
~
 

t""
' 

-
;l;>

 
-l

 
z 

::
co

 
U

)t
T

l 
n

<
 

;l
;>

­
t"

"'z
 

m
m

 
1

/:
)
 

t:
J
c
 

tT
l 

;l;>
 

~
-
l
 

z
­

o
o

 
m

Z
 

z -l
 z 0 -C/) tT

l 

tT
l 

l.
ll

 
I N
 

0 0 N
 

I U
J
 

l.
ll

 



The Langevin equation is the most general approximation for a large Yariety 
of dynamical systems affected by thermal fluctuations. It arises in the descrip­
tion of magnetic at the presence of magnetic field fluctuations, in the description 
of interface growth, in hydrodynamic turbulence theory, in stochastic quanti­
zation of gauge theories and in a large variety of other problems [1, 2, 3, 4]. Let 
us consider the Langevin equation for a scalar field in d-dimensional Euclidean 
space 

a¢~, x) = U[¢(t, x )] + 77(t, x ), (1J(x )77(x')) = D(x, x'), (1) 

where U[¢] is the nonlinear interaction potential, 77(t, x) is the Gaussian random 
noise, which accounts for the fluctuations of the system environment. The 
Minkovski-like (d + 1) dimensional notation x = (t, x) is used hereafter. 

The standard way to solve the Langevin equation (1) is to separate the in­
teraction potential U[¢] into a linear part L = G01 and a nonlinear part taken 
with the small parameter .\ \1[¢], and then solve the equation in each order 
of the perturbative expansion. The procedure is simplified by the assumption 
of the Gaussian statistics of the random noise which allows one to take into 
account only even order correlators of the random noise: all terms containing 
the odd number of 7] are equal to zero. The diagram technique for the iterative 
solution of the Langevin equatioa, often called the Wyld diagram technique [5], 
is identical to the Feynman diagram technique in quantum field theory. Simi­
larly to that in quantum field theory, it requires elimination of loop divrrgences 
by renormalization group methods [2, 3]. 

The degree of divergences arising in the perturbative solution of the Langevin 
equation depends on a particular type of the random force correlation function. 
Most approximations use random force 6-correlated in time 

(1J(kJ)TJ(k2)) = (2n)d+IJ(k1 + k2)D(k2). (2) 

The spatial part of the correlation function D(k) is assumed either to be a 
constant or to have a power behavior. This is an artifact of the perturbation 
solution and is done for the sake of analytical e\·aluation of the loop integrals. 

From a physical standpoint, in contrast, a random force acting in a limited 
range of scales is often desirable. for instance, a limited band forcing is the 
case for the stirred hydrodynamic turbulence and magnetic systems. 

In this paper we propose a novel method to describe the limited band 
stochastic forcing. It is shown, that for a narrow band forcing, an appro­
priate chose of the random force correlation functions yield a theory which is 
free of loop di\:ergences and does not require rcnormalization. The proposed 
method preserves the whole structure of the perturbation expansion, but the 
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decomposition with respect to the affine group is used instead of the Fourier 
transform. This change of the functional space provides cancellation of the 
loop divergences. In the limiting case of scale independent forcing all common 
results are preserved. 

The idC'a of the method is to study the dynamical system described by the 
Langevin equation separately at each scale. Following [6], instead of the usual 
span~ of the random functions f(:r, ·) E (0, A, P), where f(x) E L2 (Rn) for each 
given realization of the random process, we go to the multi-scale representation 
provided by the continuous wavelet transform 

I d (x-b) W1/J(a, b, ·) = JaJ-2'1/J -a- J(x, ·)ddx. (3) 

Since the structure of divergences and the localization of the solution are de­
termined by the spatial part of the random force correlator (see e.g. [3]), the 
wavelet transform is performed only in the spatial argument of the dynamical 
variable ¢, but not in its temporal argument. 

The existence by the inverse wavelet transform 

I n (X -- b) dadb 
j(x, ·) = c;;/ JaJ-2'1/J -a- W1/J(a, b, ·)~d+l (4) 

is provided by the admissibility condition 

C = s-1 I /~(kWddk =I /~(akWd < 
1/J d /k/d a a oo, (5) 

~ 

which constrains the choice of the basic wavelet '1/J E U (R''). The extra fac­
tor Sd, the area of a unit sphere in d dimensions, stands for the rotationally 
symmetric wavelet '1/J(x) = '1/J(/x/). 

The use of the wavelet coefficients W1/J(a, b, ·)instead of the original stochas­
tic process provides an extra analytical flexibility of the method: there exist 
more than one set of random functions W (a, b, ·) the images of which have co­
inciding correlation functions in the space of f(x, ·). It is easy to check that a 
random process generated by wavelet coefficients with the correlation function 

(W(a~, kJ)W(a2, k2)) = c,;;;1(2n)d+lc5d(kl + k2)at+~6(a1- a2)Do, 

has the same correlation function as white noise 

(}(ki)}(k2)) = (21r)dDo6d(k1 + k2) 

(W(a1, k1)W(a2, k2)) = (2n)dDoc5d(k1 + k2)(a1a2 )df2~(a1 ki)¢(a2k2). 
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Therefore, starting from a given random process in the space of scale-dependent 
functions W(a, b, t) rather than in a common space of square integrable fuJI(:­
tions f(x, t), we can construct a narrow band forcing with no contradictions 
to other physical constraints on forcing. This can be done by applying tlw 
requirement W(a, b, t) -t 0 for all a outside a certain domain [amin' arrwx]· 

As an example, let us consider the well known Kardar-Parisi-Zhang rnoJel 
of interface growth [3]: 

. A 2 
Z- vf).Z = 2"(\7Z) + TJ. (6) 

Substituting the wavelet transform 

J 
d , , dd+J k da 

Z(x) = C;;; 1 exp(z(kx- kot))a2'1/J(ak)Z(a, k) (21r)d+I ad+! (7) 

where k = (k, w), x = (x, t), into the equation (6), with the random force of 
the form 

(ij(ai, k1)ij(a2, k2)) = (27r)d+1od+I(ki + k2)af+1o(ai- a2)D(a2, k2), 
(i](a, k)) = 0, 

(8) 

after straightforward calculations, we get an integral equation 

( -zw + vk2)Z(a, k) = TJ(a, k)- ~a~1];(ak)C;;;2 J(a 1 a2 )~7];(a 1 k 1 )7];(a2(k- ki)) 
' ' dd+lk da da· 

k1 (k- ki)Z(ai, k1)Z(a2, k- kJ) (2rr)J+1
I a 1d.\.I a 2Ji1 • 

In one loop approximation this gives the contribution to the Green function 
G(k) = G0 (k) + A2G2 (k) + 0(A4

): 

G(k) = Go(k)- A2G~(k) J t:rr~~~~~ f).(ki) 
k1(k- ki)IGo(ki).i 2kk!Go(k- ki) + 0(A4

), 
(9) 

where G01(k) = -zw + vk2 is the zero-th order approximation of the Green 
function. The difference from the standard result obtained by Fourier transform 
[3] is in the form of the effective force correlator, which is scale dependent in 
our approach 

f).(k) = c;;; 1 J ~al1];(akWD(a,k) (10) 

and has the meaning of the effective force averaged over all scales. 
The Green function (9) obtained with the random force (8), does not depend 

on scale explidtly 
Z(u, k) = G(k)i](a, k). 
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Similarly to (9), for the corrdation function (ZZ) in one loop approximation 
C(k) = C0 (k) + A2C2 (k) + 0(A1

), we get 

1 '2 ' ' 
C2(a;, af, k) = 21Ga(k)i1f;(a;k)1j;( -a1k) (11) 

f 
drl+lk 

• 1 ,~_\,1 -.~-\ IGo(kJ)I 2 IGo(k- ki)I 2[ki(k- ki)] 2f).(ki)f).(k- kJ). 

For the random stirring which does not depend on scale, the integration 
over a in equation (10), after substitution k 1 = k~ +~in both equations (9,11), 
leaJs to the known result [3]. 

For example, let us consider a single band forcing 

D(a, k) = o(a- a0 )D(k) ( 12) 

and the "Mexican hat" as a basic wavelet 

1];(k) = (21r)df2( -zk? exp( -k2 /2), CT/J = (27r)d. (13) 

Substituting (12) and (13) into the equation (9), after integration over the 
frequency, in the leading order in the small parameter :z: = lkl/lkd, we get the 
contribution to the Green function: 

2 2 Sd aged- 21oo 2 2 d+l ·I G(k) = G0 (k) + >. G0(k)-( )d -
2 
-d D(q) exp ( -a0q ) q dq + 0(>. ). 

27r I/ 8 · 0 

(14) 

For constant D(q) = Do the obtained contribution to the Green function is 
finite and does not require any further renormalization. 

Absolutely in the same way we can evaluate other polynomial interactions 
in the Langevin equation. For instance, for the simplest Langevin Pquation 
with square interaction tZ2 , which is often used in hydrodynamics, the corrP­
sponding equations for (9) and (11) differ from that obtained above only by the 
sign and the absence of the scalar products of the wave vectors in each vPrtPx. 
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Ar1TaHCKI1H M. B. E5-2002-35 
YpmmeHI1e JlaH)J(eBeHa c MacuiTa6Ho-3aBI1CHMhiM lli)'MOM 

YpaBHeHI1e JlaH)J(eBeHa d<)> (t,x)l dt=U[<)> (t,x)] +TJ (t,x) .51BmJeTc.51 o.rmoii 
113 Hai160Jiee 061lli1X aiUipOKCI1Mai.(I1H .IIJI.51 lliHpOKOro KJiacca cpH311'·1eCKI1X, XI1M11-
t.JeCKI1X, 6110JIOrHt.JeCKI1X 11 Jlpymx CHCTeM, B3ai1MO):leHCTBYJOill11X C cpJI)'KT)'Hpyro­
lllHM OKp)')KeHHeM. 06bilJHbiM cnoco60M pellleHI1.51 ypaBHeH11.51 JlaH)J(eBeHa .5IBJI.5leT­
C.5I CTOXaCTHlJeCKa.5I TeOp11.51 B03MyllleHI1H, CBO):l}lllla.5IC.51 K pa3JIO)J(eHHIO no MaJIOMY 
napaMeTpy B3aHMO,[leHCTBH.5I, C nOCJie):lyJOIUHM ycpe,l:lHeHHeM no raycCOBOH CJIYt.JaH­
HOH cHJie 11 (t,x) B Ka)J():loM nop.5IAKe TeopHH B03MymeHHH. TaKoii nOAXOJl np11BO­
JlHT K fl0.5IBJieHHIO neTJieBbiX paCXO,I:lHMOCTeH H Tpe6yeT npHMeHeHI1.51 MeTO):la pe­
HOpMaJIH3aui10HHOH rpynnbi. TipeJ.IJIO)J(eHa HOBa.5I TeXHI1Ka nepTyp6aTI1BHOrD pe­
WeHH.5I ypaBHeHH.51 JlamKeBeHa, OCHOBaHHa.5I Ha BeHBJieT-npeo6pa30BaHH11. 
TioKa3aHO, 'ITO ):lJI.51 CJIYt.JaHHOH CHJibl, ):leHCTBYJOilleH B orpaHH'IeHHOH nOJIOCe Mac­
liJTa6oB, naHHbiH MeTO):l HenocpeJlCTBeHHO npHBO):lHT K KOHelJHOMY pe3yJibTaTy 
H JlaJihHeHWeH nepeHOpMHpOBKH He Tpe6yeTC.51. 

Pa6oTa BhmOJIHeHa B Jia6opaTOp11H 11HcpopMaUHOHHhiX TexHonomii OlUIH. 

l Coo6weHHe 06be)lHHeHHOfO HHCTHTyra ll!lepHbiX HCCJJe)lOBaHHH. L(y6Ha, 2002 

Alta1sky M. V. E5-2002-35 
Langcvm Equation with Scale-Dependent Noise 

The Langevin equation d<D(t.x)ldt=U[Q>(t,x)]+TJ(t,x) is one of the most 
general approximations for a large variety of physical, chemical, biological 
and other systems with fluctuating environment. The common way to solve 
the Langevin equation is the stochastic perturbative expansion in a small interac­
tion parameter with the averaging over the Gaussian random force 11 (t,x) in each 
order of the perturbation expansion. This approach leads to the divergences, simi­
lar to those in quantum field theory, and requires the application of renormaliza­
tion group methods. In this paper a perturbatiOn theory based on wavelet transform 
is proposed. It is shown, that for a limited band forcing, the proposed technique 
leads directly to a finite result and does not require renormalization. 

The investigation has been performed at the Laboratory of Information Tech­
nologies, JINR. 
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