


1 Introduction

In the recent papers [1]-[11] the oscillatory and asymptotic prop-
erties of various types of differential equations

(W@l 0) + ) flu(r(@) = 0 (1)

have been considered. In this paper we shall study those proper—
ties under the followmg hypothesis (H): '

(H1)"

(H2) p € Clto, o), p(t) > 0;

(H3) 7 € Ctg,00), 7'(t) > 0, 7(¢) < t, limyyee T(t) = 00;
).

(H4) f € C(~o0,0), f is nondecreasing, f€ CY M) M =
(—00,0) U (0, 00), uf( ) > 0 for u # 0.

By a solution of (1) we mean a function u € Cl[Tu,oo) T, >
to, which has the property [u/(¢)]*"'w/(t) € C1[T,, 00) and satisfies
(1) on [Ty, 00). We consider only those solutions of (1) which
satisfy sup{|u(t)| : t > T} > 0 for all T > T,. We assume
that (1) possesses such a solution. A nontrivial solution of (1) is
said to be oscillatory if it has arbitrarily large zeros: otherwise
~ it is said to be nonoscillatory. Equation (1) is called oscillatory
if all its solutions are oscillatory. It is known that the condition
% p(s) ds = oo is'enough for oscillation of (1). In our paper we
are concerned the case when [~ p(s)ds < co. The aim of this
paper is to present some new oscillatory criteria which are new
also for @ = 1, namely for the second order nonlinear differential

a > 0 is a real constant;

equation
' u”(t ) f[u t)]=0.

As is customary all functlonal inequalities are assumed to hold
eventually, that is they are satisfied for all sufficiently large ?.
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2 Main results

Theorem 2.1 Let f'(u) be nondecreasing on (—o0, —t") and non-
increasing on (t*,00), t* > 0. Let a > 1. Further assume that

[Trelfterallas=co  foratezo (2

and moreover for some A > 0

(o, ,_a27'°‘2(s>)7'"(s) VS_ "
/ < IR = L En o) )d = 0

Then Eq.(1) is oscillatory.

Proof. Assume on the contrary that Eq.(1) has an eventu-
ally positive solution u(t). (The case u(t) < 0 can be treated
similarly.) Then

(W @F®) = =)l e)] < 0
Hence, the function 'u'(t)|“‘lu'(t) is decreasing. Therefore, either
(i) v'(t) > 0, eventually or
(i) u'(t) < 0, eventually.

Since
0> (kI ®) = el @O (0),

we see that u”(t) < 0. Condition (ii) now yields u(t) = —oo
as ¢ — oo. This is a contradiction. Therefore we conclude that
u(t) >0, u'(t) > 0, v"(t) <0, eventually and

[wyr] = s flutre) (4)
Define o
w(t) = T(t )f[u ok (5)

Then w(t) > 0 and

WO [0
Fratr ] T Fa(r(e
N ]f’[u (D)
—= Fu(r(D)]

w'(t) = ar® l7(1)

- aT—'((—%)w( ) — 2 (t)p(t)
Flur @) @) 6

~O = A 0)]

We claim that u'(t) — 0 as t — oo. To prove it assume the
contrary, that is u/(t) = 2c as t = 00, ¢ > 0. Then u'(t) 2 2¢
which on integration from t; to t implies

u(t) > u(ty) +2¢(t — t1) 2 e, (7)

eventually. Integrating (4) from ¢, to ¢ and using (7) one gets

ty

WP+ = [ pfure]ds > [ po)flertsas.
Letting t & oc we have |
/{‘N ( ) fler(s)] ds < oco.

This contradiction shows that u'(t) — 0 as t = oo. Therefore,
for any A > 0 there exists a t; such that A/2 > u/(¢), ¢ 2 t.
Integratmg the last functional inequality from ¢, to ¢ we get

A

4]

and so for any A > 0 and ¢ large enough

flu(r(®)] = f'Ar(0)]: - @®
. .



On the other hand, since u'(t) is decreasing and u/(t) — 0 as
t — oc it follows that

w(r(t)) 2 W'(t) 2 (u'(2)7, (9)
eventually. Combining (8) and (9) together with (6) we see that
w(t) < =r(tple) + Tl - LT g,

= —77(t)p(t)
T () gm > i)
To(1) 2f'[Ar(t)] 4(f'[Ar(t)])

a’ro Y (t)r'(t)

4" (t)]

< —r(p(t) + (10)

Integrating the above inequality from ¢, to ¢ we conclude in view

of (3) that w(t) - —oo ast — oco. This is a contradiction and
the proof is complete now. []

Remark 1 There has been usually the condition

I.B

f(u)sgnu > |u|”sgnu

imposed on the function f. In this sense Theorem 2.1 extends and
complements Theorem 1 in [6] and Theorem 2.3 in [1].

For a = 1 Theorem 2.1 gives

Corollary 2.1 Let f'(u) be nondecreasing on (—oo, —t*) and
nonincreasing on (t*,00), t* > 0. Further assume that (2) holds
for any ¢ # 0 and for some A > 0

A (T(S)”(S) - 4r<s)fT"l[(j:)Ar(s)1) =0 (1)

Then equation

u’(t) + p(t) flu(r(1))] = 0 - (12)

is oscillatory.

Remark 2 Corollary 2.1 generalizes and extends the results pre-
sented in [2] and [12].

Example 1 Consider the éc‘corzd order nonlinear equation
«"(t) + p(t) In (1 + Julr(0)]])sgn ulr(D)] = 0. (13)
By Corollary 2.1, Eq.(13) is os‘cz'llatory provided that
/& P(sj In(l+cr(s))ds=o00  foranyc>0

and for some A >0 -

0o 14+ M(s) 7'(s
[ (rmer -0 s = o

TS

Corollary 2.2 Let 0 < f < 1, a > 1. Assume that
[ e =eo o

and for some M >0

Then the equation
(W(l=(®) + ol ure) =0 (16)
is oscillatory. |

Proof. Tt is easy to verify that (2) and (3) reduce to (14). and
(15), respectively for Eq.(16).



Theorem 2.2 Let f'(u) be nonincreasing on (—oo, —t*) and non-
decreasing on (t*,00), t* > 0. Let a > 1. Further assume that
(2) holds for any ¢ # 0. If for some M > 0

/00 (T“(s)p(s) - M7;°'2(.s~)r’(s)> ds = 0. N (17/)

Then Eq.(1) is ‘oscillato‘ry.

Proof. Assume that M > 0 is such that (17) holds. Admit
that wu(?) is a positive solution of (1). Proceeding exactly as in
the proof of Theorem 2.1 we can verify that u'(t) > 0. u”(¢) < 0
and u'(t) — 0 as t = oo. Then there exists ¢ > 0 such that
u[r(t)] > ¢, eventually. Let w(t) be defined by (5), then w(t) >0
and (6) is fulfilled. It is easy to see that

Plalr@ () > fawn = fo(ww)  (vin)” a8

Since «/(¢) — 0 then for any A >0 we have u ( ) < A, eventually.
[t follows from (18) that '

Je(re () 2 PN (wn) = K (v1),

where A is chosen such that f/(¢)A*™* = a?/(4M). Then

w'(t) < —r“(t)p(t)+a§—((-:—))wk(t)—Ix’:';((tt))wQ(t) )
= —7%(t)p(t)
i T'(t) aTn——l(t) 2 ol 2 t)
=TTy [(w(t) T TR )»_ 4R? ]
< —mpt) + O (). | (19)

Integrating the obtained inequality from ¢, to ¢, (¢, large enough)
and then letting ¢ — oo we get desirable contradiction. The proof
is complete now. O

Corollary 2.3 Let 3> 1, a > 1. Assume that (14) and (17) are
satisfied. Then Eq. (16) is oscillatory.

The following considerations are intended to relax the mono-
tonicity conditions imposed onto f’(u) in Theorems 2.1 and 2.2.
Let us consider the following differential equation

(or=te®) +
subject to conditions (H1)-(H3) and
(H5) h € C(—o00,00), uh(u) > 0 for u # 0.

t)h[u(T(t))] =0 (20)

Theorem 2.3 Assu'r.ne that
h(u)sgnu 2 f.(u)sgn u, u 0 | (21)

and (H{) holds. If all assumptions of Theorem 2. I are satisfied
then Eq.(20) is oscillatory.

Proof. Assume that u(¢) is a positive solution of (20). Then
u'(t) > 0, u”(t) <0 and

(W) = ~p(Ohfl(r(e)] < =p(t)flu(r (1))
Let w(t) be defined by (5). Then w(¢) > 0 and

PR )

0 ) —
P(Up(E) = o) =

’ < gt _
w(t) L a ) w(t)
The rest of the proof is similar to the proof of Theorem 2.1 and

so it can be omitted. OJ

" Theorem 2.4 Let (H{) and (21) holds. Assume that all assump-

tions of Theorem 2.2 are satisfied. Then Fq.(20) is oscillatory.
7



. It remains an open problem to obtain the oscillatory criteria
similar to Theorem 2.1 and 2.2 for (1) with 0 < o < 1.  The
following theorem provides a partial answer.

Theorem 2.5 Assume that

o0 du
/ —ija < o0
tg |f(:tu)l

/: T'(s) (/soo p(z) dx>1/a ds = oo.

Then Eq.(1) is oscillatory.

and

Proof. Assume that u(2) is a positive solution of (1). Similarly
as in the proof of Theorem 2.1 it can be shown that /() >0 and
w"(t) < 0. Integrating (1) from ¢ to s (> ¢) we obtain

WP = [ i) as
2 flu(rte)] [ ple) s
Using plopeltleS of w'(t) and letting s — oo we have
WO 2 O 2 o) [ o) (22)

(Now it is easy to see that the case [ p(z)dx = oo leads to a
contradiction.) It follows from (22) that

flsztz(]T((;i] 2t (/ % ”(“’)d“)

which on integration from , to ¢ gives

ulr (1)) | t o0 1/ '
y | f‘is( = [ </ ”(’”)dx> b )
u[‘r(h) 1 7 v

8

1/a

The left side of (23) is bounded, however the right side of (23)
tends to oo as t — oo. The proof is complete. O

Remark 3 Theorem 2.5 cannot be applied to Eq.(1) with f(u) =
u and a > 1. In this case Theorem 2.1 may be successful.
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