

# 05ЪЕДИНЕННЫЙ <br> ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ 

Дубна

$00-141$
E5-2000-141
P.E.Zhidkov*

ON AN EQUIVALENCE
OF THE CENTERED GAUSSIAN MEASURE IN $L_{2}$
WITH THE CORRELATION OPERATOR $\left(-\frac{d^{2}}{d x^{2}}\right)^{-1}$
AND THE CONDITIONAL WIENER MEASURE

Submitted to «Теория вероятностей и ее применения»
*E-mail: zhidkov@thsun1.jinr.ru

## 1 Introduction

In this paper, we prove the equivalence of the conditional Wiener measure $w$, defined in $C_{0}([0,1])$, and the centered Gaussian measure $\mu$, defined $L_{2}(0,1)$, with the correlation operator $\left(-\frac{d^{2}}{d x^{2}}\right)^{-1}$, taken with zero Dirichlet boundary conditions, so that for an arbitrary functional $\varphi$ in $L_{2}(0,1)$ integrable over the measure $\mu$ the following integral

$$
\int_{C_{0}([0,1])} \varphi(x) d w(x)
$$

is determined and it coincides with

$$
\int_{L_{2}(0,1)} \varphi(x) d \mu(x)
$$

In addition, some properties of the measure $w$ are proved. The present investigation is mainly stimulated by the fact that recently a number of papers was published devoted to the construction of invariant measures for nonlinear partial differential equations, such as a nonlinear Schrödinger equation (see, for example, [1-7]), in part of which the measure $w$ is used [1-4] and in part the measure $\mu[6,7]$. Therefore, it follows from the results of the present paper that in the indicated papers the same measure is in fact used for constructing invariant measures.

A number of papers is devoted to constructing the conditional Wiener and Gaussian measures (see, for example, [8-12]). In addition, in [10-12], the equivalence in a sense of the usual (unconditional) Wiener measure and a Gaussian measure is shown. The author of the present paper must remark that generally the opinion of specialists is known, according to which the measures $w$ and $\mu$ are in fact equivalent; however, he does not know a paper where the questions studied here are considered.

## 2 Definitions. Formulation of the main result

We begin with some Definitions. In the present article, all quantities (variables, spaces, and so on) are real. Let $C=C_{0}([0,1])$ be the standard
space of functions continuous on $[0,1]$ and becoming zero at the ends of this segment, with the norm $\|g\|_{C}=\max _{x \in[0,1]}|g(x)|$, and let $L_{2}=L_{2}(0,1)$ be the standard Lebesque space consisting of functions square integrable over $(0,1)$, with the scalar product $(g, h)_{L_{2}}=\int_{0}^{1} g(x) h(x) d x$ and the norm $\|g\|_{L_{2}}^{2}=(g, g)_{L_{2}}$; as it is well-known, $L_{2}$ is a Hilbert space. Let $C_{0}^{\infty}(0,1)$ be the linear space of functions infinitely differentiable in $[0,1]$ and becoming zero at the ends of this segment, and let $\Delta$ be the closure in $L_{2}$ of the operator $-\frac{d^{2}}{d x^{2}}$, taken with the domain $C_{0}^{\infty}(0,1)$. Then, it is well-known that $\Delta$ is a self-adjoint positive operator in $L_{2}$. Let $e_{n}(x)=\sqrt{2} \sin \pi(n+1) x$ and $\lambda_{n}=[\pi(n+1)]^{2}$ where $n=0,1,2, \ldots$. Then, $\lambda_{n}$ and $e_{n}$ are eigenvalues and corresponding eigenfunctions of the operator $\Delta$; in addition, $\left\{e_{n}\right\}_{n=0,1,2, \ldots}$ is an orthonormal basis in $L_{2}$. Finally, let $H_{0}^{1}=H_{0}^{1}(0,1)$ be the standard Sobolev space being the completion of the space $C_{0}^{\infty}(0,1)$ taken with the norm $\|g\|_{H_{0}^{1}}^{2}=\int_{0}^{1}\left[g^{\prime}(x)\right]^{2} d x ;$ clearly, $H_{0}^{1}$ is a Hilbert space.

Now we briefly recall definitions of the measures $\mu$ and $w$. The measure $\mu$ can be constructed as follows. Let a positive integer $N$ and a Borel set $F \subset R^{N+1}$ be arbitrary. The set $M \subset L_{2}$ of the kind

$$
M=\left\{u \in L_{2}:\left[\left(u, e_{0}\right)_{L_{2}}, \ldots,\left(u, e_{N}\right)_{L_{2}}\right] \in F\right\}
$$

is called cylindrical in $L_{2}$. For the cylindrical set of the above kind we set

$$
\mu(M)=(2 \pi)^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{F} e^{-\frac{1}{2} \sum_{k=0}^{N} \lambda_{k} x_{k}^{2}} d x_{0} \ldots d x_{N}
$$

Clearly, the family of all cylindrical subsets of the space $L_{2}$ is an algebra (it will be denoted by $\mathcal{A}_{L}$ ), on which, as one can easily verify, $\mu$ is an additive measure. Furthermore, since the operator $\Delta^{-1}$ is of trace class in $L_{2}$ (i. e. all its eigenvalues $\lambda_{n}^{-1}$ are positive and $\sum_{n=0}^{\infty} \lambda_{n}^{-1}<\infty$ ), the measure $\mu$ is countably additive on $\mathcal{A}_{L}$ (see [9]), therefore it can be uniquely extended onto the minimal sigma-algebra $\mathcal{B}_{L}$ of subsets of $L_{2}$ containing $\mathcal{A}_{L}$, and this sigma-algebra $\mathcal{B}_{L}$ will be proved to be the Borel sigma-algebra in $L_{2}$. The measure $\mu$ defined on $\mathcal{B}_{L}$ is called the centered Gaussian measure in $L_{2}$ with the correlation operator $\Delta^{-1}$.

Now we recall the definition of the measure $w$ (a careful construction of this measure is presented in the next section). Let $p(x, t)$ be the fundamental solution of the heat equation

$$
\frac{\partial}{\partial t} u(x, t)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t) . \quad x \in R, t>0
$$

i. e. $p(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$, where $x \in R$ and $t>0$, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(x, t) d x \equiv 1 \tag{1}
\end{equation*}
$$

and for $0<t_{1}<t_{2}$

$$
\begin{equation*}
\int_{-\infty}^{\infty} p\left(y, t_{1}\right) p\left(x-y, t_{2}-t_{1}\right) d y=p\left(x, t_{2}\right) \tag{2}
\end{equation*}
$$

A set $M \subset C$ is called cylindrical in $C$ if

$$
M=\left\{u \in C:\left[u\left(t_{1}\right), u\left(t_{2}\right), \ldots, u\left(t_{N}\right)\right] \in F\right\}
$$

for some positive integer $N, 0<t_{1}<t_{2}<\ldots<t_{N}<1$, and a Borel set $F \subset R^{N}$. For the indicated cylindrical set $M$ we set

$$
w(M)=\sqrt{2 \pi} \int_{F} e^{-\sum_{k=1}^{N+1} p\left(x_{k}-x_{k-1}, t_{k}-t_{k-1}\right)} d x_{1} \ldots d x_{N}
$$

where $x_{0}=x_{N+1}=0, t_{0}=0$ and $t_{N+1}=1$. Using (1) and (2), one can easily verify that the set $\mathcal{A}_{C}$ of all cylindrical subsets of $C$ is an alge: ra, on which $w$ is an additive measure; in addition $w(C)=1$. It is known that the measure $w$ is countably additive on $\mathcal{A}_{C}$, too (see the next section), therefore it can be uniquely extended onto the minimal sigma-algebra $\mathcal{B}_{C}$ of subsets of $C$ containing $\mathcal{A}_{C}$, and this sigma-algebra $\mathcal{B}_{C}$ will be proved to be the Borel sigma-algebra in $C$. The constructed measure $w$ is called the conditional Wiener measure. For the convenience of readers, in what follows we present proofs of some of the indicated facts and, in addition. briefly consider some properties of $w$.

In the theorem below we formulate main results of the present paper.

## Theorem.

(a) For any $A \in \mathcal{B}_{L}$, the following takes place: $A \cap C \in \mathcal{B}_{C}$ and $\mu(A)=$ $w\left(A \cap C^{\prime}\right)$;
(b) for any functional $\varphi$ in $L_{2}$ integrated over the measure $\mu$. the functional $\varphi$ is also integrable in $C$ over the measure $w$ and

$$
\int_{L_{2}} \varphi(x) d \mu(x)=\int_{C^{\prime}} \varphi(x) d w(x)
$$

Remark. One may interpret the statements (a) and (b) of this theorem as the equivalence of the measures $\mu$ and $w$.

This theorem will be proved in Section 4; in Section 3 we establish proofs to the construction of the measure $w$ and prove some of its properties.

## 3 Auxiliary results. Constructing the measure $w$

The fact that $\mathcal{B}_{L}$ is the Borel sigma-algebra in $L_{2}$ follows from the following.

Lemma 1. Let $B_{R}(a)=\left\{u \in L_{2}:\|u-a\|_{L_{2}} \leq R\right\}$, where $R>0$ and $a \in L_{2}$. Then $B_{R}(a) \in \mathcal{B}_{L}$.

Proof follows from the representation $B_{R}(a)=\bigcap_{n=1}^{\infty} M_{n}$ where

$$
M_{n}=\left\{u \in L_{2}:\left(u, e_{0}\right)_{L_{2}}^{2}+\ldots+\left(u, e_{n}\right)_{L_{2}}^{2} \leq R^{2}\right\} \square
$$

In what follows in this section, we construct the measure $w$ and consider some of its properties. We exploit methods introduced in [11] for studying the usual (unconditional) Wiener measure. So, $w$ is an additive measure on the algebra $\mathcal{A}_{C}$. Let $w^{\star}$ be the outer measure corresponding to $w$, i. e. for any $A \subset C w^{\star}(A)=\inf _{A \subset \bigcup_{k} M_{k}} \sum_{k} w\left(M_{k}\right)$ where the infimum
is taken over all finite and countable coverings of the set $A$ by sets $M_{k}$ from $\mathcal{A}_{C}$. Let also

$$
I_{\alpha, a, k, n}=\left\{u \in C:\left|u\left(\frac{k}{2^{n}}\right)-u\left(\frac{k-1}{2^{n}}\right)\right|>a 2^{-\alpha n}\right\}
$$

where $k=1,2, \ldots, 2^{n}$, and

$$
\begin{gathered}
H_{\alpha}(a)=\left\{u \in C: \exists s_{1}=\frac{k}{2^{n}}, s_{2}=\frac{l}{2^{m}} \in[0,1] \text { such that } s_{1} \neq s_{2}\right. \text { and } \\
\left.\left|u\left(s_{1}\right)-u\left(s_{2}\right)\right|>a\left|s_{1}-s_{2}\right|^{\alpha}\right\}
\end{gathered}
$$

where in both the cases, $k, l, m$ and $n$ are positive integer and $\alpha, a>0$.
$2^{\frac{n}{2}} e^{-\frac{1}{2} a^{2} 2^{n(1-2 a)}}$. Let $\alpha \in\left(0, \frac{1}{2}\right)$ and $a>0$. Then $w\left(I_{\alpha, a, k, n}\right) \leq$
Proof. Clearly $I_{\alpha, a, k, n} \in \mathcal{A}_{C}$ so that the quantity $w\left(I_{\alpha, a, k, n}\right)$ is determined. Further, $w\left(I_{\alpha, a, k, n}\right)=$

$$
\begin{aligned}
& =\frac{1}{2 \pi\left[\frac{k-1}{\left.2^{n} \frac{1}{2^{n}}\left(1-\frac{k}{2^{n}}\right)\right]^{\frac{1}{2}}} \int_{|x-y|>a 2^{-n \alpha}} e^{-\frac{1}{2}\left[\frac{2^{n} x^{2}}{k-1}+2^{n}(x-y)^{2}+\frac{y^{2}}{1-k^{2}-n}\right]} d x d y \leq\right.} \\
& \leq \frac{2^{\frac{n}{2}} e^{-\frac{1}{2} a^{2} 2^{n}(1-2 a)}}{2 \pi\left[\frac{k-1}{2^{n}}\left(1-\frac{k}{2^{n}}\right)\right]^{\frac{1}{2}}} \int_{R^{2}} e^{-\frac{1}{2}\left[\frac{2^{n} x^{2}}{k-1}+\frac{y^{2}}{1-k^{2}-n}\right]} d x d y=2^{\frac{n}{2}} e^{-\frac{1}{2} a^{2} 2^{n(1-2 a)}} .
\end{aligned}
$$

Let $\alpha \in\left(0, \frac{1}{2}\right)$. For any $a>0$ we have $H_{\alpha}\left(\frac{2 a}{1-2^{-\alpha}}\right) \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n}} I_{\alpha, a, k, n}$ (for the proof, see [11]), therefore

$$
w^{\star}\left(H_{\alpha}\left(\frac{2 a}{1-2^{-\alpha}}\right)\right) \leq \sum_{n=1}^{\infty} 2^{n+\frac{n}{2}} e^{-\frac{1}{2} a^{2} 2^{n(1-2 \alpha)}}<\infty
$$

and, in addition,

$$
\begin{equation*}
w^{\star}\left(H_{\alpha}\left(\frac{2 a}{1-2^{-\alpha}}\right)\right) \rightarrow 0 \text { as } a \rightarrow \infty \tag{3}
\end{equation*}
$$

Also, it is clear that for any $a>0 \quad C \backslash H_{\alpha}(a)$ is a compact subset of (' so that in particular $H_{\alpha}(a) \in \mathcal{B}_{C}$.

Lemma 3. The measure $w$ is countably additive on the algebra $\mathcal{A}_{C}$. Proof. It suffices to prove that, if $\left\{M_{n}\right\}_{n=1,2,3, \ldots}$ is a sequence of cylindrical sets in $\mathcal{A}_{C}, M_{1} \supset M_{2} \supset \ldots \supset M_{n} \supset \ldots$ and $\bigcap_{n=1}^{\infty} M_{n}=\emptyset$, then $w\left(M_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Take an arbitrary $\epsilon>0$. By the known property of Borel measures, for any $n$ there exists a closed cylindrical set $K_{n} \subset M_{n}$ such that $w\left(M_{n} \backslash K_{n}\right)<\epsilon 2^{-n-1}$. Let $L_{n}=\bigcap_{l=1}^{n} K_{l}$. Then for any $n \quad w\left(M_{n} \backslash L_{n}\right) \leq \sum_{l=1}^{n} \epsilon 2^{-l-1}<\frac{\epsilon}{2}$, because $M_{n} \backslash L_{n}=M_{n} \backslash\left(\bigcap_{l=1}^{n} K_{l}\right)=$ $\bigcup_{l=1}^{n}\left(M_{n} \backslash K_{l}\right) \subset \bigcup_{l=1}^{n}\left(M_{l} \backslash K_{l}\right)$. Now, it suffices to prove the existence of $n_{0}>0$ such that $w\left(L_{n_{0}}\right)<\frac{\epsilon}{2}$, because if this occurs, then $w\left(M_{n}\right)<\epsilon$ for $n \geq n_{0}$.

Fix an arbitrary $\alpha \in\left(0, \frac{1}{2}\right)$ and take $a>0$ such that $w^{\star}\left(H_{\alpha}(a)\right)<\frac{\epsilon}{2}$. Then we obviously have, for any cylindrical set $M$ satisfying $M \cap(C \backslash$ $\left.H_{\alpha}(a)\right)=\emptyset, w(M) \leq w^{\star}\left(H_{\alpha}(a)\right)<\frac{\epsilon}{2}$. Let us prove that there exists a number $n_{0}>0$ such that $I_{n}:=L_{n} \cap\left(C \backslash H_{\alpha}(a)\right)=\emptyset$ for $n \geq n_{0}$. Suppose the opposite. We have

$$
I_{1} \supset I_{2} \supset \ldots \supset I_{n} \supset \ldots \text { and } \bigcap_{n=1}^{\infty} I_{n}=\emptyset
$$

By the supposition, for each number $n \geq 1$ there exists $u_{n} \in I_{n}$. Since the set $C \backslash H_{\alpha}(a)$ is compact in $C$, there exists a subsequence $\left\{u_{n_{k}}\right\}_{k=1,2,3, \ldots}$ of the sequence $\left\{u_{n}\right\}_{n=1,2,3, \ldots}$ converging in $C$ to some $u$. But then $u \in$ $C \backslash H_{\alpha}(a)$ because $C \backslash H_{\alpha}(a)$ is closed.

Take an arbitrary number $l>0$. Then $u_{n_{k}} \in I_{l}$ for all $n_{k} \geq l$. Since $I_{l}$ is closed, we have $u \in I_{l}$. But then $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$ because $l>0$ is arbitrary, i. e. we get a contradiction. Thus, it is proved that $I_{n}=\emptyset$ for all sufficiently large numbers $n$, which implies $w\left(L_{n}\right)<\frac{\epsilon}{2}$ for all sufficiently large $n$. Lemma 3 is proved.

Lemma 4. $\mathcal{B}_{C}$ is the Borel sigma-algebra in $C$.
Proof. Let $R>0$ and $a \in C$ be arbitrary. It suffices to prove that
$B_{R}(a):=\left\{u \in C:\|u-a\|_{c} \leq R\right\}$ belongs $\mathcal{B}_{C}$. But this follows by the relation $B_{R}(a)=\bigcap_{n=1}^{\infty} M_{n}$ where

$$
M_{n}=\left\{u \in C^{\prime}:\left|u\left(k \cdot 2^{-n}\right)-a\left(k \cdot 2^{-n}\right)\right| \leq R \forall k=1,2, \ldots .2^{n}\right\} . \square
$$

So. the measure $w$ is constructed. In conclusion of this section, we shall prove the following well-known important property of this measure. Let for $a>0 \quad C^{a}=\left\{u \in C::^{\cdot} \exists a>0\right.$ such that $|u(x)-u(y)| \leq$ $\left.a|x-y|^{\alpha} \forall x, y \in[0,1]\right\}$.
$\begin{aligned} \text { Proposition. } C^{\alpha} & \in \mathcal{B}_{C} \text { for any } \alpha>0 \text {; in addition, } w\left(C^{\alpha}\right)=1 \text { if } \\ 0<\alpha<\frac{1}{2} \text { and } w\left(C^{\alpha}\right) & =0 \text { if } \alpha>\frac{1}{2} \text {. }\end{aligned}$
Proof. Since $C^{\alpha}=\bigcup_{a=1}^{\infty}\left[C \backslash H_{\alpha}(a)\right]$ for $\alpha>0$, the set $C^{\alpha}$ belongs to $\mathcal{B}_{C} . \ln$ addition, $w\left(C^{\alpha}\right)=1-\lim _{a \rightarrow+\infty} w\left(H_{\alpha}(a)\right)=1$ for $\alpha \in\left(0, \frac{1}{2}\right)$.

Let now $\alpha>\frac{1}{2}$ and let

$$
J_{\alpha ; a, n}=\left\{u \in C:\left|u\left(k 2^{-n}\right)-u\left((k-1) 2^{-n}\right)\right| \leq a 2^{-n \alpha} \forall k=1,2, \ldots .2^{n}\right\}
$$

where $a>0$. We have $C \backslash H_{\alpha}(a) \subset J_{\alpha, a, n}$ for any $n=1,2,3, \ldots$. Estimating $e^{-\frac{1}{2} \frac{\left(x_{2} n-1-x_{2}{ }^{n}-\right)^{2}}{2-n}}$ from above by 1 and making the change of variables
$y_{1}=x_{1}, y_{2}=x_{2}-x_{1}, y_{3}=x_{3}-x_{2}, \ldots y_{2^{n}-2}=x_{2^{n-2}}-x_{2^{n}-3}, y_{2^{n-1}}=x_{2^{n-1}}$, we obtain ( $x_{2^{n}}=0$ ):

$$
\begin{aligned}
& \left.w\left(J_{\alpha, a, n}\right)=[2 \pi)^{2^{n}-1} 2^{-n 2^{n}}\right]^{-\frac{1}{2}} \times \\
& \times \int_{\substack{1 x_{k}-x_{k-1} 1 \leq a 2-\alpha n \\
k=1,2, \ldots, 2^{2}}} e^{-\frac{1}{2}\left[\frac{x_{1}^{2}}{2-n}+\frac{\left(x_{2}-x_{1}\right)^{2}}{2-n}+\ldots+\frac{\left(x_{2 n}-1-x_{2} n_{-2}\right)^{2}}{2_{n}-n}+\frac{x_{2 n-1}^{2}}{2^{-n}}\right]} d x_{1} \ldots d x_{2^{n}-1} \leq \\
& \leq\left[(2 \pi)^{2^{n}-1} 2^{-n 2^{n^{1}}}\right]^{-\frac{1}{2}} \int_{\substack{1 y_{k} \leq a-a n \\
k=1,2, \ldots, 2^{n}-1}} e^{-\frac{1}{2} \sum_{k=1}^{2^{n}-1} \frac{y_{k}^{2}}{2^{-n}}} d y_{1} \ldots d y_{2^{n}-1}= \\
& =\left[\frac{1}{\sqrt{2 \pi}} 2^{\frac{n}{2\left(2^{n}-1\right)}} \int_{|z| \leq a 2^{-\alpha n+\frac{n}{2}}} e^{-\frac{z^{2}}{2}} d z\right]^{2^{n}-1} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

because the integral in the expression in square brackets from the righthand side of these relations tends to zero as $n \rightarrow \infty$. Consequently, since $C^{\alpha}=\bigcup_{a=1}^{\infty}\left[C \backslash H_{\alpha}(a)\right]$ and, as it is proved $w\left(C \backslash H_{\alpha}(a)\right) \leq \lim _{n \rightarrow \infty} w\left(J_{\alpha, a, n}\right)=$ 0 for any $a>0$, we get $w\left(C^{\alpha}\right)=0$ for $\alpha>\frac{1}{2}$.

## 4 Proof of Theorem

## Lemma 5. $A \cap C \in \mathcal{B}_{C}$ for any $A \in \mathcal{B}_{L}$.

Proof. Clearly, if $A \subset L_{2}$ is open, then $A \cap C$ is open in $C$. Therefore, if $A \subset L_{2}$ is closed, then $A \cap C=C \backslash\left[C \cap\left(L_{2} \backslash A\right)\right]$ is closed $C$. Suppose the existence of $D \in \mathcal{B}_{L}$ such that $D \cap C \notin \mathcal{B}_{C}$. Consider the family $S$ of all Borel subsets $A$ of the space $L_{2}$ such that $A \cap C \in \mathcal{B}_{C}$. Then, in view of the above-described facts, $S$ contains all open and closed subsets of $L_{2}$. Let us prove that $S$ is a sigma-algebra.

Let $\left\{A_{n}\right\}_{n=1,2,3, \ldots} \subset S$. It suffices to prove that $A=\bigcap_{n=1}^{\infty} A_{n} \in S$. But indeed $A \cap C=\bigcap_{n=1}^{\infty}\left(A_{n} \cap C\right) \in \mathcal{B}_{C}$. Hence, indeed $S$ is a sigmaalgebra containing all open and closed subsets of $L_{2}$. But $D \notin S$, i. e., $S$ is contained in $\mathcal{B}_{L}$, and it does not coincide with $\mathcal{B}_{L}$. The obtained contradiction implies the statement of Lemma 5. $\square$

Take an arbitrary positive integer $N$ and consider on the segment $[0,1]$ the network $S_{N}$ with the mesh width $h=2^{-N}$ and nodes $x_{k}=$ $k h, k=0,1, \ldots, 2^{N}$. Consider the linear space $L_{N}$ of all broken lines on $S_{N}$ being linear functions between arbitrary two neighboring nodes of the network, continuous on $[0,1]$ and becoming zero at $x=0$ and $x=1$. On the linear space $L_{N}$, we consider the normalized to 1 nonnegative countably additive measure $w_{N}$ defined by the rule: for any Borel set $F \subset R^{2^{N}-1}$ and $M=\left\{u \in L_{N}:\left[u\left(2^{-N}\right), \ldots, u\left(\left(2^{N}-1\right) \cdot 2^{-N}\right)\right] \in F\right\}$ we set

$$
w_{N}(M)=\left[(2 \pi)^{2^{N}-1} 2^{-N^{N}}\right]^{-\frac{1}{2}} \int_{F} e^{-\frac{1}{2} \sum_{k=1}^{2^{N}} \frac{\left(s_{k}-x_{k-1}\right)^{2}}{2^{-N}}} d x_{1} \ldots d x_{2^{N}-1}
$$

where $x_{0}=x_{2^{N}}=0$; clearly, for any fixed $N$ the family of all subsets of $L_{N}$ of the indicated kind is a sigma-algebra, on which $w_{N}$ is a countably
additive measure, and $w_{N}\left(L_{N}\right)=1$.
Lemma 6. The extension of the measure $w_{N}$ on the space $C$, defined by the rule: $w_{N}(A)=w_{N}\left(A \cap L_{N}\right)$ for any $A \in \mathcal{B}_{C}$, is a well-defined nonnegative normalized to 1 Borel measure in $C$.

Proof. It suffices to prove that if $A \in \mathcal{B}_{C}$, then $F_{N}=F_{N}(A):=$ $\left\{\left[u\left(2^{-N}\right), \ldots, u\left(\left(2^{N}-1\right) \cdot 2^{-N}\right)\right]: u \in A \cap L_{N}\right\}$ is a Borel subset of $R^{2^{N}-1}$. It is also clear that $F_{N}$ is a Borel subset of $R^{2^{N}-1}$ if and only if $A_{N}=A \cap L_{N}$ is a Borel set as a subset of $L_{N}$ where the linear space $L_{N}$ is equipped with the topology of the uniform convergence. Suppose the opposite, i. e., that there exists $A \in \mathcal{B}_{C}$ such that $A \cap L_{N}$ is not a Borel subset of $L_{N}$. It is easy to verify, as in the proof of Lemma 5, that all Borel subsets of the space $C$, the intersection of each of which with $L_{N}$ is a Borel subset of this space, form a sigma-algebra $\mathcal{B}^{\prime}$ in the space $C$ containing all open and closed subsets of $C$. But according to our assumption, there exists $A \in \mathcal{B}_{C}$ not belonging to $\mathcal{B}^{\prime}$ which is contradictorily. $\square$

Lemma 7. Let $w_{N}(A)=w_{N}\left(A \cap L_{N}\right)$ where $A \in \mathcal{B}_{L}$. Then, $w_{N}$ becomes a nonnegative normalized to 1 Borel measure in $L_{2}$.

Proof follows from Lemmas 5 and $6 . \square$
In what follows, measures $w_{N}$, where $N=1,2,3, \ldots$, are considered as Borel measures in $C$ or $L_{2}$, in the dependence on the context. Now we also recall that, in a complete separable metric space $P$, a sequence $\left\{\nu_{n}\right\}_{n=1,2,3, \ldots}$ of nonnegative normalized to 1 Borel measures $\nu_{n}$ is called a weakly converging to a nonnegative normalized to 1 Borel measure $\nu$ if

$$
\lim _{n \rightarrow \infty} \int_{P} \varphi(x) d \nu_{n}(x)=\int_{P} \varphi(x) d \nu(x)
$$

for an arbitrary continuous and bounded functional $\varphi$ in $P$.
Lemma 8. The sequence of measures $\left\{w_{N}\right\}_{N=1,2,3, \ldots}$ weakly converges to $w$ in $C$.

Proof. Fix arbitrary $\epsilon>0$ and $\alpha \in\left(0, \frac{1}{2}\right)$. Let us prove the existence of $a>0$ such that for the set $K:=C \backslash H_{\alpha}\left(\frac{2 a}{1-2^{-\alpha}}\right)=\left\{u \in C^{\alpha}\right.$ : $\left.|u(x)-u(y)| \leq \frac{2 a}{1-2^{-\alpha}}|x-y|^{\alpha} \forall x, y \in[0,1]\right\}$ the following takes place:

$$
\begin{equation*}
w_{N}(C \backslash K)<\epsilon, N=1,2,3, \ldots \tag{4}
\end{equation*}
$$

(the fact that the set $K$ of the indicated kind is a Borel set in $C$ is proved in Section 3). Choose $a>0$ such that

$$
\begin{equation*}
\sum_{N=1}^{\infty} 2^{\frac{3 N}{2}} e^{-\frac{1}{2} a^{2} 2^{N(1-2 a)}}<\epsilon \text { for all } N=1,2,3, \ldots \tag{5}
\end{equation*}
$$

Take an arbitrary positive integer $N$ and let $K$ be the set introduced above corresponding to $a>0$ which obeys (5). Consider the set $K_{N}=$ $K \cap L_{N}$. As one can easily verify, for any positive integer $n>N$ and any $k=1,2, \ldots, 2^{n}$ the following takes place: $\left(I_{\alpha, a, k, n} \cap L_{N}\right) \subset \bigcup_{k=1}^{2^{N}}\left[I_{\alpha, a, k, N} \cap L_{N}\right]$. Then, since as it is noted in Section $3,(C \backslash K) \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{2^{n}} I_{\alpha, a, k, n}$, we have:

$$
\left((C \backslash K) \cap L_{N}\right) \subset \bigcup_{n=1}^{N} \bigcup_{k=1}^{2^{n}}\left(I_{\alpha, a, k, n} \cap L_{N}\right)
$$

therefore

$$
w_{N}(C \backslash K)=w_{N}\left((C \backslash K) \cap L_{N}\right) \leq \sum_{n=1}^{N} \sum_{k=1}^{2^{n}} w_{N}\left(I_{\alpha, a, k, n} \cap L_{N}\right)
$$

One can prove as in the proof of Lemma 2 that for any $n=1,2, \ldots, N$ and $k=1,2, \ldots, 2^{n}$ the following

$$
w_{N}\left(I_{\alpha, a, k, n}\right) \leq 2^{\frac{n}{2}} e^{-\frac{1}{2} a^{2} 2^{n(1-2 \alpha)}}
$$

is valid. But this together with (5) yields that $w_{N}\left(L_{N} \backslash K_{N}\right)<\epsilon$, and the existence of the above-described set $K$ satisfying (4) is proved.

It is clear that for any $\epsilon>0$ the corresponding set $K$ is compact in $C$. Hence, by the Prokhorov theorem [13] the sequence of measures $\left\{w_{N}\right\}_{N=1,2,3 \ldots}$ is weakly compact in C. Let $w^{\prime}$ be an arbitrary its limit point (in the sense of the weak convergence). Let us prove that $w^{\prime}=w$. Suppose the opposite. Then in view of the uniqueness of the extension of a measure from an algebra onto the minimal sigmaalgebra containing this algebra and since the minimal sigma-algebra containing the algebra of cylindrical subsets of $C$ of the kind $\{u \in C$ : $\left.\left[u\left(2^{-N}\right), u\left(2 \cdot 2^{-N}\right), \ldots, u\left(\left(2^{N}-1\right) \cdot 2^{-N}\right)\right] \in F\right\}$, where $N$ and $F$ are arbitrary positive integer and Borel subset of $R^{N+1}$, is the Borel siginaalgebra in $C$ (see Lemma 4), there exists a cylindrical set $M=\{u \in C$ :
$\left.\left[u\left(2^{-N}\right), u\left(2 \cdot 2^{-N}\right), \ldots, u\left(\left(2^{N}-1\right) \cdot 2^{-N}\right)\right] \in F\right\}$ such that $u^{\prime}(M) \neq w(M)$. In view of the known property of Borel measures, according to which a measure of a Borel set is equal to the infimum of measures of open sets containing this Borel set, we can accept that the set $M$ is open.

For an arbitrary sufficiently small $\epsilon>0$, consider a functional $p_{\epsilon}$ in $C$ continuous and such that

1. $\varphi_{\epsilon}(x)=1$ if $x \in M$ and dist $(x, \partial M) \geq \epsilon$;
2. $0 \leq \varphi_{c}(x) \leq 1$ for any $x \in C$;
3. $\varphi_{\epsilon}(x)=0$ for $x \notin M$;
4. $\varphi_{\varepsilon}(x)$ depends only on $x\left(2^{-N}\right), x\left(2 \cdot 2^{-N}\right), \ldots, x\left(\left(2^{N}-1\right) \cdot 2^{-N}\right)$. We have for those subsequence $\left\{w_{N_{k}}\right\}_{k=1,2,3 \ldots .}$ of the sequence $\left\{w_{N}\right\}_{N=1,2,3 \ldots}$, which weakly converges to $w^{\prime}$ in $C$ :

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{M} \varphi_{t}(x) d w_{N_{k}}(x)=\int_{M} \varphi_{\epsilon}(x) d w^{\prime}(x) \tag{6}
\end{equation*}
$$

At the same time, according to the definition of an integral by integral sumes,

$$
\begin{equation*}
\int_{M} \varphi_{\epsilon}(x) d w_{N}(x)=\int_{M} \varphi_{\epsilon}(x) d w(x) \tag{7}
\end{equation*}
$$

for all sufficiently large $N$. But it is clear that the integrals in the righthand sides of (6) and (7) are arbitrary close to $w^{\prime}(M)$ and $w(M)$, respectively, for sufficiently small $\epsilon>0$, i. e. they are different for sufficiently small $\epsilon>0$. This contradiction proves the lemma. $\square$

Lemma 9. The sequence of measures $\left\{w_{N}\right\}_{N=1,2,3, \ldots}$ weakly converges to the measure $\mu$ in $L_{2}$.

Proof. Take all arbitrary $\epsilon>0$. It follows from the proof of Lemma 8 that there exists a compact set $K_{\mathrm{f}} \subset L_{2}$ such that $w_{N}\left(L_{2} \backslash K_{\mathrm{f}}\right)<\epsilon$ for all $N=1,2,3, \ldots$ (this set simply coincides with the set $K$ from the proof of Lemma 8 corresponding to our $\epsilon$ ). Let us also prove that for any cylindrical set

$$
M=\left\{u \in L_{2}:\left[\left(u, \epsilon_{0}\right)_{L_{2}}, \ldots,\left(u, e_{N}\right)_{L_{2}}\right] \in F\right\}
$$

such that the set $F \subset R^{N+1}$ is bounded and the Lebesque $(N+1)$. dimensional measure of its boundary $\partial F$ is equal to zero, the following occurs:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w_{n}(M)=\mu(M) \tag{8}
\end{equation*}
$$

Let $P_{n}$ be the orthogonal projector in the space $H_{0}^{1}$ onto the subspace $L_{n}$ and $\epsilon_{i}^{n}=P_{n} e_{i}$; clearly, for any $i$

$$
\begin{equation*}
\epsilon_{i}^{n}=\epsilon_{i}+\alpha_{i}^{n} \text { where }\left\|\alpha_{i}^{n}\right\|_{H_{0}^{1}} \rightarrow 0 \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

Also, for any $n$ the set $M_{n}:=M \cap L_{n}$ can be represented as follows:

$$
\begin{align*}
& M_{n}=\left\{u \in L_{n}:\left[\left(u, \epsilon_{0}\right)_{L_{2}}, \ldots,\left(u, \epsilon_{N}\right)_{L_{2}}\right] \in F\right\}= \\
= & \left\{u \in L_{n}:\left[\lambda_{0}^{-1}\left(u, e_{0}\right)_{H_{0}^{1}}, \ldots, \lambda_{N}^{-1}\left(u, e_{N}\right)_{H_{0}^{1}}\right] \in F\right\}= \\
= & \left\{u \in L_{n}:\left[\lambda_{0}^{-1}\left(u, e_{0}^{n}\right)_{H_{0}^{1}}, \ldots, \lambda_{N}^{-1}\left(u, e_{N}^{n}\right)_{H_{0}^{1}} \in F\right\} .\right. \tag{10}
\end{align*}
$$

By $L_{n}^{N}$ we denote the orthogonal complement, again in the sense of the space $H_{0}^{1}$, in the space $L_{n}$ of the subspace span $\left\{e_{0}^{n}, \ldots, e_{N}^{n}\right\}$. Clearly, $\operatorname{dim} L_{n}=2^{n}-1$, therefore, since by ( 9 ) the vectors $e_{0}^{n}, \ldots, e_{N}^{n}$ are linearly independent for all sufficiently large $n$, we have $\operatorname{dim} L_{n}^{N}=2^{n}-N-2$ for the same $n$. For each sufficiently large $n$ denote by $e_{N+1}^{n}, \ldots, e_{2_{-2}}^{n}$ an arbitrary basis in the space $L_{n}^{N}$ orthonormal in the sense of the scalar product of $H_{0}^{1}$. Then, for all sufficiently large $n$ vectors $\left\{e_{k}^{n}\right\}_{k=0,1, \ldots, 2^{n}-2}$ form a basis in $L_{n}$, therefore for the same $n$ and any $u \in L_{n}$

$$
\begin{equation*}
u=\sum_{k=0}^{n-2} x_{k} e_{k}^{n} \tag{11}
\end{equation*}
$$

In addition, it is easy to see that in $L_{n}$ the transition from coordinates $\left[u\left(2^{-n}\right), u\left(2 \cdot 2^{-n}\right), \ldots, u\left(\left(2^{n}-1\right) \cdot 2^{-n}\right)\right.$ to coordinates $x=\left(x_{1}, x_{2}, \ldots, x_{2^{n-1}}\right)$ from (11) of a broken line $u \in L_{n}$ for all sufficiently large $n$ is made by a nondegenerate $\left(2^{n}-1\right) \times\left(2^{n}-1\right)$ matrix that is constant in $L_{n}$ (it does not depend on $u$ ).

Let $\Lambda$ be the diagonal $(N+1) \times(N+1)$ matrix with the principal diagonal $\left(\lambda_{0}, \ldots, \lambda_{N}\right)$. For any $\epsilon>0$ by $\delta=\delta(\epsilon)>0$ we denote a constant such that

$$
(2 \pi)^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{\left\{y \in R^{N+1}: \text { dist }(y, \partial F) \leq \delta\right\}} e^{-\frac{1}{2} \sum_{k=0}^{N} \lambda_{k} y_{k}^{2}} d y_{0} \ldots d y_{N}<\epsilon
$$

(this $\delta>0$ exists due to the fact that the Lebesque measure of the boundary $\partial F$ is equal to zero). Also, introduce the $(N+1) \times(N+1)$ matrix $Q_{n}=\left(\left(e_{i}^{n}, e_{j}^{n}\right)_{H_{0}^{1}}\right)_{i, j=0,1, \ldots, N}$. In view of (9) $Q_{n} \rightarrow \Lambda$ as $n \rightarrow \infty$.

Let $x^{N}=\left(x_{0}, \ldots, x_{N}\right) \in R^{N+1}$. Finally, let $F_{\delta}^{1}=\{y \in F: \operatorname{dist}(y, \partial F) \geq$ $\delta\}, F_{\delta}^{2}=\left\{y \in R^{N+1}: \operatorname{dist}(y, F) \leq \delta\right\}$, where $\delta>0$, and $F^{n}=$
$=\left\{x^{N} \in R^{N+1}:\left[\lambda_{0}^{-1} \sum_{k=0}^{N} x_{k}\left(e_{k}^{n}, e_{0}^{n}\right)_{H_{0}^{1}}, \ldots, \lambda_{N}^{-1} \sum_{k=0}^{N} x_{k}\left(e_{k}^{n}, e_{N}^{n}\right)_{H_{0}^{1}}\right] \in F\right\}$.
It is clear, first, that for all sufficiently large $n$ the function $u \in L_{n}$ with coordinates $x \in R^{2^{n}-1}$ belongs to $M_{n}$ if and only if $x^{N} \in F^{n}$, and, second, that. in view of (9) and (10), for any $\delta>0$ and all sufficiently large $n$ the following takes place:

$$
\begin{equation*}
F_{\delta}^{1} \subset F^{n} \subset F_{\delta}^{2} \tag{12}
\end{equation*}
$$

Substituting the expansion (11) into the expression for $w_{n}\left(M_{n}\right)$, we obtain

$$
w_{n}\left(M_{n}\right)=c_{n}(\dot{2 \pi})^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{F^{n}} e^{-\frac{1}{2}\left(Q_{n} x^{N}, x^{N}\right)} d x_{0} \ldots d x_{N}
$$

for all sufficiently large $n$, where $c_{n}>0$. From this, taking at first $M_{n}=$ $L_{n}, n=1,2,3, \ldots$, in view of the facts that $\lim _{n \rightarrow \infty} Q_{n}=\Lambda$ and $w_{n}\left(L_{n}\right)=1$, we get

$$
1=\lim _{n \rightarrow \infty}\left\{c_{n}(2 \pi)^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{R^{N+1}} e^{-\frac{1}{2} \sum_{k=0}^{N} \lambda_{k} y_{k}^{2}} d y_{0} \ldots d y_{N}\right\}
$$

hence, $\lim _{n \rightarrow \infty} c_{n}=1$. Further, taking an arbitrary $\epsilon>0$ and choosing for $M_{n}$ the above-described cylindrical set with a bounded $F$, the Lebesque measure of the boundary of which is equal to zero, in view of the above arguments, (12) and the property $Q_{n} \rightarrow \Lambda$ as $n \rightarrow \infty$, we derive

$$
\begin{aligned}
& (2 \pi)^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{F_{b(\mathrm{e})}^{1}} e^{-\frac{1}{2} \sum_{k=0}^{N} \lambda_{k} x_{k}^{2}} d x_{0} \ldots d x_{N} \leq \liminf _{n \rightarrow \infty} w_{n}\left(M_{n}\right) \leq \\
& \leq \limsup _{n \rightarrow \infty} w_{n}\left(M_{n}\right) \leq(2 \pi)^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{F_{\delta(\mathrm{e})}^{2}} e^{-\frac{1}{2} \sum_{k=0}^{N} \lambda_{k} x_{k}^{2}} d x_{0} \ldots d x_{N}
\end{aligned}
$$

By construction, the absolute value of the difference between the left-hand and right-hand side of these inequalities is smaller than $2 \epsilon$, therefore, since $\epsilon>0$ is arbitrary, we deduce that

$$
\lim _{n \rightarrow \infty} w_{n}\left(M_{n}\right)=(2 \pi)^{-\frac{N+1}{2}} \prod_{k=0}^{N} \lambda_{k}^{\frac{1}{2}} \int_{F} e^{-\frac{1}{2} \sum_{k=0}^{N} \lambda_{k} x_{k}^{2}} d x_{0} \ldots d x_{N}=\mu(M)
$$

and the property (8) we need in is proved.
Taking now into account the fact that, as one can easily verify, the minimal sigma-algebra containing the algebra of all cylindrical sets from $\mathcal{A}_{L}$ with bounded sets $F$, the Lebesque measures of the boundaries of which are equal to zero, is the Borel sigma-algebra in $L_{2}$ (see Lemma 1), the further proof of the present lemma is analogous to the proof of Lemma $8 . \square$

As a corollary to Lemmas 8 and 9 , we establish the following wellknown result (see [13]).

Corollary 1. $\liminf _{n \rightarrow \infty} w_{n}(A) \geq \mu(A)$ for any open $A \subset L_{2}$ and $\liminf _{n \rightarrow \infty} w_{n}(A) \geq w(A)$ for any open $A \subset C$. $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty} w_{n}(A) \leq \mu(A)$ for any closed $A \subset L_{2}$ and $\underset{n \rightarrow \infty}{\limsup } w_{n}(A) \leq w(A)$ for any closed $A \subset C$.

Lemma 10. $\mu(A)=w(A \cap C)$ for any open $A \subset L_{2}$.
Proof. Let $A \subset L_{2}$ be an open set. Then, $A \cap C$ is open in $C$. As earlier, for each $\epsilon>0$, there exist a set $K \subset A$ compact in $L_{2}$ such that $\mu(A \backslash K)<\epsilon$ and a set $K_{1} \subset A \cap C$ compact in $C$ such that $w\left((A \cap C) \backslash K_{1}\right)<\epsilon$. Let $K_{\epsilon}=K \cup K_{1}$. Then, it is clear that $K_{\epsilon}$ is compact in $L_{2}, \mu\left(A \backslash K_{\epsilon}\right)<\epsilon$, and that $\left(K_{\epsilon} \cap C\right) \subset(A \cap C)$. Clearly, there exists a covering of $K_{c}$ in $L_{2}$ by open balls $B_{R_{i}}\left(a_{i}\right), R_{i}>0, a_{i} \in L_{2}, i=1,2, \ldots, l$, such that $\bar{B}=\bigcup_{i=1}^{l} \overline{B_{R_{i}}\left(a_{i}\right)} \subset A$ where $\bar{D}$ is the closure of a set $D$ (here in $\left.L_{2}\right)$. Then, $\mu(A \backslash B)<\epsilon,(\bar{B} \cap C) \subset A \cap C$ and $w((A \cap C) \backslash(B \cap C))<\epsilon ;$ in addition, $B \cap C$ is open and $\bar{B} \cap C$ is closed in $C$. In view of Coroliary 1, we have:

$$
\begin{aligned}
& \quad \mu(A)-\epsilon<\mu(B) \leq \liminf _{n \rightarrow \infty} w_{n}(B) \leq \\
& \leq \liminf _{n \rightarrow \infty} w_{n}(\bar{B} \cap C) \leq w(\bar{B} \cap C) \leq w(A \cap C)
\end{aligned}
$$

and

$$
\begin{gathered}
w(A \cap C)-\epsilon<w(B \cap C) \leq \liminf _{n-\infty} w_{n}(B \cap C) \leq \\
\leq \liminf _{n \rightarrow \infty} w_{n}(\bar{B}) \leq \mu(\bar{B}) \leq \mu(A),
\end{gathered}
$$

which implies that $|\mu(A)-w(A \cap C)|<\epsilon$ and, in view of the arbitrariness of $c>0$. we have $\mu(A)=w(A \cap C)$.

$$
\text { Corollary 2. } \mu(A)=w(A \cap C) \text { for any } A \subset L_{2} \text { closed in } L_{2}
$$

Let $A \in \mathcal{B}_{L}$ be arbitrary. Then, by the known property of Borel measures for any $\epsilon>0$ there exists a set $B \supset A$, open in $L_{2}$. and a set $D \subset A$, closed in $L_{2}$, such that $\mu(B \backslash D)<\epsilon$. Hence, $(D \cap C) \subset(A \cap C) \subset$ $\left(B \cap C^{\prime}\right)$ and

$$
w((B \cap C) \backslash(D \cap C))=\mu(B \backslash D)<\epsilon
$$

in addition, according to Lemma 10 and Corollary $2 \mu(B)=w(B \cap C)$ and $\mu(D)=w(D \cap C)$. In view of the arbitrariness of $\epsilon>0$, this yields that $\mu(A)=w(A \cap C)$. Thus, the statement (a) of Theorem is proved. The statement (b) follows from the definition of the Lebesque integral by integral sums. Theorem is completely proved. $\square$

## References

[1] Bourgain J. Periodic nonlinear Schrödinger equation and invariant measures// Commun. Math. Phys. 1994. Vol. 166. P. 1-26.
[2] McKean H.P., Vaninsky K.L. Statistical mechanics of nonlinear wave equations// In: "Trends and Perspectives in Appl. Math." (Ed. L. Sirovich). New York: Springer. 1994. P. 239-264.
[3] Peskov N.V. On the Kubo-Martin-Schwinger state of the sine-Gordon system//Teor. Matem. Fiz. 1985. Vol. 64. P. 32-40 (in Russian).
[4] Lebowitz J.L., Rose H.A., Speer E.R. Statistical mechanics of the nonlinear Schrödinger equation// J. Statist. Phys. 1988. Vol. 50. P. 657-687.
[5] Chueshov I.D. Equilibrium statistical solutions for dynamical systems with an infinite number of degrees of freedom// Sbornik: Mathematics. 1986. Vol. 130. P. 394-403.
[6] Zhidkov P.E. An invariant measure for a nonlinear wave equation// Nonlinear Anal.: Theory, Methods and Applications. 1994. Vol. 22. P. 319-325.
[7] Zhidkov P.E. An invariant measure for a nonlinear Schrödinger equation//JINR Commun. P5-94-199. Dubna. 1994 (in Russian).
[8] Gelfand I.M., Yaglom A.M. Integration in functional spaces and its applications in quantum physics// Uspekhi Matem. Nauk. 1956. Vol. 11. No 1. P. 77-114 (in Russian).
[9] Daletskii Yu.L., Fomin S.V. Measures and differential equations in infinite-dimensional spaces// Moscow. Nauka. 1983 (in Russian).
[10] Smolyanov O.G., Shavgulidze E.T. Functional integrals// Moscow. Moscow State Univ. Publ. 1990 (in Russian).
[11] Kuo H.-H. Gaussian measures in Banach spaces// Springer-Verlag. Berlin-Heidelberg-New York. 1975.
[12] Bogachev V.I. Gaussian measures// Moscow. Nauka. Fizmatlit. 1997 (in Russian).
[13] Prokhorov Yu.V., Rozanov Yu.A. Probability theory// Moscow. Nauka. 1987 (in Russian).

