


1 Introduction

Let G = (G, ®, <) be a linearly ordered, commutative group with
neutral element e = 0. We suppose that G is radicable, i.e. for
every integer ¢ > 1 and for every a € G, there exists a (unique)
element b € G such that b* = a. We denote b = a!/*.

Throughout the paper, n > 1 is a given integer. The set of n x n
matrices over GG is denoted by M,,. We introduce a further binary
operation @ on G by the formula

a®b=max(a,b) forall abed.

The triple (G, &, ®) is called maz-algebra. If G = (G,®,<) is
additive group of real numbers, then (G, ®,®) is called maz-plus
algebra (often used in applications). '
The operations §, > are extended to the matrix-vector algebra
over G by the direct analogy to the conventional linear algebra.
For A = (ai;) € M,, the problem of finding z € G™, X € G,
satisfying
ARr=A®«c

is called an extremal eigenproblem corresponding to the matrix
A; here X and z are usually called an extremal eigenvalue and an
extremal eigenvector of A, respectively. Throughout the paper,
we will omit the word "extremal”. This problem was treated by
several authors during the sixties, c.g. [3, 5, 14], survey of the
results concerning this and similar eigenproblems can be found
in [15, 16]. Below, we summarize and recall some of the main
results.

First we introduce the necessary notation. Let N={1,2,...,n}
and let C, be the set of all cyclic permutations defined on non-
empty subsets of N. For a cyclic permutation ¢ = (2y,13,...,%) €
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C, and for A € M,,, we denote [, the length of o by (o) and define
wa(0) = @iy, @ izis & ... @ @iy,
pa(o) = wa(o) /"

= 2%3(0)

o€Cn

where S7% denotes the iterated use of the operation ..

Theorem 1.1 [4] Let A € M,. Theh-/\(A)' is the uﬁique eigen-
value of A.

The problem of finding the eigenvalue /\(A) is also called the
maximum-cycle mean ‘problem and it has been studied by several
authors [2, 3, 5, 10, 7, 12, 13]. Various algorithms for solving this
problem are known, that of Karp [10] having the best: w01st case
performance O(n®). '

For B € M, we denote by A(B) the matrix
BoB'®...®B"

where B* stands for the s-fold iterated product B B®... B.

Let Ay = A(A)"'®A. (The upper index —1 denotes the inverse
element of A\(A) in the sense of the group operation ®. ) It is
shown in [4] that the matrix A(A)) contains at least one column,
the diagonal element of which is e. Every such a column is an
eigenvector of the matrix A, it is called a fundamental ezgenvectm
of the matrix A. The set of all fundamental eigenvectors will be
denoted by F4 and its cardinality is denoted by ¢ = |Fa|. We
say that x,y € Iy are equivalent if 2 = a ® y for some « € G.
In what follows s(A) denotes the set of all eigenvectors of A, so

“called eigenspace of A.

"Theorem 1.2 [4] Let A€ M,. Then

s(A): {zq:ai@gi;ta‘ié’G, g.,-EFA,'z'zly,Q,.'..,q}.v :

o

It follows from the definition of equivalent funda,mental’elgen-
vectors that the set Fy in Theorem 1.2 can be 1eplaced by any
maximal set F'; of fundamental eigenvectors such that no two of
them are equlvalent Every such set F w1ll be called a complete
set of generators (of the eigenspace).

The symbol D4 = (V, E) stands for a complete, arc-weighted
digraph associated with 4. Thée node set of Dy is N, and the
weight of any arc (4,j) is a;;. Throughout the paper, by a cycle
in the digraph we mean an elementary cycle or a loop, and by
path we mean a nontrivial elementary path, i.e. an elementary
path containing at least one arc. Evidently, we will use the same
notation, as well as the concept of weight, for both cycles and
cyclic permutations. By a strongly connected component of Dy4
we mean a subdigraph G = (L, EN L?) generated by a non-empty
subset L C V such that any two distinct vertices z,y € L are con-
tained in a common cycle, and L is a maximal subset with this
property. The set of all strongly connected components of D4 is
denoted by P. A strongly connected component G is called non-
trivial, if there is a cycle of positive length in G. In the opposite
case G is called trivial. A cycleo € C,, is optimal, if pa(c) = M(A),
a node in Dy is called an eigennode if it is contained in at least
one optimal cycle; E4 stands for the set of all eigennodes in Dy.

Theorem 1.3 [4] Let g1, go, - - - , gn denote the columns of the ma-
triz A(Ax). Then

(i) j € E4 if and only if g; € Fy

(ii) gi,g; are equivalent members of Fa if and only if the
eigennodes 1,j are contained in a common optimal cycle.

Let be A(A,) = (&;): It follows from the definition of A(A,)
that ¢;; is the weight of a heaviest path from 7 to 5 in D4. Hence,
A(A,) can be computed in O(n®) operations using the Floyd-
Warshall algorithm [11]. By trivial search and comparisons one
can then find a complete set of fundamental eigenvectors among
the columns of A(A)), using at most O(n?®) operations.
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-2 ‘Eigenproblem for monotone
| matrices

The aim of this section is to investigate the above eigenproblem
in case when A is a monotone matrix.

Definition 1 Matriz A = (a;;) is called monoilone if and only if

ai; < a;j41 and a;; < aiqy; for all i.7 € N, i.c., the entries in
every row and in every column are in non-decreasing order.

Example 1 The following 3 x 3 matriz M is monolone.

LTSN

M =

Y 0O
-~ Lo W
o0

Theorem 2.1 Let A = (a;;) be monotone matriz. Then

AA) = max{al]}

LJEN

Proof. 1t is clear that A(A) < max;jen{ai;}. Since matrix A
is monotone than at least diagonal element (say a,,) is equal to
max; jen{ai;} and assertion follows trivially. O

In further part of this section we suggest an algorithm for
computing all eigenvectors of a given monotone matrix in O(n*)
time, whereby w.l.o.g. we suppose that ¢ = R. It is shown in
[4] that under the assumption A(A) = 0, the matrix A(A) is a
metric matrix of the digraph Dy, i.e. any element &; is equal to
the heaviest path from to j, for ¢ # 7. Since the eigenvalue of a
monotone matrix is‘equal to maximal entry of a matrix ( Theorem
2.1), elements of the metric matrix A(A,) are non-positive. For
computing of an eigenvector we will use small adapted known
Dijkstra algorithm, which computes the shortest path.problem

4

from node 1 to 7. for all 7. 1 <4 < n in O(n?) steps. But at first

‘some property-of nionotone matrices.

Let D4 be a complete, arc weighted digraph associated with
a given matrix A. The symbol D% stands for digraph (called
threshold digraph) with vertex set V' = {1.2,...,n} and (¢,7) is
from edge set E if a;; > h. In case when the eigenvalue AMA)

~ of given matrix is equal to maximal element of matrix (denote

it by d) the corresponding subdigraph D% of D4 contains the
set P of all strongly connected components. We say that two
vertices 1,7 ‘€ D4 are highly connected, in notation: i =g j. if
1,7 are contained in a cycle o with the maximal cycle mean value

u(o) = A(A) (i.j are eigennodes). The subgraphs induced by the
'equlvalence classes of =, are called highly connected components

in D4, the set of all such components is denoted by P4.

Definition 2 Lef A be a matriz and DY with A(4) = 0 bé a
threshold digraph. Dimension of eigenspace dim(s(A) is defined

-as cardinality of Py.

From definition of dimension and a complete set of generators
F', it is clear that dim (s(A4)) = |FY].

Theorem 2.2 Let A be monotone matriv. Then dim(s(A)) = 1.

Proof. W.l.o.g. suppose that .4 is a given monotone matrix and
that A(A) = 0. Then D4 = DY. From the definition of monotone
matrix follows that the zero entries of matrix A are situated in
right- down corner of A as the follows. :

0 0
A= 0 0
\... 00 o0 0



Let ag be the first diagonal element of 4 equal to 0. Each element
of the square submatrix £ which contains last n — k + 1 columns
and last n — &k 4+ | rows of A is zevro matrix. or by words of graph
theory D% is complete digraph, whereby all nodes of it lie on the
same cycle. Moreover. the others cycles of DY (if there such cycles
exist) contain at least one node from the set {k.k+1,....n}. But
it creates the only one highly connected components in DY. O

Theorem 2.3 Therve is an algorithm A which. for a given mono-
tone matrir A € M, compulcs an cigenproblomn in O(n?) time.

Proof. The eigenvalue A(4) and the matrix 4y can be computed
in O(n?) time. in view of Theorcin 2.1, From Theorem 2.2 is
clear that to each nionotone matrix and corresponding eigenvalue
generates the only one eigenvector. The others eigenvectors are
equivalent. The matrix Ay is non-positive. because the maximal
cycle mean in the underling graph of A, is zero. Every maximal-
weight path in D4, is a minimal-weight path in D_4, and the
problem can be solved by small adaptation of Dijkstra algorithm

[6]. O

3 Eigenproblem for Toeplitz matrix

The results in this section are quite similar to those presented in
the previous section for monotone matrices. However, the situa-
tion with Toeplitz matrices in not completely analogous, and our
results concern only Toeplitz matrices with restrictive conditions.

Definition 3 4 matriz A = (a;j) is a Toeplitz matrir (generated
by element a_pyy,... ;0 1,80,a1,-..,0n_1), if there is a function
a:{-n+1,...,n—1} = R such that a;; = a(i—j), i.e. if denole
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a(t — j) = a;—j the matriz A has the form

( Qo ay a; Un—2 Qn-1 \
a_-, ap ap (n-3 QAp-2
a_o a_y ag vee Up—g QAp-_3
A=
Aeny2 G_ny3 Genyg -.. Qo ay
\ A_pny1 Qopy2 Aopy3 ... QA Qo /

A Toeplitz matrix is known if its first row and first column are
known. The function « essentially contains this information.

Example 2 The following 4x4 matriz A is a (symmetric) Toeplitz
matriz generated by elements 0,4,0,2,0,4,0:

O O
= O N O
O N D
OO

Here is the first condition which ensures the better computational
complexity for solvability of the eigenproblem. We denote

h*(A) := max{a;; 0 <i < n}, h™(A):=max{a;;—n <i <0}
h(A) := min{h*(A), h™(A4)}

ITA):={5; 0<i<nAa; > h(A)}
I=(A):={i; —n < i< 0Aa > h(A)}

Definition 4 Let A be a Toeplitz matriz generated by elements
QepglyerGo1,00,Q1,--.,0n_1. We define conditions of the ma-
triz A

ht(A) = h~(A4)
(C) ifi € I*(A) Aa; = h(A) then aiy1 = h(A), 0 <i<n—2
ifi € I7(A) A a; = h(A) then a;—; = h(A), —-n+2<i <0



It can be easily seen that for any Toeplitz matrix fulfilling the
conditions (C) the eigenvalue A(A) is the maximal element in A,
because ‘

Q1n + Gny
gy =2nl <
max{a;} = ——5— < M4) < r,rjlg%{au}

Such we have.

"Theorem 3.1 Let A = (a;j) be a Toeplitz matriz fulfilling the
- -conditions (C'). Then - . o

/\(A) - max{a”}

i,jeN

By the consideration fr om first section, the computation of one

_eigenvector can be done in O(n?) time, if matrix is monotone. We

’shall show that the same amount of timé is sufficient for solvability
of the eigenproblem for Toeplitz matrix.with conditions ().

Theorem 3.2 Let A be a Toeplzt* matriz fulﬁllmg the condztzons
(C) Then
dim(s(A4)) = 1.

Proof. W.lo.g. suppose that 4 is a Toeplitz matrix fulfilling
the conditions (C') and M A) = 0. Then D% = DY%. From the
 definition of a Toeplitz matrix and conditions (C') follows that
the zero entries of matrix A are situated in right-upper corner
and in left-down corner of A as follows. '

( e g \

Let ayr and ap. b <1 he the livst element equal to 0 in first row
and first column of A. respectively. The structure of DY is as the
following. Since there exist 2-cycles

(1), b <i <y (2.0). b+ 1< <ng. (kon),
le.
T=pi. F<i<n: 2=gi. b+ 1 <o <ot h=gn.
each node from the set {1.2..... n—l+1.kk+1,....n} lieson

at least one 2-cvele. It is clear that digraph DY is connected and
each optimal cycle in D9 contains at least one element from the
set {1,2,...,n —k + L,k b+ 1....,n}. It creates the only one
highly connected couiponent and the assertion follows. U]

Theorem 3.3 Therve is an algovithm A which. for a given Toeplitz
matriz A € M, Julfilling the conditions (("). computes an eigen-
problem in O(n?*) lime.

Proof. The eigenvalue A(A) and the matrix 4y can be computed
n O(n'z’) time, in view of Theorem 3.1, From Theorem 3.2 is
clear that each Tocplitz matrix fulfilling the conditions (') and
corresponding eigenvalue generate the only one eigenvector. The
others eigenvectors are equivalent. The remaining part of the
proof runs similarly as prool of Theorem 2.3, U

Remark 1 A matrix A = («;;) is called a circulant if there is
a function ¢ : {0,1,....n — 1} = R such that a;; = g(/ — j)
modn. The similar results (O{n?)-algorithm) were received for
the eigenproblem of circulant matrix [12].

4 Conclusion

We have enlarged the class of matrices which allow a faster solu-
tion of the cigenproblem. Concerning future research, we would
like to identify other classes of Toeplitz matrices. properties of
which offer faster algorithms for solvable of it.
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