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1 Introduction 

In the. recent papers [1]-[11] the oscillatory and asymptotic prop­
erties of various types of differential equations 

(lu'(t)l 0
-

1u'(t))' + p(t)f[u(r(t))] = 0 (1) 

have been considered. In this paper we shall study those proper­
ties under the following hypothesis (H): 

(Hl) o > 0 is a real constant; 

(H2) p E C[to, oo ), p(t) > 0; 

(H3) TE C1[t0 , oo), r'(t) > 0, r(t) ~ t, limt..:+oo r(t) = oo; 

(H4) f E C(-00,00), f is nondecreasing, f. E C1(1f) M -
· (-oo,O) U (O,~), uf(u) > 0 for u # 0. · 

By a solution of (1) we mean a function u E C1[Tu,oo), Tu 2:: 
t0 , which has the property lu'(t)j 0

-
1u'(t) E C1[Tu, oo) and satisfies 

(1) on [Tu,oo). We consider only those solutions of (1) which 
satisfy sup{ju(t)I : t 2:: T} > 0 for all T 2:: Tu, We assume 
that ( 1) possesses such a solution. A nontrivial solution of ( 1) is 
said to be oscillatory if it has arbitrarily large zeros: otherwise 
it is said to be nonoscillatory. Equation ( 1) is called oscillatory 
if all its solutions are oscillatory. It is known that the condition 
f'0 p( s) <ls = oo is· enough for oscillation of (1 ). In our paper we 
are concerned the case when f 00 p( s) ds < oo. The aim of this 
paper is to present some new oscillatory criteria which are new 
also for o = 1, namely for the second order nonlinear differential 
equation 

u"(t) + p(t)f[u(r(t))] = 0. 

As is customary all functional inequalities are assumed to hold 
eventually, that is they are satisfied for all sufficiently large t. 

11991 Mathematics Subject Classification. Primary: 34Cl0. 
J<ey words and phrases: Oscillatory solution. 

l
. atn-n~.;$;,i?.il tl~;'1.-:yr 1· 

f~~~llhll lltClfi~;~~Jfl 
6£1Sil&t!OTEKA 

.._..., -----· 



2 Main results 

Theorem 2.1 Let f'(u) be nondecreasing on (-oo, -t*) and non­
increasing on ( t*, oo), t* ~ 0. Let a ~ 1. Further assume that 

J00 

p(s)lf[cr(s)]I ds = oo 

and moreover for some A > 0 

for all cf:. 0 

Joo ( 0 cir 0
-

2(s)r'(s)) 
T (s)p(s)- 4f'[±,h(s)] ds=oo. 

Then Eq. (1) is oscillatory. 

(2) 

(3) 

Proof. Assume on the contrary that Eq.(1) has an eventu­
ally positive solution u(t). (The case u(t) < 0 can be treated 

similarly.) Then 

(lu'(t)j 0
-

1u'(t))' = -p(t)f[u(r(t))] < 0. 

Hence, the function lu'(t)l 0
-

1u'(t) is decreasing. Therefore, either 

(i) u'(t) > 0, eventually or 

(ii) u'(t) < 0, eventually. 

Since 
·o > (lu'(t)J 0

-
1u'(t))

1 

= alu'(t)l 0
-

1u11(t), 

we see that u"(t) < 0. Condition (ii) now yields u(t) -+ -oo 
as t -+ oo. This is a contradiction. Therefore we conclude that 
u(t) > 0, u'(t) > 0, u"(t) < 0, eventually and 

Define 

[(u'(t))°]' = -p(t)J[u(r(t))]. 

w(t) = r 0 (t) [u'(t)]° . 
f[u(r(t))] 

2 

(4) 

(5) 

Then w(t) > 0 and 

w'(t) = 
a-1 , [u'(t)]° 0 [(u'(t))°]' 

ar T (t) f[u(r(t))] + T (t) f[u(r(t))] 

_
70

( t )-[u_'(_t)]_0 _J'_[u_( r_(t_) )_]u_'( r(t ))r'(t) 
J2[u(r(t))] 

r'( t) · 
- a r(t) w(t) - r

0
(t)p(t) 

-w( t) J'[u( r( t) )]u'( r( t) )r'( t) 
f[1t(r(t))] · 

(6) 

We claim that u'(t) -+ 0 as t -+ oo. To prove it assume the 
contrary, that is u'(t) ➔ 2c as t -+ oo, c > 0. Then u'(t) ~ 2c 
which on integration from t1 to t implies 

u(t) ~ u(ti) + 2c(t - ti) ~ ct, (7) 

eventually. Integrating ( 4) from t1 to t and using (7) one gets 

- [u'(t)]° + [u'(ti)]° = it p(s)J[u(r(s))] ds > it p(s)f[cr(s)] ds. 
ti t1 

Letting t -+ oo we have 

1
00 

p(s)J[cr(s)] ds < oo. 
f I 

This contradiction shows that u'( t) -+ 0 as t -+ oo. Therefore, 
for any A > 0 there exists a t1 such that .X/2 > u'(t), t ~ t1, 
Integrating the last functional inequality from t 1 to t we get 

>i 
u(t) ~ u(ti) + 2(t - ti)~ >it, 

and so for any >i > 0 and t large enough 

J'[u(r(t))] ~ J'[>ir(t)]. 

3 

f ~ t2 ~ fi 

(8) 



On the other hand, since u'(t) is decreasing and u'( t) -t O as 
t ➔ oc it follows that 

u'(r(t)) 2 u'(t) 2 (u'(t))°, (9) 

eventually. Combining (8) and (9) together with (6) we see that 

r'(t) r'(t)J'[>..r(t)] 
w'(t) s; -r0 (t)p(t) + a-w(t) - · w2(t) 

r(t) r 0 (t) 

-r0 (t)p(t) 

_ r'(t)f'[,\r(t)] [(w t _ ar 0
-

1(t)) 
2 

_ a
27 20

-
2(t) ] 

r 0 (t) ( ) 2.f'[,\r(t)] 4 (J'[>..r(t)])2 

a a 2r 0
-

2(t)r'(t) 
< -T (t)p(t) + 4f'[,\r(f )J . (10) 

Integrating the above inequality from t2 to t we conclude in view 
of (3) that w(t) ➔ -oo as t -t oo. This is a contradiction and 
the proof is complete now. □ 

Remark 1 There has been usually the condition 

f(u)sgnu 2 lulr3sgnu 

imposed on the function f. In this sense Theorem 2.1 e:rt ends and 
complements Theorem 1 in [6] and Theorem 2.3 in [l]. 

For a= l Theorem 2.1 gives 

Corollary 2.1 Let f'(u) be nondecreasing on (-oo, -t*) and 
nonincreasing on (t*, oo), t* 2 0. Further assume that (2) holds 
for any c-:/ 0 and for some ).. > 0 

/

00 
( r'(s) ) 

r(s)p(s) - 4r(s)f'[±,\r(s)] ds = oo. (11) 

Then equation 
u"(t) + p(t)f[u(r(t))] = 0 (12) 

is oscillatory. 
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Remark 2 Corollary 2.1 generalizes and extends the results pre­

sented in [2] and [12]. 

Example 1 Consider the stcond order nonlinear equation 

u"(t) + p(t) In ( 1 + lu[r(t)Ji)sgn u[r(t)] = 0. 

By Corollary 2. 1, Eq. ( 13} is oscillatory provided that 

Joc,P(-")ln(l +cr(s))ds = oo 

and J or some ,\ > 0 • 

for any c > 0 

/

00 
( 1 + ,\r(s) r'(s)) r(s)p(s) - ----- els= oo. 

4 r(s) 

Corollary 2.2 Let O < (3 < l, a > 1. Assume that 

J
,x, 

T/3 ( S) p( S ) els = 00 

and for some M > 0 

/oc, (r 0 (s)p(s) - l\Jr 0
-

11- 1(s)r'(s)) els= oo 

Then the equation 

(1u'(t)j°-1u'(t))' + p(t)lu(r(t))f-
1
u(r(t)) = 0 

is oscillatory. 

( 1;3) 

(14) 

( 15) 

( I 6) 

Proof. It is easy to verify that (2) and (3) reduce to (14) and 

(15), respectively for Eq.(16). · 

5 



Theorem 2.2 Let f'(u) be nonincreasing on (-oo, -t•) and non­
decreasing on ( t*, oo), t• 2:'. 0. Let a 2:'. 1. Further assume that 
(2) holds for any c =p 0. If for some M > 0 

1= (r 0 (s)p(s)- A1r0
-

2(s)r'(s)) els= oo. (17) 

Then Eq. ( 1) is oscillatory. 

Proof. Assume that JV! > 0 is such that {17) holds. Admit 
that u(t) is a positive solution of ( 1 ). Proceeding exactly as in 
the proof of Theorem 2.1 we can verify that u'(t) > 0. u"(t) < 0 
and u'(t) ➔ 0 as t ➔ oo. Then tlwre exists c > 0 such that 
u[r(t)] > c, eventually. Let w(t) be defined hy (.5), th<>n w(t) > 0 
and ( 6) is fulfilled. It is easy to see that 

f'[u(r(t))]u'(r(t)) 2:: J'(c)u'(t) ~ J'(c)(u'(t)r-a (u'(t)) 0

• (18) 

Since u'( t) ➔ 0 then for any .\ > 0 we have u'( t) < .\, eventually. 
It follows from ( 18) that 

J'[u(r(t))]u'(r(t)) 2:: j'(c).\1-a(u'(t)r• = K(u'(t))
0

, 

where.\ is chosen such that f'(c).\ 1
-

0 = a 2/(4M). Then 

T
1 

( t) , T 1 
( t) • 

w'(t) ~ -r0 (t)p(t) + a-(-) w(t) - It --w2(t) 
T f T':, ( t) 

-Ta(f)p(f) 

, r'(t) [( 07cr-l(t))
2 

a272a-2(t)] 
-/1 - w(t) - ---'- - ---

r0(t) 2I< 41{2 

Q'2 

< -r 0 (t)p(t) + 
4

[{ T 0
-

2(t)r'(t). (19) 

Integrating the obtained inequality from t 1 to l, (t 1 large-- enough) 
and then letting t ➔ oo we get desirable contradiction. The proof 
is complete now. □ 
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Corollary 2.3 Let /3 > 1, a > l. Assume that (14) and (17) are 
satisfied. Then Eq. (16) is oscillatory. 

The following considerations are intended to relax the mono­
tonicity conditions imposed onto J'(u) in Theorems 2.1 and 2.2. 

Let us consider the following differential equation 
. 

(lu'(t)la-Iu'(t))' + p(t)h[u(r(t))] = 0 (20) 

subject to conditions (Hl)-(H3) and 

(H5) h E C(-oo, oo), uh(u) > 0 for u =p 0 . 

Theorem 2.3 Assume that 

h(u) sgn u 2:: f (u) sgn u, u # 0 (21) 

and (H4) holds. If all assumptions of Theorem 2.1 are satisfied 
then Eq. (20} is oscillatory. 

Proof. Assume that u(t) is a positive solution of (20). Then 
u'(t) > 0, u"(t) < 0 and 

( [u'(t)]° )' = -p(t)h[u(r(t))] ~ -p(t)J[u(r(t))]. 

Let w(t) be defined by (5). Then w(t) > 0 and 

w'(t) < a r'(t)w(t) - ra(t)p(t) - w(t)J'[u(r(t))]u'(r(t))r'(t). 
- r(t) J[u(r(t})] 

The rest of the proof is similar to the proof of Theorem 2.1 and 
so it can be omitted. D 

Theorem 2.4 Let (H4) and (21) holds. Assume that all assump­
tions of Theorem 2.2 are satisfied. Then Eq. (20) is oscillatory. 
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. It remains an open problem to obtain the oscillatory criteria 
similar to Theorem 2.1 and 2.2 for (1) with O < o: < 1. The 
following theorem provides a partial answer. 

Theorem 2.5 Assume that 

1
00 du 

to lf(±u)ll/o < 00 

and 

l
oo (loo ) 1/o 

to T1 
( s) s p( x) dx els = oo. 

Then Eq.(1) is oscillatory. 

Proof. Assume that u(t) is a positive solution of (1). Similarly 
as in the proof of Theorem 2.1 it can be shown that u' (t) > 0 and 
u"(t) < 0. Integrating (1) from t to s (2 t) we obtain 

- [u'(s)]° + [u'(t)r = is p(x)f[u(T(x))] dx 

> f[u(T(t))] is p(s) ds. 

Using properties of u'(t) and letting s -+ oo we have 

(u'[T(t)]t' 2 (u'(t))° 2 f[u(T(t))] /
00 

p(s)ds. (22) 

(Now it is easy to see that the case f 00 

p( x) dx = oo leads to a 
contradiction.) It follows from (22) that 

u'[T(t)]T'(t) ·. I (1,x, . ) l/a 
Jl/a[u(T(t))] 2 T (t) t p(x) dx 

which on integration from f 1 to t gives 

1u[T(t)] ds it (Joo ) 1/o 
fl/o(s) 2 T

1
lS) p(x) dx <ls. 

u[T(ti)j • 11 S · 

(23) 

8 

The left side of (23) is bounded, however the right side of (2:3) 
tends to oo as l ➔ oo. The proof is complete. 0 

Remark 3 Theorem 2.5 cannot be applied to Eq.(1) with f(u) = 
u and a 2 1. In this case Theorem 2.1 may bf successful. 
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