
T.D. Todorov 

ASYMPTOTIC FUNCTIONS 

0 ti b e A M H e H H bl M 
MHCTMTYT 
RABPHbiX 

MCCnBADB8HMM 

AYtiHa 

)_,~~-go 
E5- 12859 

AND MULTIPLICATION OF DISTRIBUTIONS 

1979 



E5 - 12859 

T.D. Todorov • 

ASYMPTOTIC FUNCTIONS 

AND MULTIPLICATION OF DISTRIBUTIONS• • 

Subm i tted to "Reports on Math . Phys." 

• Address since November 1 1979: Institute 
of Nuclear Research and Nuclear Energy, Bulgarian 
Academy of Sciences, Sofia 1113, Boul. Lenin 72, 
Bulgaria. 

• • Some of the results of this paper were 
reported at the conference "Operatoren­
Distributionen und verwandte Non-Standard 
Methode~'. Oberwolfach, BRD (2-8 July, 1978). 



ToAOPOB T.A. E5 - 12859 
Ac~MnToT~4ecK~e ~YHK4~~ ~ yMHO~eHHe pacnpeAeneHHH 

ACHMOTOTH4eCKHe ¢yHK4~~ npeACTaBnA~T C06~ HOB~H THO o6o~eHH~X 
~yHK4HH, Ho OH~ He ABfiA~TCA, KaK pacnpeAeneH~A llieap4a, ~yHK4~0HanaMH 
Ha HeKoTopoM npocTpaHcTee npo6H~x ¢YHK4~H. Ac~MnTOTH4eCKHe ~YHK4H~ -
3TO OT06pal!<eHHA B Ce6A MHOl!<eCTBa A - aC~MOTOT~4eCKHX 4~Cen, BBeAeH­
H~X XpHCTOB~M 11·2·3/ . A, e ceo~ o4epeAb, eCTb enonHe ynopAA04eHHOe 
MHO~eCTBO o6o6~eHH~X 4~Cen, BKn~4a~ee B ce6A KaK MHO~eCTBO Be~eCT­
BeHH~X 4~Cen, TaK H 6eCKOHe4HO Man~e ~ 6eCKOHe4HO 6onbw~e 4~Cna, 
n~~e ABe aCHMOTOTH4eCK~e ¢YHK4~~ MO~HO YMHO~aTb APYr Ha APyra, 
C APYrOH CTOpOH~, pacnpeAeneH~A MOryT 6~Tb peanH30BaH~ KaK ac~MnTo­
T~4eCKHe ¢YHK4~H HeKOToporo 4aCTHOro B~Aa. AaHHaA cepHA pa6oT 6~na 
HH~4HHPOBaHa HeKOTOp~M~ $H3~4eCK~M~ npo6neMaM~, B03HHKa~~~M~ 

e KBaHTOBOH Teop~~. B 6yAy~eM npeAnonaraeTCA np~MeHHTb annapaT 
ac~MOTOT~4eCKHX ~YHK4~H BMeCTO pacnpeAeneH~H rnsap4a B HeKOTOP~X 
pa3Aenax KBaHTOBOH TeOpHH, ~C00fib3YA cy~eCTBOBaHHe YMHO~eH~A Me~AY 

ac~MnTOTH4eCKHM~ ~YHK4HnMH, AaHHaA pa6oTa ABnAeTCA npoAon~eH~eM151 

H161• AnA ee OOH~MaHHA He06XOAHMO 3HaKOMCTBO C nepB~MH AeCATb~ CTpa­
H~4aMH pa60T~ / 5 / ~ §4 pa60T~ ,/6/ , 

Pa6oTa e~nonHeHa B na6opaTOPHH TeopeTH4eCKOH ~H3HK~ OHRH. 
npenpKHT 06bellKHeHHOI"O KHCTKTyTa SlllepHbiX KCCnellOB8HHfi, .£ly6H8 1979 

Todorov T. 0. 

Asymptotic Functions and Multiplication 
of Distributions 

E5- 12859 

The asymptotic functions are a new type of generalized func­
tions. But they are not functionals on some space of test-functions 
as the Schwartz distributions. They are mappings of the set A 
into itself, where A is the set of the asymptotic numbers introdu­
ced by Christov l l,2,31. On its part, A is a totally-ordered set 
of generalized numbers including the system of real numbers R 
as well as infinitesimals and infinitely large numbers. Every 
two asymptotic functions can be multiplied. On the other hand, the 
distributions have realizations, in a certain sense, as asymptotic 
functions. The motivations of this work are connected with some 
physical problems of quantum theory. In further investigations we 
intend to probe the asymptotic functions instead of the distribu­
tions i n some topics of quantum theory and to make use of the 
existence of multiplication between the asymptotic functions . 
The paper is a continuation of refs. 15·61 . To understand it, the 
know 1 edge of the first ten pages of ref / 51 and Sec. 4 of ref. 16 1 

is presupposed . 
The investigation has been performed at the Laboratory of 

Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1979 

INTRODUCTION 

As soon as the book "Theorie des distributions" by 
L.Schwartz has appeared, it has been realized that the 
multiplication of distributions is not always possible. 
For example, the products 

o2 (x), 8 (x)P(.l..), 8(x)P(.l.), o(x)8(x), [P(-1-)] m, etc., x x xn 

having significance in the quantum theory /18,22-27;' cannot 
be satisfactorily defined. What is more, in the rare cases, 
when the multuplication is possible, it is not associative. 
The following well-known example is given by Schwartz: 

P(.L)[xo(x)] f, [p(.L). x]o (x). · 
X X 

Several papers have been written by mathematicians as 
well as by physicists in order to introduce in some way 
a natural operation of multiplication of distributions: 
a) The most popular approach is based on an approximation 
of distributions by regular sequences / 7-121, The exchange 
formula relating (formally) the product and the convolu­
tion113,151 as well as the point of view treating the distri­
butions as boundary values of analytic functions / 14,15/ 
deliver us another base for introducing a multiplication. 
A typical feature of the approaches from this group is 
that the product (in the cases it exists) belongs to the 
space of distributions. Unfortunately, only a rather small 
number of products can be defined in these ways; b) In 
another group of works / 16-22/ an enlargement of the space 
of distributions ~ - is performed and the product, in ge­
neral, does belong to this larger space. The methods used 
here involve either an axiomatic-algebraic technique 116 ,17 /, 
or non-standard analysis 1_19-22 ;' However, the operation of 
multiplication introduced in these works is not defined 
on the whole enlargement of T' which is the reason why 
the problem o f assoc iativity cannot be even formulated 
(see, for examr:·le/22'); c) In the third group of approaches 
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the space of distributions is entirely abandoned. It is 
replaced by another space of generalized functions similar, 
in a certain sense, to the distributions and a commutative 
and associative multiplication is introduced for any two 
generalized functions. These approaches are based usually 
on a non-archimedean enlargement of the system of real as 
well as of complex numbers and are connected first of all 
with the non-standard analysis / 19-22( At first sight these 
methods are more successful, because very strong results 
about the existence of multiplication are established in 
their framework. They possess, in a certain sense, a dis­
advantage, lying in the fact that comparatively few / 19-24/ 
numbers of applications to the other branches of mathe­
matics as well as of physics have been performed up to now. 
It is not quite sure whether this kind of generalized func­
tions will turn out to be so interesting and so useful for 
both mathematics and physics, as the distributions are, 
although the latter cause well-known troubles. 

The approach we use belongs to the third group of works. 
The asymptotic functions are generalized functions similar 
to the distributions . However, they do not coincide with 
the distributions, i.e., they are not functionals on some 
space of test-functions. The asymptotic functions are 
mappings of the set of asymptotic numbers A into itself. 
On its part, A 

11
·3 •

5·61 is a totally-ordered set of gene-
ralized numbers which includes isomorphically the field 
of the real numbers U as well as infinitely small (infi­
nitesimals) and infinitely large numbers. Every two asymp­
totic functions can be multiplied (because every two asymp­
totic numbers can be multiplied) and the distributions have 
realizations, in a certain sense, as asymptotic functions. 
The motivations of this work are, in fact, connected with 
some problems in quantum theory 11-4,18,23-25/ , In a further 
work we intend to probe the asymptotic functions instead 
of the distributions in some topics of quantum theory and 
to make use of the existence of multiplication between the 
asymptotic functions. 

The present paper is organized as follows: 

(i) In Sec. 1 the most general notion of asymptotic 
function is introduced (Definition (1.1)). This type of 
asymptotic functions is different from the asymptotic 
functions introduced in refs. 12 ,4/, although the notion 
of asymptotic numbers (1,3,5,6) is the common base idea 
for both types of asymptotic funct t ons (see Remark (1.13)). 
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(ii). In Sec. 2 a particular type of sets of asymptotic 
numbers (subsets of A ) , called extended sets, are sepa­
rated and their properties are studied. These sets (of 
asymptotic numbers) will play the role of domains of asymp­
totic functions of a particular type defined in a next 
paper. 

(iii). In Sec. 3 a particular type of asymptotic func­
tions called extended asymptotic functions, are considered. 

Our plane for the future is the following: In a series 
of papers we are going to define two particular classes 
of asymptotic functions: the class F of quasi-extended 
asymptotic functions and the class ~as of the so-called 
quasi-distributions. The asymptotic functions of these 
two classes are very similar to the Schwartz distributions 
and at the same time every two such functions can be multi­
plied as opposed in the theory of distributions. In further 
investigations, as we already said, we intend to apply 
asymptotic functions instead of distributions to some to­
pics of quantum mechanics and quantum theory. This paper is 
a continuation of refs. /5,6/, To understand it, the know­
ledge of the first ten papers of 151 and Sec. 4 of 161 is 
presupposed. For the sake of convenience, we will repro­
duce here some of the most important notations and terms 
(key works) of refs. 15 •61 

KEY WORDS: A= the set of the real asymptotic numbers (ref/ ~I 
Sec. 1) ;A*=the set of the complex asymptotic numbers 

v 
(ref. 151 , Sec. 2); a=!. a ksk + ov is the normal additive form of 

k=/1 
the asymptotic number a (ref! 51, Sec.6). Here ft,vEZUloo l.11$v. 
ak.,; R (or a k E C ) ; 11 is the power; v is the order and 
lt=V-11 (oo-ll=oo I nE Z,and oo-oo = 0 ) is the relative order 
of a • 

CHANGE OF TERMINOLOGY: In refs/ 5·61 we use the terms "accu­
racy of a " and "relative accuracy of a " for v and A, 
respectively. In the present paper v will be called the 
order of a (instead of accuracy) and A will be called 
relative order of a (instead of relative accuracy). We 
apologize for changing the terminology; 

R0 = {x +0° X E R l; c 0 = I c + 0° : c E c !; 

R""={X+O"" X Ell l; C ""=I c + o"" : c E C l 
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(ref. 1 51
, Definition 10) • Recall that R 0 and R00 are iso­

morphic to R and C0
, and Coo are isomorphic to C (ref. 1 51 , 

Theorem 20); 

~>=I o"' : v E Z u I oo II is the set of the asymptotic zeros 

(ref .l51, Definition S,v); 

1={1,\: AE N
0

u {oollis the set of the asymptotic units 

(ref. 151, DefinitionS,vi), where N0 ={0,1,2, ... 1 ; A00=the 
set of all asymptotic numbers with V=oc (ref.15; Definition 11, 
Theorem 23, ii). Recall that 

Aoo ~ { ~ aksk; p. E Z , ak E R I. 
k=fl 

(ref.151,Definition 12, Sec. 6); Oo is the set of all infi­
nitesimals (infinitely small asymptotic numbers) (Ref. 16 1, 

Sec. 4); 0 is the set of all finite asymptotic numbers 
(ref. 16 1 Sec. 4) ; 0 00 is the set of all infinitely large 
asymptotic numbers (ref.f61,sec. 4). Recall that 

n0 cn. 0 n 0
00 

= QJ , A = 0 u 0
00 

; 

" f is an ordinary function"~ "f is a complex-valued 
function of real variables", i.e., r:x .... C, where X s;:. R, or 
XC: R xRx .. x R. 

1 • ASYMPTOTIC FUNCTIONS 

(1.1) DEFINITION (Asymptotic Function). (i) Every map­
ping of the type 

f: 0 .... A*, ( 1. 2) 

where 0 C:A will be called an asymptotic function of one 
variable and if 0 C: A xAx ... x A ( n -times), f will be 
called an asymptotic function of n variables. As usual 
we shall often write f(a), a-EO or f(a 1,a2 , ••. ,an),(a1 ,a2

, ••. ,an)EO, 
respectively, instead of (1.2). 

(1.3) REMARK: Corresponding to the above definition, 
the values of the· asymptotic functions are asymptotic 
numbers~ Let p.(a}, v(a) and A(a) be the power, the order 
and the relative order o.f f(a) ,respectively, for some a & 0. 
It is- clear that p. , v and ,\ are mappings of the following 
t~: 

/A-: D-+Zu{oo}. (1.~} 

' 
• 

1/ 0 .... ZU {oo I , 
A o .... N 0u I oo I= I o ,1, 2, ... , oo 1 . 

( 1. 5) 

( 1.6) 

(1.7) DEFINITION (Algebraic Operations). The algebraic 
operations: addition, subtraction, multiplication and di­
vision between two asymptotic functions f and g defined 
on 0 and E, respectively, (where O,E ~A. or E,O~AxAx ... xA ) 
will be introduced by means of their values (i.e., just 
like the ordinary functions are added, subtracted, multi­
plied and divided) • In other words 

(f± g) (a)= f(a) ± g(a), a E onE, (1.8) 

(f .g)(a) = f(a).g(a"), 

(f/g)(a)= f(a)/g(a), 

where 

a e OnE, 

a E OnE\ Eo , 

E
0 

=Ia: a~ E, g(a) E 81. 

(1.9) 

( 1. 10) 

(1.11) 

(1.12) REMARK: It is clear that every two asymptotic 
functions (for which 0 n E f. 0 ) can be added (subtracted) 
and multiplied (since every two asymptotic numbers can be 
added and multiplied). As we know, the set of the real 
numbers R is isomorphically embedded in the set of real 
asymptotic numbers A (ref. 15(Theorem 20) and the set of 
the complex numbers C is isomorphically embedded in the set 
of the complex asymptotic numbers A*. In other words, R C A 
and C C A* (and R C C as well as A C A*, of course). Conse­
quently, the set of all ordinary functions (we mean the 
complex-valued functions of real variables) is isomorphi­
cally embedded in the set of all asymptotic functions (of 
the above-mentioned type). 

The notion of asymptotic functions was introduced for 
the first time by Christov as equivalence classes of se­
quences of ordinary functions 12 •4 1 . The notion of asymptotic 
function just introduced (1.1) is obviously different from 
that one giv~n· in refs. ' 1? .4 / . There exists a connection 
between these two types of asymptotic functions, but this 
will become clear only when analytic operations are intro­
duced (which will be don~ in a next paper). 
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(1.13) LEMMA: Let M be a set (a subset) of asymptotic 
functions and let M be closed with respect to the algebraic 
operations: addition; multiplication; or addition and multi­
plication. Then M has the same algebraic properties as A 
and A* have (we mean the identities (ref. 1 5 ~ Theorem 6)) 

which are valid in A and A* are valid in M, too). In parti­
cular, the set of all asymptotic functions has the same 
algebraic structure as A and A* have 15 1 . 

PROOF: The lemma follows directly from the fact that 
the asymptotic functions are A* -valued functions. 

2. ASYMPTOTIC EXTENSION OF SUBSETS OF R 

As is known, the ordinary functions (as well as the 
distributions) are interesting first of all because of their 
analytic operations: differentiation, integration, Fourier­
transformation, convolution and so on. That is why we must 
introduce somehow the analytic operations for just defined 
asymptotic functions. But there are some difficulties con­
nected with this problem since A (as well as A*) is a non­
archimedean set (containing infinitesimals) and consequent­
ly A ( and A* ) is not Dedekind completed. What is more, 
A (andA*) is also disconnected (ref. 16{Theorem 44).These 
features are typical not only for the asymptotic numbers 
but also for any non-archimedean extension of the real or 
complex numbers 1191. So, we cannot introduce the analytic 
operations by the standard way (by a given measure, the set 
of the measurable functions and so on) . We shall introduce 
the analytic operations in another way: We are going to 
separate some very special classes of asymptotic functions 
(closely connected with the ordinary functions) in which 
classes the analytic operations can be naturally defined. 
The domains of the asymptotic functions of these particular 
classes cannot be arbitrary subsets of A. This section is 
devoted to these rather special subsets of A, called ex­
tended sets, because they are obtained as asymptotic exten­
sion of ordinary sets of real numbers. 

(2.1) DEFINITION (Asymptotic Extension of Open Subsets). 
(i) L~t X be an open subset of R. The set of all real asymp­
totic numbers a E- A for which 

Is: a(s)-4;X IE Iii 
(2.2) 
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for all a~ a, where Iii is the filter defined in ref / 6 1 will 
be called asymptotic extension of X and will be denoted 
by Xas ; (ii). Let Xi , i =1,2, ... ,n (n EN) be open subsets 
of R and let 

X =X 1 X x2 X ... X X n (2. 3) 

The set of all n -tuples (a1,a2, ... ,an)• where ak~A. k=1,2, ... ,n 
for which 

Is: (a 1(s), a 2(s), ... ,an(s))~ X IE Iii (2.4) 

for all ak ~a k , k =1,2 , ... , n will be called an asymptotic 
extension of X and will be denoted also by X as ; (iii). 
A subset D of A (or of A xA x ... x A ) for which there 
exists an open subset X or R (or X is of the type of (2. 3)) 

such that D=Xas will be called an extended set. 

(2.5) REMARK: For the sake of convenience we shall re­
mind the definition of the filter Iii (ref/61,Definition 2): 

Iii is the set of all subsets E of (0,1) which contains 
an interval of the type (0, f), where fER , f > 0. As any 
filter, Iii possesses the following · (filter) properties: 

fZ) ~ Iii, (2.6) 

E,F ~Iii inplies E ° F ~ Iii, (2. 7) 

E ~ F \;;; (0,1) and E E ·~ implies F E 'Iii . (2.8) 

(2.9) REMARK: It is easy to see that 

(X1 x X2 x ... x Xn )as=X1asXX2as x .... x Xnas· (2.10) 

That is why we shall concentrate our attention only on the 
case n=l. The generalization to the case n > 1 is done imme­
diately by means of (2.10). 

The following Lemma replaces the expression "for all 
a E- a " in the above definition by the more simple one 
"there exists a E- a ". It will help us to construct the 
asymptotic extensions of concrete open subsets of R . 

(2.11) LEMMA: Let X be an open subset of R. Then: (i) 
0 =0 and Xas= fZ) if and only if X=fD; (ii) R =A and as as 
X =A if and only if X =R; (iii) o-n~ X for some n ~ N as as 
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if and only if X =R (and consequently, Xa8 =A ) ; (iv) Let 
X ~Rand a~ A. Then a E- X as if and only if the following two 
conditions (denoted by a) and b)) are valid: 

a) a-x¢8 for all xEX \ X , 

where X is the closure of X ; 

b) There exists aE a for which (2.2) holds. 

(2.12) REMARK: The conditions a) are equivalent to the 
following two conditions (denoted by a)* and a)**, respecti­
vely) : 

a) * a e I 0 -n : n E N I; 

a)** a ~ I X+ o 11 
X EX \ X I. 

PROOF: (i) and (ii) are obvious. Let us consider (iii): 
If X =R, then o-n ~ Xas, of course, since X as ,=A• corresponding 

to (ii). Let o-n EO X as for some n EN, i.e., (2.2) holds for 

all a Eo-n. In particular, for a(s)= x , where x is any real 
number (we mean limsnx =0 for any x E R ) , (2.2) implies xEX 

s-+0 
foranyxr;R ,i.e . ,X=R; (iv) LetaEXa 8 ,i.e., (2.2) holds 
for all a <;; a. We must show only the condition a) (which, on 
its part, is equivalent to a) * and a) ~ ) since b) follows 
obvi ously f r om a E X as . But X ,f R and a E X as implies a) *, 
corres ponding t o (iii). If a is infinitely large, i. e ., 
a<;; O oo, then a )** holds obviously . Let a be finite, i.e . , 
a~ 0. Corre sponding to (re£.16 1 Theo rem 36 , (iv) ), a can be 
repre s e nted in the f orm a =x 0 + h , where x 0E R a nd h <;. 0 0 are 
uni q ue l y determined by a ( xo =r (a) and h=a - x0 (ref. 16 1 , Defi­
n i tion 10). So (2.2 ) r educ es to 

I s : x0 +X ( s) ~ X 1 E ·5; (2 . 13 ) 

for all X E h . If h rf: 8 , then a)** holds obvious ly. Let h E 8. 
Then we must show that x or!: X \ X . Indeed , we can put X =X o 
in (2.13) , where Xo(s) = 0 ( s ince hE- 8), a nd we shall 
obtain xoE X . Let now a) and b) be valid (or , wh ich is 
the same, let a)* , a)** and b) be valid); It is necessary 
to consider the cases a E 0 , a En:, and a E-0~ separately , 

- + 
where 0 oo and 0 oo are the sets 
and positive asymptotic numbers, 
a= Xo+ h be the representation 
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of infinitely large negative 
resp. Let a E 0 and let 
we have talked above; I n 

~ 

this case b) reduces to 

I s : x 0 + x 0(s) E X 1 E '& (2.13') 

for some x 0 E h and consequently, x 0E X (since lim X 0(s)- 0 ) . 
s-+ 0 

If x 0E X, then (2.13')will be valid for all x 0 ~ h(since X 

is open), i.e., a=Xo+hEXas .Ifx 0ex (i.e., x0 EX \X),then 

the condition a) (for x = x 0) will imply h .E e , i.e. , h can be 

represented in the form h =r s n + ~s n , where n EN , r E- R , r -10 , 
and ~ is an infinitesimal. In the case r < 0, (2.13) will 
implyX 2 (-£,xo) for some£ER,£ > 0 and in the case r > O,, 

( 2. 13) implies X 2 (x0 ,£)for some .EE-R , o 0. In both cases we 

obtain 

Is: x 0 + x (s) EX IE & 

for all x E h, i.e., a= x 0 +hE X as· Let ae 0- ,i.e . , a can be 
00 

represented in the form a=rS-n+~s-n for some rE R, r < 0. 
and some infinitesimal~ - In the .same way we conclude that 
X contains an interval of the type (-oo,t) for some t E R 
and consequently, b) implies (2.2) for alla~ a, i.e.,a~Xas· 
The case a E. o:, is treated in the same way. The proof is 
finished. 

(2 . 14) SOME EXAMPLES: If x
1 

,x
2

E R and x
1

<x
2

,then: 

I r ~ R : X 1 < r < X 2 I as = I a E A : X 1 < a < X 2. a - x'l ~ e I . 

I r r.;; R : r < x 1 I as = I a~ A : a < x 1 I , 

lr~R: x1 < rla
8
=laEA: x 1< a, a-x 1 ~81. 

In the special case x 1 = 0 and x 
2

= 1 we obtain 

(0,1)as =I a>; A : 0 a <1, a )1'8 1 ; 

I ( x ,y) : x , y E R , x -1 0 or y I 0 I as 

=l(a,b): a .b ~A 111! (-l or b ~ 81 . 

(2. 15) 

(2.16) 

(2. 17) 

(2 .18) 

(2. 19) 
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(2.20) THEOREM ( Xas contains X). Let X be a non-empty 
open subset of R. Then X as contains X properly in the sense 

of the isomorphism R0 ~ R and R ""~ R (ref. 151
, Theorem 20). 

Namely, X° C X as and x""c xaS'where 

X 0 = I X+ 0°: X E X I. 

x"" =lx+o"": x Ex 1. 

Moreover, if a E A, then aE R0 n X as implies a E X 0 and 

aE R"" n Xaimplies a EX"" . 

PROOF: Elementary (by means of Lemma (2.11)). 

(2.21) 

(2. 22) 

(2.23) REMARK: Let us restrict only one of the above­
mentioned isomorphisms: wither R~R 0 or R~R"" . Then Theo­
rem (2.20) can be formulated as follows: If X is a non­
empty open subset of R, then X r;; X . Moreover, a E .R n X as 
implies a E X . as 

(2. 24) THEOREM (Some Properties of X as ) . Let X and Y 
be two open subsets of R. Then: (i) XC:. Y implies X as c;_ Y as ; 

(ii) (X n Y)as =Xas n Yas. 

PROOF: (i) Let X!:: Y and a EX as 
all a Ea. Let us set 

E(a)=ls: a(s)E X I. 

F(a) =Is: a(s)~ Y I. 

a E a, 

a E a, 

i.e., (2.2) holds for 

Obviously, X ~ Y implies E(a) c;_ F(a) and aE Xas implies 
E (a) E & for all a E a. Corresponding to ( 2. 8) , we obtain 
F(a)E & for all a t;;a, i.e., a I; Ya s ; (ii) X n YS:.X and Xn YC Y 

imply (X n Y) C X and (X n Y) C Y respectively, corres-
as as as as 

ponding to (i), i.e., (X n Y)a s CXas n Yas . Let a E Xas n Yas 

We have E (a) , F (a) E ·& for all a ~ a which implies E (a) nF(a)E & 
for all ae- a , corresponding to (2. 7). On the other hand, 

E(a) n F(a)= Is: a(s) EX n Y I. a E a 

which implies aE(XnY) .The t heorem is proved. 
as 

(2.25) REMARK: The facts worth keeping in mind from this 
section are the following: R as= A ; (X r. Y)as = Xas n Yas ; 

all examples (2.15)-(2.19). More especially, we are going 
\ 
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to use in future the fact that (0,1\ 8 contains all positive 
infinitesimals h which are not asymptotic zeros. In parti­
cular, 

rsn + Ov E (0,1) , nEN, v EN ulool. r ER, r > 0. as (2.26) 

(2.27) REMARK: The reader who knows the non-standard 
analysis (Robinson's theory of infinitesimals) 1 19-24 / will 
probably observe that the notion of "asymptotic extension 
Xas of a set X " just introduced (2.1), in analogous, 
to a certain degree, to the so-called "non-standard exten­
sion * X of a set X " in the framework of the non-stan­
dard analysis. The lemma (2.11) as well as the theorems 
(2.20) and (2.24) have also counterparts in the nonstandard 
analysis. This analogy will continue in the future develop­
ments, too. For example, we are going to introduce the no­
tions of "asymptotic extension of a given ordinary func­
tion" and "quasi-extended asymptotic functions" which will 
have analogs in the non-standard analysis *". 

3. EXTENDED ASYMPTOTIC FUNCTIONS 

In this section we are goung to consider a very special 
type of asymptotic functions which are obtained as an exten­
sion (continuation) of continuous ordinary functions (we 
mean complex-valued functions of real variables). These 
functions are called extended asymptotic functions. 

(3.1) DEFINITION (Extended Asymptotic Functions). (i) Let 
X be an open subset of R and ¢: X -+ C be a continuous or­
dinary function defined on X. We shall say that an asymptotic 
function of the type ¢as: D .... A* is an asymptotic extension 
of ¢ if the following two conditions are valid: a) xc o.S:: xas 
(2.1) and for every a~ D the set (of functions): 

a*=l¢(a): aEal (3.2) 

possesses an asymptotic cover as a * (ref.
151 

Definition 7); 
b) If a ED, then ¢as (a) is (by definition) the asymptotic 
cover of a*, i.e., 

* Some of the results of this paper were reported by the 
authos at the Conference "Operatoren-Distributionen und 
verwandte Non-Standard Methoden", Oberwolfach, 2-8 July, 

1978, BRO. 
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¢as (a)= as a*, aE D; (3. 3) 

(ii) Let X k ,k=1,2, ... , n be open subsets of R and let ¢: X...C 
be a continuous ordinary function defined on X, where 

X= xl X X 2 X ••• xX n. 

We shall say that an asymptotic function of the type¢as: 
D .... A* is an asymptotic extension of ¢ if the following 
two conditions are valid: a) XC: D \;;; X as (2. 10) and for 
every point (a 1 ,a 2 , •.. ,a

0 
)ED the set (of functions) : 

a*=l¢(a 1 ,a2 , ..• ,a
0
): akEak ,k=1,2, ... ,n! (3.4) 

possesses an asymptotic cover as a* (ref/ 51, Definition 7); 

b) If (a1 , a 2 , ... ,a0
) ED, then (by definition) : 

¢as (a 1 , a 2 , ..• ,a 
0

) = as a* ; (3. 5) 

(iii) The asymptotic functions obtained as an asymptotic 
extension of some continuous ordinary functions will be 
called extended asymptotic functions. 

(3.6) REMARK: It is clear that (i)-part of the above 
definition is a particular case of its (ii)-part for n=1. 
On this point onwards, we shall consider the case n = 1 
only, but all results established further can be easily 
generalized for n > 1 . ' 

(3. 7) REMARK: Let us remind (ref. 151 • Definition 7), t~at 
the asymptotic cover as a* of a subset a* of A~ (ref. 

51
• 

Sec. 2) is an asymptotic number, i.e.,asa*E A~ which con­
tains a* , i.e. , a* C as a* and such that there is no other 
(diffe:~rent from as a* ) asymptotic number a' for which 
a*C a 'I as a*. Let us recall further (ref. 151 Theorem 5), 
that a* has a unique asymptotic cover if and only if there 
exists a 'I; A* such that a£ a'. The following three lemmas 
will help us to construct the asymptotic extensions of some 
ordinary functions. 

(3.8) LEMMA: Let cp(x), xEX be an ordinary function dif­
ferentiable any number of times defined on the open subset 
X of R. Then ¢as (a) exists for every finite asymptotic number 
of the type a=X+h, where xE X and h is an infinitesimal. 
Moreover, 

14 

¢as (X+ h)= I _!_ ¢ (k) (x)hk 
k=O k! 

xE X, hE Oo, (3. 9) 

. I 

• 

(3.10) REMARK: The series on the right-hand side of 
(3.9) is convergent with respect to the interval topology 
of A (ref. 16 1, Sec. 5). 

PROOF: (3.9) is, in fact, a translation of the well­
known formula for the asymptotic expansion of cp(X+£): 

cp (X H ) - ~ cp (k)(x) k 
( .... o k=O k! ( (3.11) 

in terms of the asymptotic number terminology. Notice that 
the series on the right-hand side of (3.11) is divergent 
(in general) with respect to the ordinary topology of R, 
in contrast to the series in (3.9) which is convergent 
with respect to the topology of A. 

(3.12) LEMMA: Let cp(x), xEXbe a continuous ordinary func­
tion defined on the open subset X of R and let i EX, 
where X be the closure of X. 
(i) If there exists mE Z for which 

lim t -¢Ci+t) = 0, 
t .... 0 

ii+tE X 

(3.13) 

then the value ¢as(i+h) exists for all infinitesimals h 
for which X+ h E- X as and the inequality (an estimate for 
¢as ) : 

¢as (X+h) £: o ID/Lh X+hEXas (3.14) 

holds, where 1-Lh is the power of h; (ii) Let, moreover, ¢ 
have an asymptotic expansion of the type: 

n k -
cp(i+t) = l: c. t +~ (t), t~R. X+t EX 

k=f! k n 
(3.15) 

for all n~Z, n::;11,where /L.IIc;;Zuloo~,IL~II, -~ECand 

lim ~ 0 (t)/t 0= 0. 

t-+ 0 
X+t EX 

(3.16.) 

And let, finally, cp has no asymptotic expansion. 
of the- tyPe (3.15) by a higher order than v. (The last is 
not a restriction in the case 11• "" ) · - Then: 

J II k V - -cp (s+k-)• I. ckb +O • ~~X. fitO;O-.,..- S-+bEXas • (3.-17) 
as 'k•l'- .., 

fl 



PROOF: The above lemma follows immediately from(ref. 161 , 

Theorem 41). It is, in fact, a periphrasis of the notion of 
asymptotic expansion of a given function in our "asymptotic 
number language" . 

(3.18) REMARK: The above Lemma (3.12) reduces to Lemma 
(3.8) in the following special case: xE X and cfJk)(i),k,.Q,l, ... 
exist. In this case we have .p(k)(i) .. ck. We wrote out Lemma 

(3.8) only for the sake of convenience. We are going to 
use bemma (3.12) (but not Lemma (3.8)) only in the case 
x EX\ X 

( 3. 19) LEMMA: Let ¢ (x) , x E X, be a continuous ordinary 
function defined on X, where X is an open subset of R. 
Let X contain intervals of the type (t,oo) or(-oo,t) for some 
t E R (the case X ,.R is included here) . If there exists 
m±~ Z (respectively) such that 

limx -mf¢(x),.O 
x-+±oo 

(3.20) 

then <Pas<~ exists for every positive (or negative, resp.) 
infinitely large asymptotic numbers a and 

P.• m + 
¢as(a) ~ 0 - (3.21) 

holds, where p. is the power of a . 

PROOF: Elementarily, it is sufficient to put a,.±rsP.+sP.h 
for some p.E Z , p.< 0 , r E R, r >0 and some infinitesimal h, to 
replace any a E a (which can be represented in the form 
a(s),.,±rsP. +sP. x(s) forlimx(s),.O ) in (3.20) and use the 

s-+0-
definition (3. 1). 

1 51 Recall the definition of the asymptotic numbers (ref. , 
Definition 5). The following lemma establishes a connection 
between this definition and the notion of asymptotic exten­
sion of a function. 

(3.22) LEMMA: Let¢ (x),x EX be a continuous ordinary 
function defined on · the open subset X of R and let <~>as(a), aE D 
be an asymptotic extension of¢. Then 

¢as (a)=as(¢(a)l+ ov(a). aE D 

for any aE a. where v(a) is the order of <Pas (a). 

( 3. 24) COROLLARY: Let aE A*. Then 

t6 

(3. 23) 

• 

a= a as(S+O"") + 0
11 

(3.25) 

for any a E a, where v is the order of a. 

PROOF: (3.23) follows immediately from (ref. 1 5 ; Theo­
rem 3). 

(3. 26) REMARK: Recall (ref. 151 , Sec. 6) that S+o "" is the 
asymptotic number defined as follows: 

S+o""=(a: a~As , a(s)=S+~(s), lim~(s)/s0 =0 
s-+ 0 (3. 27) 

for all n E Z 1. 

Recall, as well, that S+o"" .. s.f"'. Moreover, corresponding to 
(ref .I51,Definition 12), the number S+o""= s1 "" can be denoted 
simply ass, i.e., 

s + o"" = s 1 oo = s . (3.28) 

(3.29) REMARK: In the n -dimensional case (3.23) could 
be replaced by: 

¢as(a1, ... ,a
0
)=as(¢(a

1
, ... ,an) l+ov(a) , (a

1
, ... ,an)~D (3. 30) 

for any akEak, k=l,2, ... ,n. 

( 3. 31) THEOREM ( ¢ is the Restriction of <Pas ) . Let ¢(x), 
x ~X be a continuous ordinary function defined on the open 
subset X of R and let ¢as (a) , a E D be an asymptotic ex­
tension of¢. Then: 

<Pas (X)=¢ (x), X EX, (3.32) 

PROOF: (3.32) follows directly from the fact that ¢ 
is continuous and X is an open set, bearing in mind the 
isomorphism R~ R 0 (ref. 1 51 , Theorem 20) as well as 
Theorem (2.20)). 
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