


The Langevin equation is the most general approximation for a large variety
of dynamical systems affected by thermal fluctuations. It arises in the descrip-
tion of magnetic at the presence of magnetic field fluctuations, in the description
of interface growth, in hydrodynamic turbulence theory, in stochastic quanti-
zation of gauge theories and in a large variety of other problems [1, 2, 3, 4]. Let
us consider the Langevin equation for a scalar field in d-dimensional Euclidean
space
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where U[@)] is the nonlinear interaction potential, (¢, x) is the Gaussian random
noise, which accounts for the fluctuations of the system environment. The
Minkovski-like (d + 1) dimensional notation z = (¢, x) is used hereafter.

The standard way to solve the Langevin equation (1) is to separate the in-
teraction potential U[¢] into a linear part L = G;' and a nonlinear part taken
with the small parameter AV[¢], and then solve the equation in each order
of the perturbative expansion. The procedure is simplified by the assumption
of the Gaussian statistics of the random noise which allows one to take into
account only even order correlators of the random noise: all terms containing
the odd number of 7 are equal to zero. The diagram technique for the iterative
solution of the Langevin equation, often called the Wyld diagram technique [3],
is identical to the Feynman diagram technique in quantum field theory. Simi-
larly to that in quantum field theory, it requires elimination of loop divergences
by renormalization group methods |2, 3].

The degree of divergences arising in the perturbative solution of the Langevin
equation depends on a particular type of the random force correlation function.
Most approximations use random force é-correlated in time

(n(k)n(k2)) = (20)*16(ky + k2) D (k). (2)

The spatial part of the correlation function D(k) is assumed either to be a
constant or to have a power behavior. This is an artifact of the perturbation
solution and is done for the sake of analytical evaluation of the loop integrals.

From a physical standpoint, in contrast, a random force acting in a limited
range of scales is often desirable. for instance, a limited band forcing is the
case for the stirred hydrodynamic turbulence and magnetic systems.

In this paper we propose a novel method to describe the limited band
stochastic forcing. It is shown, that for a narrow band forcing, an appro-
priate chose of the random force correlation functions yield a theory which is
free of loop divergences and does not require renormalization. The proposed
method preserves the whole structure of the perturbation expansion, but the
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decomposition with respect to the affine group is used instead of the Fourier
transform. This change of the functional space provides cancellation of the
loop divergences. In the limiting case of scale independent forcing all common
results are preserved.

The idea of the method is to study the dynamical system described by the
Langevin equation separately at each scale. Following [6], instead of the usual
space of the random functions f(z,-) € (Q, A, P), where f(z) € L?(R") for each
given realization of the random process, we go to the multi-scale representation
provided by the continuous wavelet transform
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Since the structure of divergences and the localization of the solution are de-
termined by the spatial part of the random force correlator (see e.g. [3]), the
wavelet transform is performed only in the spatial argument of the dynamical
variable ¢, but not in its temporal argument.

The existence by the inverse wavelet transform
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which constrains the choice of the basic wavelet ¥ € L2(R"). The extra fac-
tor Sy, the area of a unit sphere in d dimensions, stands for the rotationally
symmetric wavelet ¥ (z) = ¥(|x|).

The use of the wavelet coefficients W, (a, b, -) instead of the original stochas-
tic process provides an extra analytical flexibility of the method: there exist
more than one set of random functions W (a, b, -) the images of which have co-
inciding correlation functions in the space of f(z,-). It is easy to check that a
random process generated by wavelet coefficients with the correlation function
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has the same correlation function as white noise
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Therefore, starting from a given random process in the space of scale-dependent
functions W (a, b, t) rather than in a common space of square integrable func-
tions f(zx,t), we can construct a narrow band forcing with no contradictions
to other physical constraints on forcing. This can be done by applying the
requirement W(a, b,t) — 0 for all a outside a certain domain [, Gmac)-

As an example, let us consider the well known Kardar-Parisi-Zhang model
of interface growth [3]:
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Substituting the wavelet transform
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where k = (k,w),z = (x,t), into the equation (6), with the random force of
the form
(fi(ar, k1)7(az, ko)) = (2m) #1684 (k1 + ka)ai™'6(ar — a2) D(az, k2), ()
((a, k)) =0,

after straightforward calculations, we get an integral equation
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In one loop approximation this gives the contribution to the Green function

G (k) = Go(k) + \2Ga(k) + O(AY):
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where Gj'(k) = —w + vk? is the zero-th order approximation of the Green
function. The difference from the standard result obtained by Fourier transform
[3] is in the form of the effective force correlator, which is scale dependent in
our approach

A(K) = G} / -‘i—“w}(ak)ﬁp(a, k) (10)

and has the meaning of the effective force averaged over all scales.
The Green function (9) obtained with the random force (8), does not depend
on scale explieitly

Z(a, k) = G(k)i(a, k).

Similarly to (9), for the correlation function (ZZ) in one loop approximation
C(k) = Co(k) + N2 Ca(k) + O(AY), we get

Calai, ar, k) = —lGo( ) (aik)d(—ask) (11)
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For the random stirring which does not depend on scale, the integration
over a in equation (10), after substitution k; = k| + £ in both equations (9,11),
leads to the known result [3].

For example, let us consider a single band forcing

D(a, k) = 6(a — ag) D(k) (12)
and the “Mexican hat” as a basic wavelet
b(k) = (2m) Y2 (—ik)’ exp(~k*/2), Cy = (2m)%, (13)

Substituting (12) and (13) into the equation (9), after integration over the
frequency, in the leading order in the small parameter z = |k|/|k;|, we get the
contribution to the Green function:
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G(k) = Go(k) + N2G2(k) / D(q) exp (—aiq®) ¢**'dg + O(N),

(14)

For constant D(g) = Dy the obtained contribution to the Green function is
finite and does not require any further renormalization.

Absolutely in the same way we can evaluate other polynomial interactions
in the Langevin equation. For instance, for the simplest Langevin equation
with square interaction "{—Zz, which is often used in hydrodynamics, the corre-
sponding equations for (9) and (11) differ from that obtained above only by the
sign and the absence of the scalar products of the wave vectors in each vertex.
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