i 54 m

F�'F± - (q + q-') FjFj± I F + ,± I Fj = fo r i :- n
E 2 = F '2 = 

E. I E. - qE.E.- 1, E.E. I - qE,. I E,. 0,

F, I F. - qF.F.- 1, F.F., I - qF.+, F. 0,
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where [X, Y] X - X is te ommutator and I X Y = XI' YX is
the anticoninnitator of two elements.

T he Hopf structure of this superalgebra is defined by the following oper-
ations:

1. Coproduc A (k = 1 2 in n, r < m and s > i)

A(K±l = K± 9 K±1k k k

A(E,) E, 1 + KK-11 E A(F,) F, K- 1 Kr+, I ,1+ r

A(E,.) E,,, 0 1 + K.K.+, 0 E. A (F.) F,,� 9 K;�'K,-,�+', I F,,,

A(E,) E�, 0 1 + K-'K,+, 0 E, A (F,) (9 K, K�,-+' I 

2. Counit
E(1 = E(Kr) -(K-') 1

E(E,) --(F,) = 

3. Antipode 

S(1 = I S(K, = Kr-' S(Kr-') Kr

S(Er) -Kr-'Kr+lEr (F,) - F, Kr K,-+', r < n

S(E.) -K,-n'K-+',E., S(F.) -FmKmKm+lM

S(E,) -K�,K-',E,, S(F,) -FK-'K.,+, S>M.

However w (lo ot se these operations for construction of the realization.

The method of onstruction sed is the same as in the case of the Lie

algebras 23] or quantum algebra 321 and is based on using the iduced

representation. Te ifference from quantum algebra is that together with

q eformed boson operators 9 [10] we also use fermion operators.

The algebra of te q--deformed boson operators is the associative alge-

bra over te field C(q) generated by the elements of a+, a = a, q and q-',

satisfying the ommutation relations

,Tq-- = q"q-T qXa+q- = qa+, qxaq _ = q-1a,
+ -I x + = -x (2)aa q aa q aa qa+a q ,

The algebra as faithful representation on vector space with the asic

elements in), where n = , 1, ... , of the form

qxjn)=q'jn), an)=In+l), ajn)=[njjn-1), (3)

where [n] q
q - q-1
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Because of odd generators E and F,,, we onstruct realization by means
of the agebra for even elements ad by fermion algebra with eernents
V nd b for dd ones. These ferinio ements commute with the elements
of a together fiilfii the relations

bb = bb = , bb+ + bb = I (4)

The gebra has faithful representation on vector space with the basis 10)
and 11) of he form

(-i)AI JAI - 1 I l) = i + -1)A1 JAI + 1) (5)
2 2

We se superalgebra W(r, s) for realization superalgebra. We man tile
superalgebra of r copies of the algebras 5 of q-deformed bosons a 5 opies
of te agebras of the fermions. We, suppose that the elements from i
commute Nvith the lements k for all i, k, and for lements i and
yj G T t h relations [Xi, Xk = I Y, Yk I = for i k hold.

As in h ase of tile, Lie algebras or quantum groups our realizations
contain vlernents of antum sub-superalgebra of AO C U(g](in/n)) namely,
quantinn superalgebra U.(gl(m - I/n)). The element x of this subalgebra
coninnites wit h elements from Bi ad for te fern-lion elements tile
relation

xb± = _I)deg xb±x (6)

holds. This superalgebra is dnoted by W(r, s, AO).
In general w dfine

Definition. Realization of te antum superalgebra A is alled te ho-
moniorphism p of A to the superalgebra W(r, s, AO), where A is the sub-
superalgebra of A.

3 Construction of the realization

First, for onstruction of the realization we find th iduced representation
of Uq(gl(m,/n)). As subalgebra AO of gl(m/n)) we coose a qantum
superalgebra generated y Ek, k > , r = 1, m + n - , K and
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K7- 1, i = 1, . . . m + n Let be a representation of AO on vector space

1'. Lt A b te lft, regidar representation o Ugl(m/n)) V i.e. for

X' .1] G U(g1(zn/n)) nd v c V the representation A is defined by

A (x) (y 7 = xy v . (7)

Let I e subspace of U(gl(m/n)) 9 V generated by the relations

XY 0 = X �O(Y)V'

foi- all X E C A( ad 7Y C 17. It is easy to see that the subspace

l is A ivariant. Therefore 7 gives the rpresentation on the factor space

To fin te induced representation of Uq(gl(m/n)) explicitly we efine te

elements

X, E,

Xk Xk I E - q-'EkXk I for k = 2 iii (8)

Xk Xk -I Ek - qEkXk I for k = m + 1, . .. , ni + it -

It follows fom (8) that Xk for k < m are even and for k > m are odd

elements W can drive from gerating relations (1) that the elements Xk

fulfil the relations

XX = -11K1X1 for s < r and s < m;
X = ,

k for r > 'M; (9)

XX. = -qlx.�X" for m < r < s .

Let IN,, N2,...,Nn+m-,) = IN) = XNXN XN-,,- ' Due to the1 2 M+n-1
Poincar6 Birkhoff Witt theorem te space IV of the induced representation

is generated 1�y te elements IN) v were Nk = , 1 2 for k < m,

Nk = 0 I for k > n and v V.

To otain the explicit form of the induced representation, we give some,

relations. They can be proved y mathematical induction from relations (1).

Lemma 1. For any = 1 2 ... the following formulae hold:

EX' q'X' I E - q[N] XN-IX, for r < ir- r-
EXN q-NxNEr for r < Tn

r r
)NXNE.E,,,,,YN, (-q M

E,,,.Y,!" (_I)NY�E. for r > m

E'XN -NXrrt E _ (_l)N - NxN- 1Xr
r-1 q 2 q r-1 for r > in
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EX1 = q'X�'Er for r > m
r

KX = l.'VK,

if, x N = q-NxN r-licr for r > 
FrX1 X'Fr - q-'[NjXr-jX�-'K,-Kr-,'j for r < inr r

F..Y. (-1)vXZ F. I _ _l)N q-NX._,XN-IK.K,.,,
2

FrY� Y,,NFr I - (-l)Nq-N+2Xr _,Xr -lKr-IK,.+, for r > n

FIXN XNFI IN) XN-I(qN-I I 'KK�l - q-N+'K-lK2)q-q- I I

FxN x1VF +q-N+l [NIX'V-'YK-lK2 for I <r<mr r r I

FX� X�F, I (_I)N xN-1 YK-1K2 for s > n
2

where

2 = 2

1'k = Tk-jEk - q-'Ekl�-j for k = 3 ... , n

1'k = Yk-jEk - qEkYk-I for k = + 1, ... , i + -

W oit the etails of the calculations and write the result, for the action

of the induced representation on the basis elements IN) v.

7n+n-1

Theorem 1. Lt < r < in, S > in t > and Sk F N,. Then the

i=k

formulae

EIIN) v = IN + 11) v

E,.IN Ov = -[Nr-l]IN - ,_ + 1,) v + q Nr- - ',IN) 0 �p(Er)v

E.IN) 0 v = -q[N.-I]IN - 1.-j + 1,n) O v + (-I)s-q N_- +N- IN) (8) V (E.) v

E� IN) 9 v - q-N-- IN - L-1 + 1) 0 v + qN,-'-- IN) 0 V(E�,)v

2

K IN) 9 v = qs IN) 9 WKjv

KIIN) 9 v = q -N,-, (9 �pKjv

FrIN) 9 v = -q-'[Nr]IN + 1r-i - O (,-Kr-+'I)v + IN) 9 V(F,-)v

F.JN) v = I (- 1) q- N- IN + I.- V(K.K.+ )v+

2

1)'- IN) 0 V(F.)v
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FIN) 0 = I q-IV.+21N + 1.,_ - 1.) w(K,-'K.+j)v IN) 9 V(F.)v
2

F IN) v = - NjjqS'-1 IN - II) 9 p(KjKj-')v+
q - q-1

+ [Nllq-sl+l IN, - 1) v(K-'K2)v+
q-q-1

M-1
q-SI-1'IN,]IN-1,)(8)w(YK-'K2)v+

r=2
M+n-1

+ (-q)-'+ IN - 1.) 0 w(Y.K-'K2)v + IN) 0,p(Fj)v

E �2

give the induced representation of the quantum superalgebra Ugl(,rn1'n)).

We iis te otation IN ± ,) = IN,,-, N ± 1, - , Nn+n-])-

To obtai te realization of quantum superalgebra U(gl(nt/n)) we choose

the representation �o, for which o(Fj)v = and V(KI)v = q A v and rewrite

the iduced representation given in Theorem by means of the elements

from W(n - ljt, AO). It follows from 3) and (5) that we substitute

(I ±Nk q±.Tk for k < nt

q± Nj, bkb,, + q±lbkbk = q±T-k for k > m

IN + 10 - a+ for k < Mk

[Nk IN - 1k) - ak for k < m

(-l)lv-+---+Ivk-1 IN + 1k) bk+ for k > m

+IV 1 (-I)
1) Nw k- � � IN 1k) 4 bk for k > m

2
W(FI)v 0 (10)

W(K")v - q±-'

V(K�')v 4 k for k > 2r

W(Ek)v ek for k j m

�o(Fk)v fk for kA m

(-I)'W(E.)v e.

VMOV - Yk for k < m

(-1)'W(yk)1] Yk for k > m
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Thc factors (_I)N 4... N_ Ireflect te fact that the corresponding elements
air(, feriniorl"'.

By sbstitution- (10 w obtain the realization of te antum superal-
gebra Vq(gl(inl")), which is given in the following theorem.
Theorem 2 Let e 7 = 2 . . , n - I ad s = n + 1, . . . , rn + n - . The
mapping p t](g1(11t/T1)) -� W(in - , 7i, ,(gl(m - I/n)) defined bv the
foriniflae

p(E] a+I
1)(E, -qar la+ + qT I X, C,r

-qa,,,- lb+ + q,,- +,-T (7n

1)(E,) q-'I),-,b+ + q C8 S

p(A', q\+Tl+�r2+ -+X-+- I

p(K, q- 1- 1 k,

p(K,) q `-Ik,
j)(F,) -q-la+ ak,.k-', +

r- r+

p(I-',,,) q-'a' kkkjjj+j fj

P(Fj -qb+ bk-'A:,+ + f,
0"p(FI) q"+- +-r,,+,-'-lk-] q-A-xl '+lk2 +

q - q-1 2

nL I m+n I
+ a -A- r, Ik bq-rq yA:2

7 =- 2 r=Tn

is he realization of the quantum superalgebra Ug1(m/,r1)).
Ili the formula w used the aberrations q±xk = bkb+ + q±lb+bk for k > ik k
an q qxq', for simplicity.

Proof- Since he rpresentations of ad given in 3) and (5) are faithful,

die representation W (in - , n, U. gl (?n - 1 /n)))is faithful on the vctor space

IV generated 1) 'v IN) x, where x C- t� (g] (m - /n)). Theorem follows from

th fct hat th rpresentation U(gl(m/n)) on W, which we obtain by means

of te inverse formulae to (10), is the representation given i Theorem 

9



4 Conclusion

In this paper we gave the ethod of construction of the q-boson--fermion
realization of quantum superalgebras and applied it to the quantum super-
algebra ,(gl(Tn,/n)). One of te advantages of this method, in comparison
with 37], is that we automatically obtain a realization and we do not need
to verif'y the generating relation.

The other advantage we se in the fact that our realization is expressed
by means of polynomials of q -deformed bosons and fermions. On the other
hand w (-an easily obtain the Dyson realization of quantum superalgebra.
For tis purpose, it is sufficient to choose a realization of the generators of
the algebra in te form

(N + 1] N
(1 = A+ a = N A q = q

where [.4, A+ = and N = AA. It is easy to verify that the realization
of (,(g1(rn1n)) from Theorem 2 with realization (11) of the algebra and
with a trivial realization of the subalgebra Ugl(m - 1/n)) leads, after ho-
inoinorphism of Ugl(m1n)), to the realization given in 37]. In this case,
the realization is of course expressed by means of a series in the operators
.4-4 ad A. Therefore, we prefer our form of realizations.

Finally or realizations contain, in contrast with those in 37], quantum
sub superalgebras. Various forms of realizations of this sub -superalgebra
give various ralizations of the quantum superalgebra. For instance, by the
presented metho w can find realization of ,(gl(m - 1/n)) on (M 

2, n, U, gl(rn - 2 n))) and use this realization in our formulae. In this case

we otai te realization of Uq(gl(m/n)) on W(2m - 3 n, U,(gl(nt - 2/n))) 
On te other hand, we can construct the realization of .(gl(m - 1/,rt) on

Usingthisrealizationinourformulaewe

obtai ralization ,(gl(nt/n)) on W (m+n-1, m+n-1, U(gl(m-1, n-1))) 
The possibility of using similar recurrence is, in our opinion, one of the most
important advantages of presented construction.

Partial spport from grant 201/01/0130 of the Czech Grant Agency is gratefully
acknowledged.
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