


1 Introduction

In this paper, we prove the equivalence of the conditional Wiener measure
w, defined in Co([0,1]), and the centered Gaussian measure p, defined
L,(0,1), with the correlation operator (—d:,) ! taken with zero Dirichlet
boundary conditions, so that for an arbitrary functional ¢ in L,(0,1)

integrable over the measure p the following integral

¢ (z)dw(x)

. Co(fo,1])

is determined and it coincides with

| e@iua)

L, (0,1)

In addition, some properties of the measure w are proved. The present in-
vestigation is mainly stimulated by the fact that recently a number of pa-
pers was published devoted to the construction of invariant measures for
nonlinear partial differential equations, such as a nonlinear Schrddinger
equation (see, for example, [1-7]), in part of which the measure w is used
[1-4] and in part the measure g [6,7]. Therefore, it follows from the results
of the present paper that in the indicated papers the same measure is in
fact used for constructing invariant measures.
A number of papers is devoted to constructing the condltlonal Wiener
and Gaussian measures (see, for example, [8-12]). In addition, in [10-12],
the equivalence in a sense of the usual (unconditional) Wiener measure
and a Gaussian measure is shown. The author of the present paper must
remark that generally the oplmon of specialists is known, accordmg to .
,;whlch the measures w and p are in fact equ1valent however, he does not

'j;We begm w1th ‘some: Deﬁmtlons,,', In the present artlcle,;all quantltles .
j(vanables spaces .andso on)’ are real. Let C = Co([O 1]) be the'standard
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space of functions continuous on [0,1] and becoming zero at the ends of
this segment, with the norm |lg|lc = m[%)l(] lg(z)], and let L, = L3{(0,1)
: z€ .

be the standard Lebesque space consisting of functions square integrable
‘ 1

over (0,1), with the scalar product (g,h)r, = [g(z)h({x)dx and the
0

norm |lg||}, = (9,9)L,; as it is well-known, L, is a Hilbert space. Let
C$°(0,1) be the linear space of functions infinitely differentiable in [0, 1]
and becoming zero at the ends of this segment, and let A be the clo-
sure in Ly of the operator — d =, taken with the domain C§°(0,1). Then,
it is well-known that A is a self-adjoint positive operator in L,. Let
en(z) = v2sinm(n+1)z and A, = [r(n+1)]* where n = 0,1,2,.... Then,
A. and e, are eigenvalues and corresponding eigenfunctions of the oper-
ator A; in addition, {e,}n=0,,2,.. is an orthonormal basis in L,. Finally,
let H} = H}(0,1) be the standard Sobolev space being the completion of

1
the space C$°(0,1) taken with the norm ”9”313 = [[¢'(z))*dz; clearly. H}
‘ 0 . ]

is a Hilbert space.

Now we briefly recall definitions of the measures g and w. The
measure p can be constructed as follows. Let a positive integer V and a
Borel set F C RV*! be arbitrary. The set M C L, of the kind

M= {u€L;: [(u,e0)r,, (U en)L,] € F}

is called cylindrical in L,. For the cylindrical set of the above kind we set

p(M) = 27r)——*—Hp/-%

a .

A a:i
dzg...dzy.

g["lz

Clearly, the family of all cylindrical subsets of the space L, is an alge-
bra (it will be denoted by AL), on which, as one can easily verify, g is
an additive measure. Furthermore, since the operator A~! is of trace

0
“class in Ly (i. e. all its eigenvalues AJ! are positive and 3 A~ < 00),
n=0

the measure p is countably additive on Ay (see [9]), therefore it can be
uniquely extended onto the minimal sigma-algebra By of subsets of L,
containing Az, and this sigma-algebra B, will be proved to be the Borel
sigma-algebra in L,. The measure p defined on By is called the centered
Gaus31an measure in L, with the correlation operator A%,

Now we recall the definition of the measure w (a careful construc-
tion of this measure is presented in the next section). Let p(x,t) be the
fundamental solution of the heat equation

7] ik
au(r t) = 33, soulat), T€R, >0,
i.e pla.t) = ;“ ¢~ . where + € R and ¢ > 0. so that
/p(:l?.i)d:l‘ =1 (1)
and for 0 < t; < 1,
[ pwstidple = v.ta — 1)y = o, a) ©

Aset M C C‘i‘s called cg;/lind-rim'[ in C if
M ={ueC: [utr),ulty),....u(tn)] € F}

for some posmve integer N, 0 < t; <t < ...<tny <1, and a Borel set
FC RN For the indicated cylindrical set ]W we set ‘
N1

Z P(Tr—rp_1,tk—tk—)

w(M) =V2r dr;...dry.

F

where 2o = an41 =0, to =0 and tyy; = 1. Using (1) and (2), one can
easily verify that the set A¢ of all cylindrical subsets of C is an algeora,
on which w is an additive measure; in addition w(C) = 1. It is known that
the measure w is countably additive on Ag, too (see the next section),
therefore it can be uniquely extended onto the minimal sigma-algebra Bc
of subsets of C containing Ac, and this sigma-algebra B¢ will be proved

“to be the Borel sigma-algebra in C. The constructed measure w is called

the conditional Wiener measure. For the convenience of readers, in what
follows we present proofs of some of the indicated facts and, in addition.
brielly consider some properties of w.




In the theorem below we formulate main results of the present paper.

Theorem. ,
(a) For any A € By, the following takes place: ANC € Be and p(A) =
(A nc;
b) for any functional ¢ in L, mtegmted over the measure u, the func-
tzonal o s also integrable in C over the measure w and

[ etadut) = [ oterduta)

Ly c
Remark. One may interpret the statements (a) and (b) of this the-

orem as the equivalence of the measures p and w.

This theorem will be proved in Section 4; in Section 3 we estab-
lish proofs to the construction of the measure w and prove some of its
properties.

3 Auxiliary results. Constructing the mea-
sure w

The fact that By is the Borel sigma-algebra in L; follows from the follow-
ing. .

Lemma 1. Let Br(a) = {u € Ly : |ju — a||, < R}, where R > 0
and « € Ly. Then Bg(a) € Br.

Proof follows from the representation Br(a) = [ M, where
o n=1

M, = {u e Ly: (u,e0), + ...+ (u,e,,)i2 S R*}0O

In what follows in this section, we construct the measure w and
consider some of its properties. We exploit methods introduced in {11j for
studying the usual (unconditional) Wiener measure. So, w is an additive
measure on the algebra A¢. Let w* be the outer measure corresponding
1nf E (Mi) where the infimum

tow, i. e. forany A C C w*(A) =

is taken over all finite and countable coverings of the set A by sets M
from Ac. Let also
k k-1 Ca
()= (5>

|
H,(a) = {u €C: Is = g5 = 5 € [0,1] such that s, # s, and

Ia.a.,k,n = {u eC:

where £ =1,2,...,2", and

[u(s1) — u(s2)| > a|s1 — 32|°’},k

where in both the cases, k,I,m and n are positive integer and a,a > 0.

Lemma 2. Let o € (0,3) and a > 0. Then w(lyarn) <
)% a22n(1—2c|)'
Proof. Clearly I4,0xn € Ac so that the quantity w(Iy k) is deter-
mined. Further, w(Iyq4.) =

1 ) e—l[ A A
o 1
2 [k2"1 El; (1 - ZL")] ’ |z=y|>a2~na

2_ ___a22n(]—2cl) 1 [2" 2

o [ (1= 2, i P
1 — 2

Let a € (0,1). For any a > 0 we have H, (3 c U U Inakn
n=1 k=1

== dz dy <

29n(1-2a)

.0

(for the proof, see [11]), therefore

/2 °° o aeticae
o (1 (1)) s St <o

n=l.

and, in additjon,‘ _

J— !




Also, it is clear that for any a > 0 C \ H,(a) is a compact subset of ('

so that in particular H,(a) € Bc.

Lemma 3. The measure w is countably additive on the algebra Ac-.
Proof. It suffices to prove that, if {M,}.=1,23,. is a sequence of

o
cylindrical sets in A¢, My D M; D> ... D M, D ... and (I M, = 0,

. n=1
then w(M,) — 0 as n — oo. Take an arbitrary ¢ > 0. By the known
property of Borel measures, for any n there exists a closed cylindrical set

K, C M, such that w(M, \ K,) < €771 Let L, = (| K;. Then for
=1

anyn w(M,\ L,) < zn: 27 < & because My \ L, = M, \ (ﬂ K,) =
. =1

Now, it suffices to prove the existence of

U(M \K) C U(M,\Ix,

no > 0 such tha.t w(L ) <
n > ng.

Fix an arbltrary o€ (0,1) and take @ > 0 such that w*(Ha(a)) < &.
Then we obviously have, for any cylindrical set M satisfying M N (C\
H.(a)) = 0, w(M) < w*(Hs(a)) < §. Let us prove that there exists a
number ng >0 such that I,, := L, N (C\ Hu(a)) = 0 for n > ng. Suppose
the opposite. We have :

£, because if this occurs, then w(M,) < € for

and ﬁIn = 0.

n=1

LOoLD.OI,D..

By the supposition, for each number n > 1 there exists u, € I,. Since the
set C \ Hu(a) is compact in C, there exists a subsequence {un, }x=1,23,..
of the sequence {us}n=123,. converging in C to some u. But then u €
C \ H,(a) because C \ H,(a) is closed.

Take an arbitrary number ! > 0. Then u,, € I; for all ny > I. Since

I is closed, we have u € I;. But then () I, # 0 because [ > 0 is arbi-
=1

trary, i. e. we get a contradiction. Thus:it is proved that I, = () for all
sufficiently large numbers n, which implies w(L,) < £ for all sufficiently
large n. Lemma 3 is proved.O

Lemma 4. B¢ is the Borel sigm'a-algebra in C.
Proof. Let R > 0 and a € C be arbitrary. It suffices to prove that

6

Br(a):={uve (C:

relation Bg(a) =

|l — allc £ R} belongs Bc. But this follows by the
ﬂ M, where

n=1

M,={ueC: lu(k?,'") — a(k:Z_")l <RVk=1,2, ....2"} .0

So. the measure w is constructed. In conclusion of this section. we
shall prove the following well-known important property of this measure.
Let for a > 0 (% = {u € C :* 3 a > 0 such that |u(x) — u(y)] <
ale —yl* Va,y € [0,1]}.

Proposition. C* € Be¢ for any a > 0; in eddition, w(C*) = 1 if
0<o< % and w(C*) =0 ifa>%.

Proof. Since C* = U [C'\ Hy(a)] for @ > 0, the set C* belongs to
Be. 1n addition, w(C®) = i Jlim_w(H,(a) =1fora€ (0,1).

Let now a > 1 5 and let

Ja'.u.n = {’U € C IU k) n) - ’U((l\ —_ 1

") <a2TVk=1.2,...2"}

wllexe a > 0. We have C'\ H,(a¢) C Joun for any n = 1,2.3..... Estimat-
v (10!!_1-:2"_)|
mg €2 a=n from above by 1 and making the change of variables

Y1 =Ty, Y2 = T2~y Y3 = T3—T2, .. Y2n2 = Toanog—Tn_3, Yan_] = Toan_q,

we obtain (x2« = 0):

, L,
w(Ja,a'n) = [21r)"’""1‘2“"2 ] 7

x2
(5 -z gn_y=sgn_9)%  Fon_y
—-[2—_%+ 2oy Canstn )y ,-,.]
X : [ - d:E]...dinn_l S
lx =y I<a2=an
k=1,2,...,2"
2n-1 2
o I S
. 2P _1y=n2"1=F 2-n
<t [ TS Ty =
kalsﬂg—an
k=1,2,...,2M~1
PLIS]
R -2
= =i e 7dz —0 asn — oo
|z|<a3™on+ 2
7




because the integral in the expression in square brackets from the right-
hand side of these relations tends to zero as n — oo. Consequently, since

U (C\ Ha( < nlglf;lu W(Jqun) =

0 for an) a>0, wegetw(C°)~0f01a> .0

a)] and, as it is proved w(C \ Hy(a))

4 Proof of Theorem

Lemma 5. ANC € B¢ for any A € By.

Proof. Clearly, if A C L, is open, then ANC'is open in C. Therefore,
if A C Ly is closed, then ANC = C\[CN(Ly\ A)] is closed C. Suppose
the existence of D € By such that DN C ¢ B¢. Consider the family S
of all Borel subsets A of the space Ly such that ANC € Be. Then, in
view of the above-described facts, S contains all open and closed subsets
of L,. Let us prove that S is a sigma-algebra.

Let {An}n=123.. C S. It suffices to prove that A = () A, € S.

n=1
But indeed A NC = ﬂ (A, NC) € Bc. Hence, mdeed S is a sigma-

algebra containing all open and closed subsets of Ly. But D ¢ S, 1. e,
S is contained in By, and it does not coincide with By. The obtained
contradiction implies the statement of Lemma 5.0

Take an arbitrary positive integer N and consider on the segment
[0,1] the network Sy with the mesh width A = 2=V and nodes zx =
kh, k = 0,1,...,2N. Consider the linear space Ly of all broken lines on
Sy being linear functions between arbitrary two neighboring nodes of the
network, continuous on [0,1] and becoming zero at £ = 0 and =z = 1.
On the linear space Ly, we consider the normalized to 1 nonnegative
countably additive measure wy defined by the rule: for any Borel set
FCR™ 'Vand M={uelLn: [u@V),....,u((2¥=1)-27V)] € F} we
set .

2N
2N__l _N2N —% %2 ‘k_zk l)
wy(M) = [(2r)" "2 ] e im T doy.degw
F

where zo = z,v = 0; clearly, for any fixed N the family of all subsets of
Ly of the indicated kind is a sigma-algebra, on which wy is a countably

8

additive measure, and wy(Ly) = 1.

Lemma 6. The eztension of the measure wy on the space C, defined
by the rule: wy(A) = wy(A N Ly) for any A € Bc, is a well-defined
nonnegative normalized to 1 Borel measure in C.

Proof. It suffices to prove that if A € B¢, then FN = FNg’A
{{u(2=N), ., u((2VN =1)-27V)) : v e ANLy 1s a Borel subset of R2"~1. It
is also clear that Fyy is a Borel subset of B2 ~! if and only if Ay = AﬂLN
is a Borel set as a subset of Ly where the linear space Ly is equipped
with the topology of the uniform convergence. Suppose the opposite, i.
e., that there exists A € B such that AN Ly is not a Borel subset of Ly.
It is easy to verify, as in the proof of Lemma 5, that all Borel subsets of
the space C, the intersection of each of which with Ly is a Borel subset
of this space, form a sigma-algebra B’ in the space C containing all open
and closed subsets of C. But according to our assumption, there exists
A € B¢ not belonging to B’ which is contradictorily.O

Lemma 7. Let wn(A) = wn(A N Ly) where A € Br. Then, wy
becomes a nonnegative normalized to 1 Borel measure in L,.
Proof follows from Lemmas 5 and 6.0

In what follows, measures wy, where N =1,2,3,..., are considered
as Borel measures in C or L, in the dependence on the context. Now
we also recall that, in a complete separable metric space P, a sequence
{vn}n=123,.. of nonnegative normalized to 1 Borel measures v, is called
a weakly converging to a nonnegative normalized to 1 Borel measure v if

lim P/ o(z)dv() - P/ o(2)dv ()

for an arbitrary continuous and bounded functional ¢ in P.

Lemma 8. The sequence of measures {wy }n=1,2,3,... weakly converges
tow in C. .
Proof. Fix arbitrary € > 0 and @ € (0 ) ‘Let us prove the existence
of a > 0 such that for the set K := C \ Ho(225) = {u € C:

|u(x —u(y)| € zlz —yl* Vz,y€0,1]} the followmg takes place:
wn(C\K)<e, N=1,2,3,... 4)

~9




(the fact that the set K of the indicated kind is a Borel set in (' is proved
in Section 3). Choose a > 0 such that

Z 2 e~ 30"2N T e forall N = 1,2,3, ... (5)
N=1

Take an arbitrary positive integer N and let K be the set introduced
above corresponding to a > 0 which obeys (5). Consider the set Ky =

K 0\ Ly. As one can easily verify, for any positive integer n > N and any
2N

k=1,2,...,2" the following takes place: (IsaxsNLn) C U Uaer, NN LN].
: k=1 ’
oo 2"
Then, since as it is noted in Section 3, (C\ K) C U U laakn, we have:
: _ n=1k=1
‘ N 2»
(C\E)NLy) € | JUaara D In),
n=1 k=1
therefore
N o2 ‘ <
wN(C \ I() = wN((C \ I() n LN) < Z Z wN(Ia,a,k,,, N LN).
. n=1 k=1

One can prove as in the proof of Lemma 2 that for any n = 1,2,.... N
and k=1,2,...,2" the following

n _1_2on(1—2a)
X - 2
wN(Ia,a,k,'n.) S 22¢72°

is valid. But this together with (5) yields that wy(Lny\ Kn) < €, and the
existence of the above-described set K satisfying (4) is proved.

"It is clear that for any ¢ > 0 the corresponding set K is com-
pact in C. Hence, by the Prokhorov theorem [13] the sequence of mea-
sures {wn}N=1,23,. is weakly compact in C. Let w' be an arbitrary
its limit point (in the sense of the weak convergence). Let us prove
that w’ = w. Suppose the opposite. Then in view of the uniqueness
of the extension of a measure from an algebra onto the minimal sigma-
algebra containing this algebra and since the minimal sigma-algebra con-
taining the algebra of cylindrical subsets of C of the kind {u € C :
[w(@ M), u(2-27N), o u((2¥ = 1) - 2-N)] € F}, where N and F are ar-
bitrary positive integer and Borel subset of RN+ is the Borel sigma-
algebra in C (see Lemma 4), there exists a cylindrical set M = {u € C:

10

[(27V), w(2-27N), o w((2V = 1) - 27Y)] € F} such that w'(M) # w(M).
In view of the known property of Borel measures, according to which a
measure of a Borel set is equal to the infimum of measures of open sets
containing this Borel set, we can accept that the set M is open.

For an arbitrary sufficiently small € > 0, consider a functional o, in
C continuous and such that

1. p(x)=1if x € M and dist (x,0M) > ¢

2. 0 < p(z) < 1for any x € C;

3. p(x) =0 for x & M;

4. @c() depends only on &(27V),z(2- =My L ((2V = 1) - 27F).
We have for those subsequence {wy, }x=1.2a3... of the sequence
{wn}N=123.., which weakly converges to v’ in C:

,}LTO welx)dwn, () =/g0e(.1.')dw'(.1?). (6)
"M M :
At the same time, according to the definition of an integral by integral
Suls, ‘
[e@rtonta) = [ pediute) m
M M

for all sufficiently large N. But it is clear that the integrals in the right-
hand sides of (6) and (7) are arbitrary close to w'(M) and w(M), respec-
tively, for sufficiently small € > 0, i. e. they are different for sufficiently
small € > 0. This contradiction proves the lemma.O

Lemma 9. The sequence of measures {wn}n=1,23,. weakly converges
to the measure p tn Lq. )

Proof. Take an arbitrary e > 0. It follows from the proof of Lemma
8 that there exists a compact set K C L, such that 'u,vN(LQ \A) < ¢
for all N =1,2,3,... (this set simply coincides with the set A from the
proof of Lemma 8§ corresponding to our €). Let us also prove that for any
cylindrical set

M= {ué€Ly: [(w o)Ly (tseN)L,] € F},

such that the set FF C RM*! is bounded and the Lebesque (N + 1)-
dimensional measure of its boundary JF is equal to zero, the following
occurs:

lim w,(M) = p(M). (8)

n=—o0

11




Let P, be the orthogonal projector in the space Hj onto the subspace L,
and €? = P,e;; clearly, for any 1

e} = e +a] where [|a}|lg; =0 as n — oo (9)
Also, for any n the set M, := M N L, can be represented as follows:
M, ={u€L,: [(u.€o)ry -t en)r,] € F} =
={u€l,: [/\gl(u,eo)ycx.,...,/\;Jl(u,eN)Hg] e F}=
={u € Lo : [A5'(u,€q)mgs - AN (u €Ny € F}- (10)

By LY we denote the orthogonal complement, again in the sense of
the space H}, in the space L, of the subspace span {eg,....e}}. Clearly,
dimL, = 2" — 1, therefore, since by (9) the vectors ¢f, ..., e}; are linearly
independent for all sufficiently large n, we have dimLY = 2" - N -2
for the same n. For each sufficiently large n denote by e}, ..., _, an
arbitrary basis in the space LY orthonormal in the sense of the scalar
product of H}. Then, for all sufficiently large n vectors {er}k=0.1,...27~2
form a basis in L,, therefore for the same n and-any u € L,

n—2
u=kaeZ. ©(11)
k=0

In addition, it is easy to see that in L, the transition from coordinates
[u(27"),u(2-27™), ..., u((2* —1)-27") to coordinates = (z1, 2, ..., Tan-1)
from (11) of a broken line u € L, for all sufficiently large n is made by a
nondegenerate (2" — 1) x (2" — 1) matrix that is constant in L, (it does
not depend on u).

Let A be the diagonal (N + 1) x (N + 1) matrix with the principal
diagonal (g, ..., Aw). For any € > 0 by 6 = é(¢) > 0 we denote a constant
such that

':_j 2
e

kyz : :
e k=0 dyg.dyn <e

k=0 " (LERN+1. dist (y,0F)<6}

(this_ 6 > 0 exists due to the fact that the Lebesque\mea,svure,of'thé

boundary OF is equal to zero). Also, introduce the (N + 1) x (N + 1)

matrix Qn = ((el'; €])uy)ij=0,1,...N- In view of (9) Qn — A as n' — oo.
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Let 2V = (o, ...,zn) € RV*1. Finally, let F§ = {y € F : dist(y,0F) 2
6}, F2={ye RV*': dist(y, F) £ 6§}, where 6 > 0, and F" =

N
= {IN € RVt [/\g‘ 3 k(eRs §)mys - AN ka(ek,eN ] € F}

k=0
It is clear, first, that for all sufficiently large n the function u € L, with
coordinates r € R?"~! belongs to M, if and only if zV € F™, and, second,
that. in view of (9) and (10), for any § > 0 and all sufficiently large n the
following takes place: ‘ ' '
' F}Cc F"C F}. o (12)

Substituting the expansion (11) into the expression for w,(My), we obtain
N L 1 N Ni
wn(My) = H A / =@ dgo...dzw

for all sufficiently large n, where ¢, > 0. From this, taking at first M, =
L., n=1,2,3,...,in view of the facts that le Qn = A and w,(L,) =1,
we get ’ ' e o '
o N o -1 f:
1 = lim cn(Qﬂ)‘EgiH/\,f e '2k=° dyo dyn ¢,
i k=0 pN#1

hence, 11m cn = 1. Further, taking an arbitrary ¢ > 0 and choosing for
M, the a,bove-descrlbed cylindrical set with a bounded F, the Lebesque
measure of the boundary of which is equal to zero, in view of the above
arguments, (12) and the property @n — A as n — oo, we derive

N ~L1 5 Aps2
)—%ﬂ H ,\,':2' / e * kdzo...dICN < liminf wa(M,) <

k=0

i

' F61(¢)

. N
) 1 N 1 % Z )
< limsup w, (M) < (27)~ /\,ﬁ e k=0 d:::o dzry.

n—oo
Fg(e)

?r

13




By construction, the absolute value of the difference between the left-hand
and right-hand side of these inequalities is smaller than 2e, therefore, since
€ > 0 is arbitrary, we deduce that

2
4\ka

dzg...dzn = u(M),

L
glvlz

. N _1
lim w, (M,) 12Ll]:[/\,%—/ ’

=00
k=0

and the property (8) we need in is proved.

Taking now into account the fact that, as one can easily verify, the
minimal sigma-algebra containing the algebra of all cylindrical sets from
Ar with bounded sets F', the Lebesque measures of the boundaries of
which are equal to zero, is the Borel sigma-algebra in L; (see Lemma
1), the further proof of the present lemma is analogous to the proof of
Lemma 8.0

As a corollary to Lemmas 8 and 9, we establish the following well-
known result (see {13]).

Corollary 1. hmmf wn(A) > p( ) for any open A C L, and
liminf w,(A) > w(A) for any open A C C. limsupwy(A) < u(A) for
any closed A C Ly and limsupw,(A) < w(A) foﬂr Z:zy closed A C C.

Lemma 10. p(A) = w(ANC) for any open A C L.

Proof. Let A C Lz be an open set. Then, AN C is open in C.
As earlier, for each € > 0, there exist a set K C A compact in Ly such
that u(A\ K) < € and a'set K,"C AN C compact in C such that

w((ANC)\ K1) <'e. Let K. = KUK. Then, it is clear that K, is compact
in Ly, u(A\ K.) < €, and that (K, NC) C (AOC) Clearly, there exists a

covering of K. m L, by open balls Bp, (a.) R; >0, a; € Ly, 1=1,2,...,1,

such that B = U Br(a)C A where D is the closure of a set D (here in

=1 -
L;). Then, p(A\ B) <k, (BOC_') CANCand w((ANCH\(BNC)) <€
in addition, BN C is open and BNC is closed in C. In view of Coroliary
1, we have:

#(A) =€ < u(B) < lim inf wa(B) <

< liminf w,(BNC) < w(BﬂC’) <w(ANC)

n—c
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and

w(ANC)—e<w(BNC) <liminfw,(BNC) <
< liminf w,(B) < u(B) < p(A),

which implies that |g(A) —w(ANC)| < € and, in view of the arbitrariness
of ¢ > 0. we have p(A) = w(ANC).0

Corollary 2. g(A) = w(ANC) for any A C Ly closed in L,.

Let A € By, be arbitrary. Then, by the known property of Borel
measures for any ¢ > 0 there exists a set B D A, open in L,. and a set
D C A, closed in L;, such that g(B\ D) < ¢. Hence, (DNC) C (ANC) C
(BN () and ’

w((BNC)\(DNC)) = u(B\ D) <&

~in addition, according to Lemma 10 and Corollary 2 p(B) = w(Bn ()

and p(D) = w(D NC). In view of the arbitrariness of € > 0, this yields
that p(A) = w(AN C). Thus, the statement (a) of Theorem is proved.
The statement (b) follows from the definition of the Lebesque integral by
integral sums. Theorem is completely proved.O
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