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1 Introduction 

Let G = ( G, 0, ::; ) be a linearly ordered, commutative group with 
neutral element e = 0. We suppose that G is radicable, i.e. for 
every integer t 2'. 1 and for every a E G, there exists a (unique) 
element b E G such that bt = a. We denote b = a 11t. 
Throughout the paper, n 2'. 1 is a given integer. The s~t of n x n 
matrices over G is denoted by Mn. We introduce a further binary 
operation EB on G by the formula 

a EB b = max ( a, b) for all a, b E G. 

The triple ( G, EB, 0) is called max-algebra. If G = ( G, 0, ::S) is 
additive group of real numbers, then ( G, EB,®) is called max-plus 
algebra ( often used in applications). · 
The operations !fl, C:'l are extended to the matrix-vector algebra 
over G by the direct analogy to the conventional linear algebra. 
For A = (aij) E !vln, the problem of finding x E Gm, .,\ E G, 
satisfying 

A0x=..\0x 

is called an extremal eigenproblem corresponding to the matrix 
A; here .,\ and x are usually called an extremal eigenvalue and an 
extremal eigenvector of A, respectively. Throughout the paper, 
we will omit the word "extremal". This problem was treated by 
several authors during the sixties, e.g. (3, 5, 14], survey of the 
results concerning this and similar eigenproblems can be found 
in [15, 16]. Below, we summarize and recall some of the main 
results. 

First we introduce the necessary notation. LetN={l, 2, ... , n} 
and let Cn be the set of all cyclic permutations defined on non­
empty subsets of N. For a cyclic permutation a= (i1 , i2 , ••• , i1) E 
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Cn and for A E Mn, we denote l, the length of a by /(a) and define 

WA(a) = ai1i2 ® Cli2i3 0 • • • ® ai,i1 

µA(a) = W_4(a) 111(a) 

,\(A)= pµA(a) 
aEC,, 

where I:;ffi denotes the iterated use of the operation 8:) . 

Theorem 1.1 [4] Let A E Mn. Then ,\(A) is the unique eigen­

value of A. 

The problem of finding the eigenvalue ,\(A) is also called thf' 
maximum-cycle mean problem and it has been studied by several 
authors [2, 3, 5, 10, 7, 12, 13]. Various algorithms for 'solving this 
problem are known, that of Karp [10] having the bes'ti worst-case 
performance 0(n3

). 

For BE Mn we denote by L);.(B) the matrix 

B EB B2 EB ... EB En 

where Es stands for the s-fold iterated product B ® B ® ... C) B. 
Let A,x = ,\(At1®A. (The upper index -1 denotes the inverse 

element of ,\(A) in the sense of the group operation ®.) It is 
shown in [4] that the matrix L);.(A,x) contains at least one column, 
the diagonal element of which is e. Every such a column is an 
eigenvector of the matrix A, it is called a fundamental eigenvector 
of the matrix A. The set of all fundamental eigenvectors will be 
denoted by FA and its cardinality is denoted by q = IFAI- We 
say that :r, y E FA are equivalent if x = a® y for some a E G. 
In what follows s(A) denotes. the set of all eigenvectors of A, so 
called eigenspace of A. 

Theorem 1.2 [4] Let A E Mn. Then 

q . 

. s(A) = {Lai® gi; ai E G, gi E FA, i = l, 2, ... , q }-
i=l 
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It follows from the definition of equivalent fundamental'eigen­
vectors that the set F.4 in Theorem 1. 2 can be replac~d by any 
maximal set F~ of fundamental eigenvectors such that no two of 
them are equivalent. Every such set F~ will be called a complete 
set of generators ( of the eigenspace). 

The symbol DA = ( V, E) stands for a complete, arc-weighted 
digraph associated with .4. The node set of DA is N. and the 
weight of any arc (i,j) is aij• Throughout the paper, by a cycle 
in the digraph we mean an elementary cycle or a loop, and by 
path we mean a nontrivial elementary path, i.e. an elementary 
path containing at least one arc. Evidently, we will use the same 
notation, as well as the concept of weight, for both cycles and 
cyclic permutations. Hy a strongly connected component of DA 
we mean a subdigraph g = ( L, En L2

) generated by a non-empty 
subset L ~ V such that any two distinct vertices x, y E L are con­
tained in a common cycle, and L is a maximal subset with this 
property. The set of all strongly connected components of DA is 
denoted by P. A strongly connected component g is called non­
trivial, if there is a cycle of positive length in 9. In the opposite 
case g is called trivial. A cycle a E Cn is optimal, if µA(a) = ,\(A), 
a node in DA is called an eigennode if it is contained in at least 
one optimal cycle; EA stands for the set of all eigennodes in DA· 

Theorem 1.3 [4] Letg1 ,g2 , ••• ,gn denote the columns of the ma­
trix L);.(A,x). Then 

(i) j E EA if and only if gi E FA 
(ii) gi,gj are equivalent members of FA if and only if the 

eigennodes i, j are contained in a common optimal cycle. 

Let be ~(A,x) = (fo). It follows from the definition of L);.(A,x) 
that eij is the weight of a heaviest path from i to j in DA. Hence, 
L);.( A>.) can be computed in 0( n3

) operations using the Floyd­
Warshall algorithm [11]. By trivial search and comparisons one 
can then find a complete set of fundamental eigenvectors among 
the columns of L);.( A,x), using at most 0( n3

) operations. 
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2 Eigenproblem for monotone 
matrices 

The aim of this section is to investigate the above eigenproblem 
in case when A is a monotone matrix. 

Definition 1 i\,1 atrix A = ( a;j) is called ·monotone if and only if 
aij :S ai,j+l and a;j :S a;+1,j for all i,j E N, i.e., the entries in 
every row and in every column are in non-decreasing order. 

Example 1 The following 3 x 3 matrix 1\1 is monotone. 

( 
0 3 4) 

M= 2 3 ,5 
6 7 8 

Theorem 2.1 Let A= (a;j) be monotone matri:r. Then 

,\(A)= n~ax{aij}-
z,1EN 

Proof. It is clear that ,\(A) :S maxi,jEN{ a;1}. Since matrix A 
is monotone than at least diagonal element ( say ann) is equal to 
maxi,jEN{ a;j} and assertion follows trivially. D 

In further part of this section we suggest an algorithm for 
computing all eigenvectors of a given monotone matrix in 0( n 2

) 

time, whereby w.l.o.g. we suppose that G = R. It is shown in 
[4] that under the assumption ,\(A) = 0, the matrix 6(A) is a 
metric matrix of the digraph DA, i.e. any element fo is equal to 
the heaviest path from i to j, for i -1- j. Since the eigenvalue of a 
monotone matrix is equal to maximal entry of a matrix ( Theorem 
2.1), elements of the metric mat1,ix 6(A,\) are non-positive. For 
computing of an eigenvector we will use small adapted known 
Dijkstra algorithm, which computes the shortest path problem 
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from node 1 to i. for all i. l ::; i :S n in 0( n 2
) steps. But at first 

some property of monotone matrices. 
Let D.4 be a comple(e. arc weighted· digraph associated with 

a given matrix .4. The symbol D~4 stands for digraph ( called 
threshold digraph) with vertex set V = {L 2, ... , n} and (i,j) is 
from edge set E if a;J ~ h. In case when the eigenvalue ,\(A) 
of given matrix is equal to maximal element of matrix ( denote 
it by d) the corresponding subdigraph /J'.~ of D.-1 contains the 
set P of all· strongly connected components. vVe say that two 
vertices i, j E DA are highly c01mected. in notation: i =d j. if 
i, j are contained in a cycle a with the maximal cycle mean value 
µ(a);= ,\(A) ("i.j are eigennodes). The subgraphs induced by the 
equivalence classes. of =r1 are called highly connected components 
in D.4, the set of all such components is denoted by 'P.A, 

Definition 2 Let A be a matrLr and Dj1 with ,\(A) =: 0 be .a 
threshold digraph. Dimrnsion of eigenspaCf dim(s(A) i8 defined 
as cardinality of PA. 

From definition of dimensi(;m and a complete set of generators 
Fi it is clear that dim(s(A)) = IF~I-

Theorem 2~2 Let A be monotone ,natri;I'. Then dim(s(A)) = 1. 

Proof. W.Lo.g. suppose that A is a given monotone matrix and 
that ,\{A) = 0. Then D1 = D~. From the definition of monotone 
matrix follows that the zero entries of matrix A are situated in 
right-down corner of A as the follows. 

A= 

0 0 
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Let a.kk be the first diagonal element of A equal to 0. Each element 
of the squarP submatrix R which contains last n - It+ 1 columns 
and last 11 - k + I rows of .-l is zero matrix. or by words of graph 
theory D~ is complete digraph, whereby all nodes of it lie on tlw 
same cycle. Moreover. the others cycles of D~ (if ther<' such cycles 
exist) contain at least one node from the set{/.:. k+ 1, .... 11 }. But 
it creates the only one highly cou11ccted components in D?1• □ 

Theore1n 2.3 Thtrt is an algori//1111 A whith . .for r1 givrn 1110,w­

tone matri:r A E Jin, computrs r111 rigenprnblr111 in O(n 2
) limr. 

Proof. The eigenvalue ,\( A) and tlw matrix A_, can be computed 
in O(n 2

) time. in view of Thwrcm 2.1. From Thwrem 2.2 is 
clear that to each monotone matrix and corresponding eigenvalue 
generates the only one eigenvector. The others eigenvectors are 
equivalent.. The Jllat.rix A., is 11011-positive. becam;c the maximal 
cycle mean in the underling graph of A" is zero. Every maximal­
weight ,path in D;1>- is a minima.I-weight path in D_A>. and the 
problem can be solved by small adaptation of Dijkstra algorithm 

[6]. □ 

3 Eigenproblem for Toeplitz matrix 

The results in this section are quite similar to those presented in 
the previous section for monoton<' matrices. However, the situa­
tion with Toeplitz matrices in not completely analogous, and our 
results concern only Toeplitz matrices with restrictive conditions. 

Definition 3 A matri:i: A = ( llij) is a Toeplit:: matri:v (generated 
by elem.fnl CLn+I, . .. , CL 1, ao, a1, . .. , an-1), if there is a function 
a: {-n+ 1, ... , n-1} ➔ R such that aij = a(i- j), i.e. if denote 
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a(i - j) = a;-j tlu matri:r A has the form 

/ 
ao a I a2 an-2 an-I 

a_1 ao a 1 Cln-3 an-2 

A= 
I CL2 a_1 ao an-4 lln-3 

l a-n+2 CLn+3 <Ln+4 ao a1 

a-n+I a-n+2 a-n+3 a_I ao 

A Toeplitz matrix is known if its first row and first column are 
known. The function a essentially contains this information. 

Example 2 Tiu .foll(!wing 4x4 mafri:r A is a (symmetric) Toeplitz 
matrix generated by elements 0, 4, 0, 2, 0, 4, 0: 

(
2 0 4 0) 
0 2 0 4 

A= 4 0 2 0 

0 4 0 2 

Here is the first condition which ensures the better computational 
complexity for solvability of the eigenproblem. We denote 

h+(A) := max{a;; 0 ~ i < n}, h-(A) := max{ai; -n < i ~ O} 
h(A) := min{h+(A), h-(A)} 

J+(A) := {i; 0 ~ i < n I\ ai ~ h(A)} 
1-(A) := { i; -n < i ~ 0 I\ ai ~ h(A)} 

Definition 4 Let A be a Toeplitz matrix generated by elements 
a-n+I, . .. , a_1, ao, a1, . .. , an-I• We define conditions of the ma­
trix A 

h+(A) = h-(A) 
(C) if i E J+(A) I\ a;= h(A) then ai+t = h(A), 0 ~ i ~ n - 2 

if i E J-(A) I\ ai = h(A) then a;_1 = h(A), -n + 2 ~ i ~ 0 
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It can be easily seen that for any Toeplitz matrix fulfilling the 
conditions (C) the eigenvalue .\(A) is the maximal element in A, 
because 

. •{} a1n+an1 {} n?aX a;j = ---- ::; .\(A) ::; ~ax aij . 
•,JEN 2 •,JEN 

Such we have. 

· Theorem 3.1 Lf'f A 

• conditions ( C). Thrn 
( a;j) be a Toeplitz matrLr fulfilling the 

.\(A) = ~11ax{ a;J. 
,,JEN 

By the consideration from first section, the computation of one 
eigenvector can be done in 0( n 2

) time, if matrix is monotone. We · 
shall show that the same amount of time is sufficient for solvability 
of the eigenproblem for Toeplitz matrixwith conditions (C). 

Theorem 3.2 Let A be a Toeplitz matrix fulfilling the conditions 

(C). Then 

dim (s(A)) = 1. 

Proof. vV.l.o.g. suppose that A is a Toeplitz matrix fulfilling 
the conditions (C) and .\(A) = 0. Then D1 = D~. From the 
definition of a Toeplitz matrix and conditions ( C) follows that 
the zero entries of matrix A are situated in right-upper corner 
and in left-down corner of A as follows. 

0 ... 0 

0 

A= I 0 

0 

0 ... 0 0 
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Let a 1~. aud a11.I.- SI he the first element equal to O in first row 
and first column of" .l. respect iwly. The structure of D~ is as the 
following. Since there <'xist ~-cycles 

(Ii). k S i S n: U- i). k + 1 Si S n; ... ; (k. 11 ), 

i.e. 

1 =o i. I,· S i S 11: ~ =u i. k + I S i S 11: ... : I,: =o n. 

each node from the set { 1. ~ ..... n - /,· + I . I,. k + l, ... , 11} lies on 
at least one :2-cycle. It is cl<'ar t liat digraph D~1 is conuected and 
each optimal eye!<' ill /)~ rn11t a ins at least onf' element from the 
set {l, 2, ... , 11 - I,:+. l, /,·. k + I .... , 11 }. It creates the only one 
highly connected component and the assertion follows. D 

Theorem 3.3 Tlwn is an algorithm A which. for a gil'rn Toeplit:: 

mafri:r A E M,; fuUilling thr to11ditio11s (('). computes an eigen­

problem i11 0( ,,2) Ii nu. 

Proof. The eig<'nvaluc .\(.1) ,111d the matrix .4.\ can be computed 
in O(n2) time, i11 vi<'\\" of 'f'!u ol'fm 3,1. From Theo nm 3.2 is 
clear that each Toeplit.z nrnt rix fulfilling the conditions ( C') a.ud 
corresponding eigenvalue g<'ucrate the only one eigenvector. The 
others eigenvectors are equivalent. The remaining part of the 
pr~of runs similarly as proof uf Theorem .'!..J. □ 

Remark 1 A matrix A = (a;_;) is called a circulant if there is 
a function g : {O, l, ... , 11 - I} --t R such that CTiJ = g(i - j) 
modn. The similar results (O(,i2)-algorithm) were received for 
the eigenproblern of circulant 111atrix [1:2]. 

4 Conclusion 

We have enlarged the class of matrices which allow a faster solu­
tion of tlw <'ige11prohlcrn. ( '01tcerning future research. we would 
like to identify other class<'s of Toeplitz matrices, properties of 
which offer faster algoritli111s for solvable of it.. 
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