

ОБъЕДиненныЙ инстИтут ядерНыХ ИсСлЕДОВАНИЙ

$00-204$
E5-2000-204
J.Plávka*

EIGENPROBLEM FOR MONOTONE
AND TOEPLITZ MATRICES IN MAX-ALGEBRA

Submitted to «Optimization»
*University of Technology, Department of Mathematics, Košice Slovakia, E-mail: plavka@tuke.sk
This work was supported by Slovak Scientific Grant Agency, No. 1/6055/99

1. Introduction

Let $G=(G, \otimes, \leq)$ be a linearly ordered, commutative group with neutral element $e=0$. We suppose that G is radicable, i.e. for every integer $t \geq 1$ and for every $a \in G$, there exists a (unique) element $b \in G$ such that $b^{t}=a$. We denote $b=a^{1 / t}$.
Throughout the paper, $n \geq 1$ is a given integer. The set of $n \times n$ matrices over G is denoted by M_{n}. We introduce a further binary operation \oplus on G by the formula

$$
a \oplus b=\max (a, b) \quad \text { for all } a, b \in G .
$$

The triple (G, \oplus, \otimes) is called max-algebra. If $G=(G, \otimes, \leq)$ is additive group of real numbers, then $(G, \oplus, \dot{\otimes})$ is called max-plus algebra (often used in applications).
The operations \oplus, Q are extended to the matrix-vector algebra over G by the direct analogy to the conventional linear algebra. For $A=\left(a_{i j}\right) \in M_{n}$, the problem of finding $x \in G^{m}, \lambda \in G$, satisfying

$$
A \otimes x=\lambda \otimes x
$$

is called an extremal eigenproblem corresponding to the matrix A; here λ and x are usually called an extremal eigenvalue and an extremal eigenvector of A, respectively. Throughout the paper, we will omit the word "extremal". This problem was treated by several authors during the sixties, c.g. [3, 5, 14], survey of the results concerning this and similar eigenproblems can be found in $[15,16]$. Below, we summarize and recall some of the main results.

First we introduce the necessary notation. Let $N=\{1,2, \ldots, n\}$ and let C_{n} be the set of all cyclic permutations defined on nonempty subsets of N. For a cyclic permutation $\sigma=\left(i_{1}, i_{2}, \ldots, i_{l}\right) \in$

[^0]
C_{n} and for $A \in M_{n}$, we denote l, the length of σ by $l(\sigma)$ and define
\[

$$
\begin{gathered}
w_{A}(\sigma)=a_{i_{1} i_{2}} \otimes a_{i_{2} i_{3}} \otimes \ldots \otimes a_{i i_{1}} \\
\mu_{A}(\sigma)=w_{A}(\sigma)^{1 / l(\sigma)} \\
\lambda(A)=\sum_{\sigma \in C_{n}}{ }^{\oplus} \mu_{A}(\sigma)
\end{gathered}
$$
\]

where \sum^{\oplus} denotes the iterated use of the operation $\boldsymbol{\boxplus}$.
Theorem 1.1 [4] Let $A \in M_{n}$. Then $\lambda(A)$ is the unique eigenvalue of A.

The problem of finding the eigenvalue $\lambda(A)$ is also called the maximum-cycle mean problem and it has been studied by several authors $[2,3,5,10,7,12,13]$. Various algorithms for solving this problem are known, that of Karp [10] having the best worst-case performance $O\left(n^{3}\right)$.

For $B \in M_{n}$ we denote by $\Delta(B)$ the matrix

$$
B \oplus B^{2} \oplus \ldots \oplus B^{n}
$$

where B^{s} stands for the s-fold iterated product $B \otimes B \otimes \ldots Q B$.
Let $A_{\lambda}=\lambda(A)^{-1} \otimes A$. (The upper index -1 denotes the inverse element of $\lambda(A)$ in the sense of the group operation \otimes.) It is shown in [4] that the matrix $\Delta\left(A_{\lambda}\right)$ contains at least one column, the diagonal element of which is e. Every such a column is an eigenvector of the matrix A, it is called a fundamental eigenvector of the matrix A. The set of all fundamental eigenvectors will be denoted by F_{A} and its cardinality is denoted by $q=\left|F_{A}\right|$. We say that $x, y \in F_{A}$ are equivalent if $x=\alpha \otimes y$ for some $\alpha \in G$. In what follows $s(A)$ denotes the set of all eigenvectors of A, so called eigenspace of A.

Theorem 1.2 [4] Let $A \in M_{n}$. Then

$$
s(A)=\left\{\sum_{i=1}^{q} \alpha_{i} \otimes g_{i} ; \alpha_{i} \in G, g_{i} \in F_{A}, i=1,2, \ldots, q\right\}
$$

It follows from the definition of equivalent fundamental eigenvectors that the set F_{A} in Theorem 1.2 can be replaced by any maximal set F_{A}^{\prime} of fundamental eigenvectors such that no two of them are equivalent. Every such set F_{A}^{\prime} will be called a complete set of generators (of the eigenspace).

The symbol $D_{A}=(V, E)$ stands for a complete, arc-weighted digraph associated with A. The node set of D_{A} is N, and the weight of any arc (i, j) is $a_{i j}$. Throughout the paper, by a cycle in the digraph we mean an elementary cycle or a loop, and by path we mean a nontrivial elementary path, i.e. an elementary path containing at least one arc. Evidently, we will use the same notation, as well as the concept of weight, for both cycles and cyclic permutations. By a strongly connected component of D_{A} we mean a subdigraph $\mathcal{G}=\left(L, E \cap L^{2}\right)$ generated by a non-empty subset $L \subseteq V$ such that any two distinct vertices $x, y \in L$ are contained in a common cycle, and L is a maximal subset with this property. The set of all strongly connected components of D_{A} is denoted by \mathcal{P}. A strongly connected component \mathcal{G} is called nontrivial, if there is a cycle of positive length in \mathcal{G}. In the opposite case \mathcal{G} is called trivial. A cycle $\sigma \in C_{n}$ is optimal, if $\mu_{A}(\sigma)=\lambda(A)$, a node in D_{A} is called an eigennode if it is contained in at least one optimal cycle; E_{A} stands for the set of all eigennodes in D_{A}.

Theorem 1.3 [4] Let $g_{1}, g_{2}, \ldots, g_{n}$ denote the columns of the matrix $\Delta\left(A_{\lambda}\right)$. Then
(i) $j \in E_{A}$ if and only if $g_{j} \in F_{A}$
(ii) g_{i}, g_{j} are equivalent members of F_{A} if and only if the eigennodes i, j are contained in a common optimal cycle.

Let be $\Delta\left(A_{\lambda}\right)=\left(\xi_{i j}\right)$. It follows from the definition of $\Delta\left(A_{\lambda}\right)$ that $\xi_{i j}$ is the weight of a heaviest path from i to j in D_{A}. Hence, $\Delta\left(A_{\lambda}\right)$ can be computed in $O\left(n^{3}\right)$ operations using the FloydWarshall algorithm [11]. By trivial search and comparisons one can then find a complete set of fundamental eigenvectors among the columns of $\Delta\left(A_{\lambda}\right)$, using at most $O\left(n^{3}\right)$ operations.

2 Eigenproblem for monotone matrices

The aim of this section is to investigate the above eigenproblem in case when A is a monotone matrix.

Definition 1 Matrix $A=\left(a_{i j}\right)$ is called monotone if and only if $a_{i j} \leq a_{i, j+1}$ and $a_{i j} \leq a_{i+1, j}$ for all $i, j \in N$, i.c., the entries in every row and in every column are in non-decreasing order.

Example 1 The following 3×3 matrix M is monotone.

$$
\mathbf{M}=\left(\begin{array}{lll}
0 & 3 & 4 \\
2 & 3 & 5 \\
6 & 7 & 8
\end{array}\right)
$$

Theorem 2.1 Let $A=\left(a_{i j}\right)$ be monotone matrix. Then

$$
\lambda(A)=\max _{i, j \in N}\left\{a_{i j}\right\}
$$

Proof. It is clear that $\lambda(A) \leq \max _{i, j \in N}\left\{a_{i j}\right\}$. Since matrix A is monotone than at least diagonal element (say $a_{n n}$) is equal to $\max _{i, j \in N}\left\{a_{i j}\right\}$ and assertion follows trivially.

In further part of this section we suggest an algorithm for computing all eigenvectors of a given monotone matrix in $O\left(n^{2}\right)$ time, whereby w.l.o.g. we suppose that $G=R$. It is shown in [4] that under the assumption $\lambda(A)=0$, the matrix $\Delta(A)$ is a metric matrix of the digraph D_{A}, i.e. any element $\xi_{i j}$ is equal to the heaviest path from i to j, for $i \neq j$. Since the eigenvalue of a monotone matrix is equal to maximal entry of a matrix (Theorem 2.1), elements of the metric matrix $\Delta\left(A_{\lambda}\right)$ are non-positive. For computing of an eigenvector we will use small adapted known Dijkstra algorithm, which computes the shortest path problem
from node 1 to i, for all $i, 1 \leq i \leq n$ in $O\left(n^{2}\right)$ steps. But at first some property of monotone matrices.

Let D_{A} be a complete, arc weighted digraph associated with a given matrix A. The symbol D_{A}^{h} stands for digraph (called threshold digraph) with vertex set $V=\{1,2, \ldots, n\}$ and (i, j) is from edge set E if $a_{i j} \geq h$. In case when the eigenvalue $\lambda(A)$ of given matrix is equal to maximal element of matrix (denote it by d) the corresponding subdigraph $D_{A}^{\prime \prime}$ of D_{A} contains the set \mathcal{P} of all strongly connected components. We say that two vertices $i, j \in D_{A}$ are highly connected, in notation: $i \equiv_{d} j$, if i, j are contained in a cycle σ with the maximal cycle mean value $\mu(\sigma)=\lambda(A)(i, j$ are eigennodes). The subgraphs induced by the equivalence classes of \equiv_{d} are called highly connected components in D_{A}, the set of all such components is clenoted by \mathcal{P}_{A}.

Definition 2 Let A be a matrix and D_{A}^{d} with $\lambda(A)=0$ be a threshold digraph. Dimension of eigenspace $\operatorname{dim}(s(A)$ is defined as cardinality of \mathcal{P}_{A}.

From definition of dimension and a complete set of generators F_{A}^{\prime} it is clear that $\operatorname{dim}(s(A))=\left|F_{A}^{\prime}\right|$.

Theorem 2.2 Let A be monotone matrix. Then $\operatorname{dim}(s(A))=1$.
Proof. W.l.o.g. suppose that A is a given monotone matrix and that $\lambda(A)=0$. Then $D_{A}^{d}=D_{A}^{0}$. From the definition of monotone matrix follows that the zero entries of matrix A are situated in right-down conner of A as the follows.

$$
\mathbf{A}=\left(\begin{array}{cccccc}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
\cdots & \cdots & \cdots & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\ldots & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Let $a_{k k}$ be the first diagonal element of A equal to 0 . Each element of the square submatrix B which contains last $n-k+1$ columns and last $\|-k+1$ rows of A is zero matrix. or by words of graph theory D_{B}^{0} is complete digraph, whereby all nodes of it lie on the same cycle. Moreover, the others cycles of D_{A}^{0} (if there such cycles exist) contain at least one node from the set $\{k . k+1, \ldots, n\}$. But it creates the only one highly connected components in D_{A}^{0}.

Theorem 2.3 There is an algorithm \mathcal{A} which. for a given monotone matrix $A \in M_{n}$, computes an cigenproblr m in $O\left(n^{2}\right)$ lime.

Proof. The eigenvalue $\lambda(A)$ and the matrix A, can be computed in $O\left(n^{2}\right)$ time. in view of Theorm 2.1. From Theorem 2.2 is clear that to each monotone matrix and corresponding eigenvalue generates the only one eigenvector. The others eigenvectors are equivalent. The matrix A_{λ} is non-positive, because the maximal cycle mean in the underling graph of A_{λ} is zero. Every maximalweight path in $D_{A_{\lambda}}$ is a minimal-weight path in $D_{-A_{\lambda}}$ and the problem can be solved by small adaptation of Dijkstra algorithm [6].

3 Eigenproblem for Toeplitz matrix

The results in this section are quite similar to those presented in the previous section for monotone matrices. However, the situation with Toeplitz matrices in not completely analogous, and our results concern only Toeplitz matrices with restrictive conditions.

Definition 3 A matrix $A=\left(a_{i j}\right)$ is a Toeplitz matrix (generated by element $\left.a_{-n+1}, \ldots, a_{-1}, a_{0}, a_{1}, \ldots, a_{n-1}\right)$, if there is a function $a:\{-n+1, \ldots, n-1\} \rightarrow R$ such that $a_{i j}=a(i-j)$, i.e. if denote
$a(i-j)=a_{i-j}$ the matrix A has the form.

$$
\mathbf{A}=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-2} & a_{n-1} \\
a_{-1} & a_{0} & a_{1} & \ldots & a_{n-3} & a_{n-2} \\
a_{-2} & a_{-1} & a_{0} & \ldots & a_{n-4} & a_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{-n+2} & a_{-n+3} & a_{-n+4} & \ldots & a_{0} & a_{1} \\
a_{-n+1} & a_{-n+2} & a_{-n+3} & \ldots & a_{-1} & a_{0}
\end{array}\right)
$$

A Toeplitz matrix is known if its first row and first column are known. The function a essentially contains this information.
Example 2 The following 4×4 matrix A is a (symmetric) Toeplitz matrix generated by elements $0,4,0,2,0,4,0$:

$$
\mathbf{A}=\left(\begin{array}{llll}
2 & 0 & 4 & 0 \\
0 & 2 & 0 & 4 \\
4 & 0 & 2 & 0 \\
0 & 4 & 0 & 2
\end{array}\right)
$$

Here is the first condition which ensures the better computational complexity for solvability of the eigenproblem. We denote

$$
\begin{aligned}
& h^{+}(A):=\max \left\{a_{i} ; 0 \leq i<n\right\}, h^{-}(A):=\max \left\{a_{i} ;-n<i \leq 0\right\} \\
& h(A):=\min \left\{h^{+}(A), h^{-}(A)\right\} \\
& I^{+}(A):=\left\{i ; 0 \leq i<n \wedge a_{i} \geq h(A)\right\} \\
& I^{-}(A):=\left\{i ;-n<i \leq 0 \wedge a_{i} \geq h(A)\right\}
\end{aligned}
$$

Definition 4 Let A be a Toeplitz matrix generated by elements $a_{-n+1}, \ldots, a_{-1}, a_{0}, a_{1}, \ldots, a_{n-1}$. We define conditions of the matrix A

$$
h^{+}(A)=h^{-}(A)
$$

(C) if $i \in I^{+}(A) \wedge a_{i}=h(A)$ then $a_{i+1}=h(A), 0 \leq i \leq n-2$ if $i \in I^{-}(A) \wedge a_{i}=h(A)$ then $a_{i-1}=h(A),-\bar{n}+2 \leq i \leq 0$

It can be easily seen that for any Toeplitz matrix fulfilling the conditions (C) the eigenvalue $\lambda(A)$ is the maximal element in A, because

$$
\max _{i, j \in N}\left\{a_{i j}\right\}=\frac{a_{1 n}+a_{n 1}}{2} \leq \lambda(A) \leq \max _{i, j \in N}\left\{a_{i j}\right\} .
$$

Such we have.
Theorem 3.1 Let $A=\left(a_{i j}\right)$ be a Toeplitz matrix fulfilling the conditions (C). Then

$$
\lambda(A)=\max _{i, j \in N}\left\{a_{i j}\right\}
$$

By the consideration from first section, the computation of one eigenvector can be done in $O\left(n^{2}\right)$ time, if matrix is monotone. We shall show that the same amount of time is sufficient for solvability of the eigenproblem for Toeplitz matrix with conditions (C).

Theorem 3.2 Let A be a Toeplitz matrix fulfilling the conditions (C). Then

$$
\operatorname{dim}(s(A))=1
$$

Proof. W.l.o.g. suppose that A is a Toeplitz matrix fulfilling the conditions (C) and $\lambda(A)=0$. Then $D_{A}^{d}=D_{A}^{0}$. From the definition of a Toeplitz matrix and conditions (C) follows that the zero entries of matrix A are situated in right-upper corner and in left-down corner of A as follows.

$$
\mathbf{A}=\left(\begin{array}{cccccc}
\cdots & \cdots & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \ddots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & \cdots
\end{array}\right)
$$

Let $a_{1 k}$ and $a_{1} \cdot k \leq 1 b_{0}$ the first element equal to 0 in first row and first column of A. respectively. The structure of D_{A}^{0} is as the following. Since there exist 2 -cycles

$$
\text { (1i). } k \leq i \leq n ;(2 . i) . k+1 \leq i \leq n ; \ldots ;(k . n),
$$

i.e.

$$
1 \equiv_{0} i, k \leq i \leq n: 2 \equiv_{0} i \cdot k+1 \leq i \leq n: \ldots ; k \equiv_{0} n
$$

each node from the set $\{1.2, \ldots, n-k+1 . k, k+1, \ldots, n\}$ lies on at least one 2 -cycle. It is clear that digraph D_{A}^{0} is connected and each optimal cycle in D_{A}^{0} contains at least one element from the set $\{1,2, \ldots, n-k+1, k, k+1 \ldots, n\}$. It creates the only one highly connected component and the assertion follows.

Theorem 3.3 Therr is an algorithm \mathcal{A} which. for a given Toeplitz matrix $A \in M_{n}$ fulfilling thr conditions (C). computes an eigenproblem in $O\left(n^{2}\right)$ lime.
Proof. The eigcuvalue $\lambda(A)$ and the matrix A_{λ} can be computed in $O\left(n^{2}\right)$ tine, in viow of Theorem 3.1. From Theorem 3.2 is clear that each Tooplitz matrix fulfilling the conditions (C) and corresponding eigenvalue generate the only one eigenvector. The others eigenvectors are equivalent. The remaining part of the proof runs similarly as proof of Theorem ?.3.
Remark 1 A matrix $A=\left(f_{i j}\right)$ is called a circulant if there is a function $g:\{0,1, \ldots, n-1\} \rightarrow R$ such that $a_{i j}=g(i-j)$ $\bmod n$. The similar results $\left(O\left(n^{2}\right)\right.$-algorithm) were received for the eigenproblem of circulant matrix [12].

4 Conclusion

We have enlarged the class of matrices which allow a faster solution of the cigenproblem. C'oncerning future research, we would like to identify other classes of Toeplitz matrices, properties of which offer faster algorithms for solvable of it.

References

[1] R.E. Burkard. E. Cela, G. Rote, G.J. Woeginger. The Quadratic Assignment Problem with an Anti-Monge and a Toeplitz Matrix: Easy and Hard Casts, preprint No-S34, Technical University Graz (Jun 95).
[2] P.. Butkovič and R.A. Cuninghame-Green, $A n O\left(n^{2}\right)$ algorithm for the maximum cycle mean of an $n \times n$ bivalent matrix, Discrete Appl. Math. 35 (1992), 157-163.
[3] R.A. Cuninghame-Green, Describing industrial proccsses with interference and approximating their steady-state beharior, Oper. Res. Quart. 13 (1962), 95-100.
[4] R.A. Cuninghame-Green, Minimax alyebra, Lecture Notes in Econ. and Math. Systems 166, Springer-Verlag, Berlin, 1979.
[5] G.B. Dantzig, E.D. Blattner and M.R. Rao, Finding a cycle in a graph with minimum cost to time ratio with application to a shiprouting problem, Theory of graphs (Rosenstiel, Ed.), Gordon and Beach, New York, 1967.
[6] E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Mathematik 1 (1959), 269-271.
[7] M. Gavalec and J. Plávka, Eigenproblem for Monge matrices in max-algebra, (appear in Discrete Applied Mathematics).
[8] M. Gavalec and J. Plávka, Computing linear period of circulant and Toeplitz matrices in max-plus algebra, Proceedings of the 17th Conference on Mathematical Methods in Economics, Jindrichuv Hradec, 1999.
[9] M. Gavalec and J. Plávka, Strong regularity of matrices in general max-min algebra, (appear in Linear Algebra and Applications)
[10] R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Math. 23 (1978), 309-311.
[11] E.L. Lawler. (ombinalorial Optimization: Networks and Matroids, Holt, Rinehart and Wilston, 1976 :
[12] J. Plávka., The complexity of finding the minimal of the maximum cycle means of similar zero-one matrices. Optimization (1994), 283-287.
[13] J. Plávka, Note on an eigcuproblem for circulant matries in max-algebra, (accepted in Optimization).
[14] N.N. Vorobyev, Ekstremal̆naya algebra polozhitel̆nylh matrits (in Russian). Elektron. Informatiousverarbeitung und Kybernetic 3 (1967). 39-71.
[15] K. Zimmernam, Extremal Algebra (in Czech), Ekon. ustav ČSAV Praha, 1976.
[16] U. Zimmermamn. Linear and Combinatorial Optimization in Ordered Algebraic Structure. North Holland. Amsterdam, 1981.

Author's address:

Department of Mathematics, Faculty of Electrical Eugineering and Informatics, University of Technology, B. Němcovej 32, 04200 Košice, Slovakia
E-mail:plavka@tukc.sk

Received by Publishing Department on August 30, 2000.

[^0]: ${ }^{1} 1991$ Mathematics Subject Classification. Primary: 90C27; Secondary: 05B35.
 Key words and phrases. Eigenproblem, Monotone matrix, Toeplitz matrix.

