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1. SOME EXAMPLES OF EXTENDED ASYMPTOTIC FUNCTIONS 

The first example is very simple. It will illustrate 
the material of ref. 18 1 Sec. 3. We shall discuss it in de­
tail. The remaining examples are a bit more complicated, 
but the methods of their obtaining are the same as in the 
first one. That is why, there are no many explanations 
about them. Several examples of functions of two variables 
are given. They are treated, in fact, by the corresponding 
generalizations of the lemmas (ref. 18 1 (3.8), (3.12), (3.19)). 
These examples will be used for the construction of asymp­
totic functions similar, in a certain sense, to the distri­
but..ions, which is, by the way, our final aim 18 1 , 

(1.1) EXAMPLE: ¢(x)=1/ x, x(:;R\ 10}. In this example X=R\10!, 
=Rand 

( 1. 2) 

In fact, it is clear that ¢a
8
(a) =1/ a, a (:; A \ e. But we will 

obtain this result with the help of Lemmas (3.8), (3.12) 
and (3.19) of ref. 18 / in order to illustrate their use: 
Corresponding to Lemma (3.12) (for i = 0, m=-2 ) , we obtain 

-lqlh 
<Pas(h) ~ o • (1.3) 

where 11 h is the power of h . In particular, for h = s + o 1 
we have 

The expansion ( 18 1 (3. 15) ) reduces to 

¢(t) = 1/t, t~;-R, t~O ( 1.5) 

and the formula ( 18 1 (3.17)) reduces to: 

<~>as(h) = 1/ h, h !;-no\ e. ( 1. 6) 

Lemma (3.19) of ref. 18 1 
gives (form± =O): 

a !;- n ... \ e . (1. 7) 

In fact, we have 

<Pas (a) = 1/a, a(:; n \ e. 
00 

(1.8) 

1 



Summarizing (1.3) and (1.8) we obtain: 

¢as (a) = 1/ a, a ;; A\8. ( 1. 9) 

So, in the case under consideration, the domain D of 0 coin­
cides with Xas, i.e. I D = Xas =A\ e. For, the power /L(a) the 
order v(a) of ¢as (a) we have (see ref. ' 5 Theorem 12 , (ii)): 

fL(a) = -jl a, a;;A \ 8, ( 1. 10) 

v (a) = va -2jl a • a ;; A\ 8, ( 1. 11) 

where fL a and v a are the power and the order of a respecti ­
vely. 

(1 . 12) EXAMPLE: Le t ¢ ~ T or ¢ G:.
1 

where T and S are the well ­
known spaces of test-functions · 10 ' . Then o

3
s(a) exists for 

all a ;; A and 

k 
k =O 

¢as (a) I 

¢(k{x) hk' 

k ! 

0 , 

a = X+ h, x.;R, h;;n
0

, 

( 1. 13) 

a ;; n 

Remind once again that the con ve r gence of the a bove s e ries 
is in the sense of the interval topolo g y of A (re f . 16 ' 
Sec. 5) and the series of the type 

i a h k 
k~ k 

h ;; n 
0 ( 1.14) 

is always (for any a k ,; C ) convergent on the set o f infi­
nitesimals flo (ref. 16 1 Theorem 41). 

(1.15) EXAMPLE: If ¢ G- C(oo), then ¢ a ~ (a) exists for all finite 
numbers, i.e. , for all a ;; f! , and 

¢as (a) = k ----'-_:_ 
k = O , 

a = x + h, x ;; R , h ;; n
0

. (1 .. 16 ) 

!1 rould happen, of course, that some of the functions from 
C oo to be extended on the whole A . For example, sin a ~ (sin) (a) 

a s exists f o r all a G- A (but not only for a ,; n ) and 

sin a 

2 

oo sin (k)x k 
k ---h 

k = O k! 
-1 

0 

a = X + h, X ;; R , X ;; f!
0

, 

(1.17) 
a .:;. n 

00 

On the contrary, the asymptotic extension e a = (ex ) as (a) 
of the function ex, x ~ R exists for all finite numbers, i.e., 
for a~ fl, as well as for all infinitely large negative 
asymptotic numbers, but it does not exist for positive in­
finitely large numbers, i.e., 

oo X 
k _e __ hk a = x+h, x ;; R, h ~ n 0 

ea k = O k l 
( 1.18) 

0 , a ,; n-
00 

(1.19) EXAMPLE: Let 

1 ( 
Mx.d = -- X ~ R , ( ~ (0, 1) . ( 1. 20) 

1T X 2 + f 2 

As it is known, (1.20) is a a-sequence, i.e., 

~-1\(x, c) ---. o (x) , (1.21} 
( -+ 0 

where o(x) is the Dirac's o -function. The asymp'toticdr­
tension . ~8 (a . b) exists for all a ~ A and b ~ (0,1) as 
(ref. 18 1 (2.18)). But we are going to give the values of 
/'o,. asCa,b) only for the fixed b = s+'o 1 (recall ref. 18 1 (2.26)) 

that the asymptotic number s + o1 is a positive infinitesi­
mal belonging to (0,1)as) and all finite asymptotic numbers, 
i.e., for a G- fl : 

/'o,.a
8

(a,s + o 1 ) = I 

For the power fL (a) 
we have: 

1 -1 1 1 
(- + 0 ) - ~· 

S 17 X +1 

o-2 , 

1 1 1 
(s + O ) -;; --;2' 

and the order v (a) 

-1, a=SX+Sh 

a = SX + sh , X ~R, h~fl 0 , 

a = 0 ° , (1.22) 

a = x +h, xG-R, xtO, h~n0 • 

of 1 
/'o,. as (a, s + o ) 

fL(a) =v(a) -2 , a =0 ° (1.23) 

1, a = X + h , X ,; R, ·x t 0, h ~ n 0. 
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' 8 ' Recall once again (ref. · · (3.28)) that "s" in (1.22) and 
(1.27) is the asymptotic number"s +o""",Le., s ·~ s + o"" 

(ref • .'8/ (3.27)). We can denote Aas (a.s + o 1)as a o -func­
tion: 

o(a) =L\ (a,S+0 1), as a.,n. ( 1. 24) 

Then (1.22) will imply 

l is infinitely large when a is an infinitesimal, 
o (a)= is infinitesimal when a is finite and different 

from infinitesimal (1 . 25) 

which coincides with our intuitive idea about Dirac's o -
function. Let us find the n -th power of o, where n ~ N . 
(Do not forget that every two asymptotic functions can be 
added and multiplied (ref. / 8 ' (1.12)): 

on (a) 

-n -n 1 1 )n 

~ 
(s + 0 ) (- -2-- ' a = s X + s h' X ~ R' h ,: n 0 ' 

77 X + 1 

o -
2
n , a = o 0

• ( 1 . 26) 

(s n +On) (.!_ ~ ) n , a =X+ h, X;:; R, X r 0, h '= 0 O • 
77 X 

After we introduce differentiation and integration for the 
asymptotic functions, we shall come back to these examples 
once again. You will see that o given by (1.24) is a reali­
zation of Dirac delta-function (ref. ' ? .' Sec. 9) and ( 1. 26) 
is its n-th power. 

(1.27) EXAMPLE: Consider the function 

{n) ( ) 1 (n) (X ~ ~ 
L\ X' { = --1- p - ), X '= R' { '= (0, 1) 

{ 
n+ £ 

where n ~(0, 1,2, .. . 1 and 

1 1 p(x) = - --, 
77 X 2+ 1 

X ;:; R . 

( 1. /.8) 

(1. 29) 

It is clear that ( 1. 28) is the n-th derivative with res­
pect to X of the a-sequence (1.20) from the previous 
example. It is not difficult to calculate: p {n) : 

4 

p<n>(x) = ( _x_ _{ + 1 
X 2 + 1 

(-1)n n! 

77 

( ...!:... ] 
2 
I ( n + 1 

k =0 2k + 1 

k 
(-1) x<;R. (1.30) 
2k+ 1 ' X 

The asymptotic extension of ( 1. 28) : (dn))as ={a, b) exists for 
every a ~A and every b<;(O,l) as. But, as in the previous example, 
we will give the values of it only for fixed b=s+n1 and 
finite a, i.e., for a <;0: 

(s-n-l+O-n- 1 ) p (n)(x), a=SX +Sh, x<;R, h~O. 

) . ~ (n) 
(:\ ) as (a , s + o 0

-n-2 
' a= 0°, (1.31) 

n 

( 
1) (-1) (n+1)! 1 I a=X+h,x~R,x,lO, 

S+O 2 , 
77 X n + h (; Oo • 

If we denote the tower and the order of (L\(n))'as (a,s+o
1

) 

by ll(n)(a) and v nl(a) respectively, then we shall obtain: 

1
-n-1' 

(n) (n) 
11 (a) = v (a) = -n-2, 

1' 

a= s X+ sh ' X ~ R ' h ~ n 0' 
I· 

a = o o' ·~ ( 1. 32 ) 

a=x+h, x ~R. x,bO, hG-0 0 • 

( 1. 33) EXAMPLE: Let n ~ N. and let us consider the (ordinary) 
functions: 

__ x __ )n 
p (x, d = ( 2 2 

n x +" 

[...!!...] 
2 

k n £ 2k 
I (-1) .. C

2
k) (-) , x~R, .c~ (0,1). (1.34) 

k=O X ' 

As it is known 1 101 the limit of (1,34) by£-+0 with respect 
to the topology of ~- exists and it defines the distribu­
tion P(1 / xn), i.e. , 

~- . 
Pn(.,£) -P(f/ xn) <; ~-. ' (1.35) 

{ ... 0 

Let us set (for the sake of convenience): 

1 X 
p (x, £) =-t/1 (-), 

n £ n n £ 

X ~R, £ ~ (0, 1) , (1. 36) 
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where _ [~] 

x n 2 k n 1 
1/J (x) =( -z-:-) I (-1) (2k) ~ · 

n X +1 k = O X 
X ~ R- (1. 37) 

As in the previous two examples the asymptotic extension: 

(P n )-as (a • b) = ~ (1/J n ) as (: ) (!. 38) 

exists for every a ~A and b <:;.(0,1)as where (1/J n) as is the 
asymptotic extension of tP n· We shall write down its value 
for a ~n and fixed b = s+o 1 .we shall set first: 

(x-n) (a)- a~f (P ) (a, S+ot-), 
n ·a.s 

a ,; n. 

For the values of (t.3~} we obtain: 

(s -n- +o-n): t/J (x) , 
n 

0
-n-1 

' 

a=S:X+sh, x ,; R, h ,; O 
o' 

a = 0 ° , 

0 .39) 

x-n (a) =(x-n + 0°, a = x + o o , x ,; R , x ,J o , ( 1 . 40 J 

x:-n--x-n-l nyS:+O 1 , a = X+ s y + o 1, x, y ~ R, x ,b O, 

x-n-x -n-1 n y s+w(a) s 2+o2, a =X+ s Y+ ~ z + ~-h, x, y . z ~ R, x,b O, 

h ~no· 

where 

, n(n-1) y I ) n z y 1 w(a)=---(--- ---(- --+-), 
2 xn x2 xn-1 x2 x3 x3 

(1.41) 

a =X+ YS·+ zs
2 

+S
2

h, x,y,z~R. x,JO, h ~ 0 0 . 

For the power p n (a} and the order v n (a) of x-n (a) we obtain: 

and 

6 

~-n, a=SX+Sh, x ~ R, h,;0 0 , 

pn (a) = t -n-1, a = o 0
, 

0 a=X+h,x G- R, x;i(J 

(1.42) 

1\ 

-n, a =SX + Sh, X ~ R , h ~!}O, 

-n-1 , a= 0 ° , 

v n (a) 0 , a =x+ o '>, X ~ R , X ,J 0 , 
(1.43) 

1 ' a = X + SY + 0 1 ,x,y ~ R, x ,J O, 

2, 2 2 a= X+ sy + s Z+S h, x ,y, z ~ R. x,bO, h ~0 0 . 

After introducing differentiation and integration for the 
asymptotic functions, we shall see that the asymptotic 
function (1.39) (or, which is the same, (1.40)) is a reali­
zation (in the sense of ref. 171 Sec. 9) of the distribution 
P(l / x n) . 

(1. 44) EXAMPLE: Let 

H(x, f)= ..!o_[ arg(-x + if)- arg(-x -if )J, x,; R, c,; (0,1) 
2rr 

where, as usually, 

arctg(y/ x) , x,y > O, x2+ y 2 -,JO, 

arg(x-tiy) " + arctg I y / xi, x s O,y ;:: O,x 2-ty 2 ,bO, 

-rr + arctg (y / x) , x s O, y < O, 

arctg jy/xj, x_::-O,y::;:O, x 2+ y 2-,JO, 

and arctg(±oo)=±rr/ 2.Notice 110 1 that: 

H(· ,d ~ H ~ ~' , 
f-+0 

(1.45) 

(1.46) 

(1.47) 

whereH is the Heavyside distribution. The asymptotic ex­
tension Ha.s(a,b) exists for all a~ A and all b,; (0,1)as. . 
The values of the asymptotic function (for fixed b = S+ o 1): 

de!. 1 
H(a) = Has (a, s + o ) , a ,; n ( 1.48) 

is given by: 

7 
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1- _s_+ o1' 
17X 

a= x + h, X ~ R, X > 0, h ~no· 

1 
1 - - arctg(1 / x) ' a = X s + s h' X ~ R ' X> 0' h ~ n 0 ' 

17 

_!_+0 °, a=s11 x +s11 h,x~ R. x ,b O, h~00, n =2.3, ... ( 
2 1. 49) 

H(a)= -1 
0 ' 

s 1 
--- +0 ' 17X 

a=ov, .v=0,1; ... ,oo, 

a =X + h' X~ R. X < 0, h ~ n 0' 

-..!...arctg(1/x) + 0 °, a = sx+sh, x ~ R. x < O, h ~n 0 • 
17 

The power l!(a) and the order v (a) of H(a) is given by: 

~ 
1 a = x+h, x ~R. x < O, h ~ n0 , 

-1' a = ov, v = 0,1, .... 00 ' 

(1. 50) 

0, for all other a~n; 

l!(a) 

I 
1' a = x+h, x ~R. x ,b O, h ~ n 

-1, a= ov, 
( 1. 51) 

1/ = O,l, ... ,oo, 

0, for all other a ~ n . 

v(a) 

We shall see in future that the asymptotic function just 
defined is a realization (in the sense qf ref ~ 1 7 1 Sec. 9) of 
the H -distribution. · ( 

\ 
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2. THE SET OF THE EXTENDED ASYMPTOTIC FUNCTIONS 

The extended asymptotic functions introduced in the pre­
vious paper 181 offer us interesting examples of asymptotic 
functions (Sec. 1). We will completely persuade the reader 
in the next pages of this paper (or in a next one, maybe). 
But the collection of these functions is not a good collec­
tion because it is not closed with respect to the addition 
and multiplication. The example given in (1.1): 

1 1 
(-)(a)=-, a~A\0 (2.1) 

x as a 

can illustrate that defect. Indeed, 

1 1 
(- --) (a) = (o) (a) = 0 , x x as as a~ A\ 0 (2. 2) 

in contrast to 

8 

I 

1 
a 

1 v(a) 
- =0 ' a a~A\0, 

where v(a) is given in (1.11). In other words, 

1 1 1 1 (- --) (a) "'(- ) (a) - (- ) (a) x x as · x as x as ' a ~ A\0. 

(2. 3) 

{2.4) 

What is more, the asymptotic function (2.3) is not an ex­
tended asymptotic function, i.e., there does not exist an 
ordinary function cb such that 

o''(a) = c!> (a) . a ~ A\ 0 . 
as 

In other words , the set of all extended asymptotic func­
tions is not closed with respect to the addition (and sub­
traction, of course) . This set is not closed under the multi­
plication, too. Indeed, we can verify that 

r"i
11 (a) = C\ 11

) (a.s+o 1
), 

as 
for a ~ n, a ,b 0 ° (2. 5) 

but 

-2 11 :) 11 ( ) , ( '\ n ) ( ) -n-1 f o o ~ r a "' . as a. s + O = O , or a = o , (2.6) 

where .'\ is the delta-sequence giveh in Example (1.19), ~n 
is its n-th power and n is the asymptotic function given by 
(1 .24). Strictly speaking, · 

n n 1 n (a) ,b (!\ ) as (a. s + 0 ) ' (2.7) 

on n and what is more, 8 11 is not an extended asymptotic 
function, i.e., it is not an asymptotic extension of any 
ordinary function. The question arises: What is the dif­
ference between (6 ±if;) as and ¢as ±if; as , between (¢,if;) as and 
¢as , if; as , and between (¢/ if;) as and ¢as 1 if; as for any two 
ordinary functions ¢ and if;. The answer is: The difference 
is always 8 -valued function, i.e., a function of the type 

0 
l '( a) 

' a~A (2.8) 

(where ,. is a mapping of the type v: A-+ Z u {oo l ) . The follow­
ing theorem deals with this problem. 

(2.9) THEOREM: Let X andY be two open subsets of Rand let 
X •Y 7 ' 0.Let cb and if; be two continuous ordinary functions 
defined on X andY, respectively, and let, finally, ¢a 5 (a),a.; D 
and 0as (a), a .;E be the asymptotic extensions of ¢ and if;, 
respectively. Then: 
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¢as (a)± .Pas (a) =(¢±if;) as (a) + ov(a) • 

¢as (a) . .Pas (a) =(¢,if; )as(a) + ov o (a)' 

¢as (a) / if; asCa) = (¢ / .P)as(a) + ov(a), 

a~ o n E' (2. 10) 

a ~ on E , (2. 11 l 

a ~ on E\E 0 , (2.12) 

Where 1/ (a) 1 vo(a) and v(a) are the orderS Of ¢as(a) ±.PaS(a), 
¢a

8
(a)·.Pas(a) and ¢ss (a) / .Pas(a), respectively, and E 0 is 

the set of all a from E such that if; as (a) E 8. 

(2.13) REMARK: Asusually,¢±if; and ¢,if; aredefinedonXn Y 
and ¢ / if; is defined on xn y \ Y0 ,where 

Y 0 = lx: x ~ Y, if; (x) = 0 I . 

On the other hand, ¢as ± if; as and ¢as· ifJas are defined on IY'IE 
and ¢as 1 ifJas is defined on D'E\E 0 ,corresponding to ref.

18 1 

Definition(1.7). Moreover, o n E~ (XnY)asas corresponding to 
ref. 18 1 Theorem (2.24)). So, the statement of the above 
theorem is correctly formulated. 

(2.14) REMARK: Corresponding to ref.
1 5 1 

(2.11) and (2.12) are equivalent to 

¢as(a)±if;as(a) -(¢±if;)as(a) = Ov(a)' 

¢as (a)· if; as(a) -(¢·if; )as(a) = o 
11

0 (a), 
-

¢asCa) / ifJ.asCa) -(¢/if;)asCa) = Ov(a), 

respectively. 

Theorem 14, (2.10}, 

(2. 15) 

(2.162 

(2. 17) 

(2.18) REMARK: The theorem holds, of course, not only for 
functions of one variable but also for functions of many 
variables. For the sake of convenience we shall continue 
to consider the case n=l only, corresponding to our agree­
ment in ref. 181 (3.6). 

PROOF: Let a~DnE.Corresponding to ref. 18 1 Definition (3.1) 

¢as (a)= as!¢(a): a~ a I, (2. 19) 

.Pa
8

(a) =as!if;(a):aEal, (2. 20} 

(¢+¢)as (a) =as!¢(a)+if;(a):a Eal, (2. 21) 

¢as(a) +.Pas(a) =ly+o:y<;-¢as(a), o ~if;as(a) I, (2.22) 

where (2.22) expresses the addition of the values of ¢as(a) 

10 

• 

and Yas(a) respectively, corresponding to ref. 151 Defini­
tion 6. Consequently, we have 

(o + y )as (a) ~ oas (a)+ l''a, (a) . (2. 23) 

Bearing in mind ref. 5 ' Theorem 3, we obtain 

o (a) + </J · (a) - (o + ,',) (a) = o v(a) as as r as (2. 24) 

where 1 · (~ is the or9er of the right-hand side of (2.23). 
But (2 .24 ) implies {2.10). The case of multiplication and 
division can be treated in the same way. Of course (2.22) 
must be replaced by: 

o (a) . y (a) = I y·h: ) ;; 6 (a) , o ~ if; (a) I , 
as as as as (2. 25) 

oas(a) / 1/Jas(a) = 1) . 8: r :;.q, as' o~if;as(a)l, (2. 26) 

respectively (ref. '
5

. Definition 6). The proof is finished. 

(2 . 27) COROLLARY: (Transfer Principle). Let F(z 
1
, ••• , z 

0
), z k ~ C, 

k = l, ... ,n be a rational complex-valued function of n comp-
lex variables and let ¢ k (x) ' · x <;-X, k=l, ... ,n be complex-valued 
functions defined on the open subset X of R sue~ that 

F [¢ 1 (x) , ... ,¢
0 

(x)] = 0 , x G- X . 

Then 

F as [<Pta/a) , .. :.,¢n as(a) 1 <; G , a EX 
as 

(2. 30) EXAHPLE: Let F(x,y) =X2 +y~-1 and ¢
1 

(x) =Sinx, 
¢ 2 (x) =COSX,X E R. We obtain 

2 2 ~'·a 
sin a + cos a - 1 = o , a ~ A ,. 

(2.28) 

(2. 29) 

X~ R, 

'(2. 31) 

where va is the order ofa. But (2.31) is equivalent to the 
identity 

1/a 
sin 2a + cos 2 a = 1 a ;;, A: (2. 32) 

which is the analogue of sin2x+cos2 X=l,x ~R· in A. Why did we 
call the above corollary "Transfer Principle?" . Because with 
its help we can transfer some identities from R to A 
(as well as from C to A * ) just we did in Example (2. 30). 
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(2.33) REMARK: (Our Plan for the Next Paper): By means of 
Theorem (2.9) we are going to "close" the set of the ex­
tended asymptotic functions with respect to the addition 
and multiplication. More strictly, we shall introduce 
another class F of asymptotic functions called "quasi-ex­
tended asymptotic functions" with the following properties: 
(i) F contains all extended asymptotic functions (in parti­
~ar, all examples given in Sec. 1); (ii) F is close with 
respect to the addition and multiplication; (iii) The analy­
tic operations (differentia~ion, integration and so on) can 
J;>e naturally defined in F; (iv) The Scwartz distributions 
have realizations in F in a certain sense (see ref. 171 

Sec. 9). 
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