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1. Transversal lattice fields 

We will reformulate the theory of the free Euclidean 
transversal vector field of mass m~O, on a cubic space­
time lattice X(c)cRd+ 1, for c>O and d~2. For simpli­

city we fix the lattice constant to c=1 and the dimension 
of space d=3, except stated otherwise. 

We keep most of the notations for the continuum theory 
which we have discussed in parts I and II of the paper 

(JINR E5-I2780,I2779). 

In the Cartesian basis fntw: (n11 f = ?>,((~ f,Y =0, 1, 2, 3 ~ in R4 

we write 

(1) x=(x0 ,x)= xfnt-4<:;;. X, xf' integer, 
- ~l 

for a lattice point and /x-y/= ~ /xk.y!f; for the distance 
of x,y6X. By the Fourier transformation T 

(2) 
IV -2 "'>' io .x 

T: f~f(p)= (2JL) L.e · fx' 
X 

P~ I=x[-x. +.nj. w-; 
we identify the complex Hilbert spaces 

We define the ~ operator ~+ on the 

action on a scalar function f=(fx)xGX 

12 (X) and L2(I,dp). 
lattice by the 

(3) 

Then 

(4) 

(n+ f)tft = f M -f · v x x+n ;x 

I 
2(d+1 )+m2 

h1+m2
) = - 1 
xy 0 

X=Y 

/x-y/=1 
otherwise, 

where 6 = >;;+ .\T = \T st" is the lattice Laplacean, is a 
standard expression • The operator ~- is defined likewise 

by 

(5) \)-= Ta (\7+)T-a' a=nt" , 

where (Taf)x= fx-a' aeR4 , or by 'V-= -(\J'"t in i 2
(X). 

4 

(6) 

where 

-1 2 
T(-6)T • /w(p)/ 

,/'(p)= T(\/-rT-
1

• 

2 Z ( 1-cos pf) , 
ft\ 

Let Gm be the Green's function for -~+m2 with free 
boundary conditions. 

The one-particle Hilbert space for the free Euclidean 
scalar field of mass m~O on the lattice X is 

(7) L={u=(ux>xe.x: ~G~ iixuy<Q?~, 

in the momentum representation L= L2(I, ~2). 
For m•O, the map u~~u defines an /w/ +m isometric 
embedding of 12 (X) in N1 ,Z:®L. Using the orthonormal 
basis {cfy: yex~ in 1 2(X)tf\ we can define a projection 
E in N' as follows: 

(8) Ef = f- Z <sy•9 sy , 
X W 

(9) 
{ 

+1 
<s >fl = <r::+"o >~ = -1 y X y X 

0 

X= y-nf/ 
x=y 
otherwise 

are the unit sources on X. For m~O, E is defined by 

( 10) N = ranE = fh€N
1 
:T.h=OJ, 

in particular, for the model in Euclidean space-time R3 
E is given by the identity LlEf= Vx(ITxf), ff!: N1 • In the 
lemma 1 we change the notation and index the lattice model 
by "c", in order to distinguish it from the continuum one. 

For a region e'.:::R4, we let g(c)= 9'0x(c), where for c,;:::>O 
X(c)= [x= :xl'n(c)l': xf4integer &lid n(c)f't .. c.nf'~. We denote 

by x (c) the characteristic function of the corresponding 
momenti1n box 

( 11 ) I(c)., £p~R4: /p,Af/~'f~. 
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Lemma 1 Let m=O. Then 

-1"' ~(c): ;r --;. x (c)./w(c)/./p/ (12) u 
I 

defines a non-local isometric embedding of L(c) in L. 
Generalized to the vector case, J{c) is neither local nor 
transversal, i.e. for given h~N~(c) 

(13) supp J(c)hc;t: <t' and \7.J(c)h # 0. 

Proof: The multiplication operator ~(c) has a non-local 
Fourier transform, and J(c)w(c)# ip, except c=O. Note 
that lemma 1 generalizes to the massive case as well. 

Moreover, using 
and Simon for the 
theorem ( c -t 0) • 

modified arguments given by Guerra, Rosen 
scalar model we can prove a convergence 

Q.E.D. 

We call a region r!l regular if x~ e-int implies 
x+n~-nll ~ e'l (It ,V=O, 1 , 2, 3. Of course, the interior of the 
half-space t\= ix: x0 ?0~ is regular. Let 

(14) li = ih~N: h =0 for x¢ A+~ , + ~ X 

and E+ the corresponding projection inN. We introduce 
the refledion 9 : x ~ (-x0 ,x) at the hyperplane S

0
, and 

0 -
the unitary operator 

( 15) 

Lemma 2 

(16) 

( 9 h )_,4f = /IV If!. o X g G x' 
0 

g~~ diag (-+++). 

For h6N+ 

<"h,9
0
h"/ = 

N 

z gltVGm 'b/1 t(' 
x/9 y x Y 

0 

2:0. 

In particular, for m=O E 9
0

E+= E is the projection 
( + 0 0 l 

onto the subspace NS = 1 ~ N: hx=O for x #O .1- • 
0 

• 

Moreover, for m~O holds reflexivity with respect to 
the hyperplane S

0
, i.e. h0=o 

X 
for elements heNs • 

0 
Proof: 

tflj) ~ 
(17) (~E)xy c conet ox/y+~-~ + ••• , 

where + ••• contains all the contributions from coinciding 
pointe and next neighbours. Hence ~E does not couple /\!nt 
to each other which by standard arguments implies in the 
case m=O the Markoff property with respect to S

0
• 

For heNS let us rewrite the traneversality \7+.h=O 
in the form 0 

(18) ho= ho + 
y X 

c;t 13 13 0 
~ (hx+n13 -hx), y= x+n • 

13=1,2,3 

If y ¢ S
0
B h~=O since supp hC S

0
• If yt. S

0
, h~=O 

since x,x+n ~ S
0 

and the r.h.e. vanishes. 
The proof of the reflection p~sitivity (16) is similar 

as for the continuum model. Q.E.D. 

Figure x13 , 13=1,2,3 
----• • I 

• ::.13 • x6X, Euclidean space-time lattice 

• • • 

Let be A the Gaussian random field indexed by transversal 
real functions of finite support in X, with mean zero and 
covariance given by the scalar product in Nm' m~O. 

For a suitable choice of the underlying probability 
(Q,BM,13m) we can realize A as coordinate functions 

(19) A(h)(q)= g hx.qx, 
X 

q~ Q= X R 

{x•f\ 
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For m=O 

(20) 
~. flq 

dB (1/ e dq 
+ 1/qlt 

J[ e ~ x y J[ d~(q~), 
fx,y,r! { x.ft\ 

where the first product is over all next neighbours, 
/x-y/c1, and d~/ds = exp(-4s 2). B is a ferromagnetic measure 
of Ising type. We let B the smallest6-algebra of subsets 
in Q so that all A(h), hGN real, are a-measurable. 

Hence for any source sx' x6X, A(sx) is not a measurable 
Q-space function with respect to B. Passing to plaquette 
variables we will find a simpler expression for darB. 

First we introduce the sets of lattice bonds and plaguettes 
with positive orientation 

(21) b+(X)= -£b=(x/X+nh\, 

p+{X)= lP=(nt'xnV/x), f"'-Jl). 

Then rb=(x+rf'/x) €.. b-(X) and rp=(nvxnft/x) e p-{X). 
For the notations below we refer to the text book of Singer 
and Thorpe: 

(22) <"db= {x, (X+nh~, 

~P= f<x/x+n~),(x+~/x+n~+nY),(x+~+nv/x+nv) , 
(X+nJI/x)S, 

dx= f<xfx;±,nl0 J. 
Now we identify a given vector field h=(hC) xe X 

with the f unc tion on b{X) = b+(X )Ub-(X) 

(23) hb= r h~ 
I_ -h~-1 

X 

b=(x/x+nlt) e b+{X) 

b=(x+nf'/x) e b-(X) , 

on X 

i .e. hb+ hrb=O. In a similar manner, we identify a 
given t ensor field f= (f~xG X on X with the funct ion 

I 

• 

(24) f = r/JY , p=( nl':xnJI /x)e p(X). p X 

If f is antisymmetric then fp+frp=O . 
field h on the lattice X is a sequence 
hb+hrb=O for a l l b, and an antisymmetric 

sequence f = ( fp)p~ p( X ) ' fp+frp=O. 

Hence a vector 

h= (hb)be b(X) • 
tensor field is a 

With t he above identi f icat ions , for any scalar f ield u 
on X ho l ds (~u )b= u~b' i n pa rticular 

(25) s -1 
(V+by)b= (sy)b= l o 

b=( y/ Y±n/1) 

otherwise • 

In Euclidean space-time 
for any vector field h on 

RJ, using the Hodge duality map 
xcR3 hold the identi t ies 

(26) (\7-.h)x= hfx and "*(yri-xh)p= hop· 

In particular, for p=(n~xna/y)e. p±(x ) 
Then 

(27) (cp)b= 
- - )+1 

(V xlp)b - 2 0 

be 'Op 

otherwise 

let 

is a unit curl on X. Of course ( c \.... =+4 
-- p'c:'p-

(lp)~= ef/"'8 ~xy• 

In section 2 of part II (JINR E5-12779) we have discussed the 
map f which allows to identify 1n a unitary manner the Euclidean 

one-photon states in terms of ff"'J/ with those in the trans­
versal gauge. 

"' 2 -2 <vBft'tY ~fH a v 
For f~ L (I,Pph/w/ dp), where Pph (p)= or i w + ••• is 

antiaymmetric, we define 

ill 

(28) ~: r ~ 1;'f(p)c wv(rrffl/ -~f1>. p~I. 

{c
0

: pcp(X)\ is a basis in N. Using (II.18) we find 

the foraula cp" fHHP). Then, for h=Z:mpcp €. N real, 

I 



we can express the random variable A(h) in terms of 
the Euclidean F~f's on the lattice X, Fp= F(*lp) ' by 
formula A(h) = .Z mpF p. Their covariances are given by 

p(X) 
OfBftW 

J Pph (p) ip.(x-y) 
<:FpFq/ = dp __ 

2 
e , 

B I /w(p)/ 

(29) 

the 

for p={nqxnB/x) and q=(nMxnV/y). Let Jx= (q)cx= CV-.q)x' 
x~X, which is formally equal to A{sx){q). Since any Q-space 
function measurable with respect to B is constant in the 
variables Sx• the measure B factorizes into dB= dB(F)8dB~), 
where 

1 
- ~F.VF 

{30) dB(F) 111 e dF. 

V denotes the inverse of the covariance matrix (29). 

Figure 2 

1\ • • , • l 

~ x+nv x+n~+nv 
~·~·..-· . 

fr ~p t . 
~~ .. ~ 

x-n~ x x+n,.ct 

plaguette p={~xrrV/x) 

---

The above discussion of the Euclidean photon field on the 
lattice shows that it is a non-local theory in the sense that 
we have a map from plaquettes p~p{X) to random fields Fp' 
rather than from lattice points. 

Equivalently, for any loop ~ the random variable 

(31) A((,) = ;!. Ab 
b~r.. 

is j3 -measurable since C. is just the boundary of the union of some 
plaquettes. To avoid confusion in the next section we return 
to our notations X, respectively ~tl'jl from part II. 
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2. Steady currents and magnetic dipoles 

e 
The Euclidean photon field A is the Gaussian random 

field indexed by elements jes;, i.e. real j"'ZEPs{Rd+1) 
satisfying ~. j=O, with mean zero and the covariance 

(32) 
e e 

<A{j}A(j' >> I1 dx dy j{x) .j • (y), = d-1 cd/x-y/ 

where cd denotes the area of the unit sphere in Euclidean 
~1 -space-time R , ~· 

In the lattice model which we have discussed in section 1 
the basic objects are the random variables XCC), where ~is 
a loop on the lattice X<= Rd+1 • Similar in the continuum 
formulation: The test functions j can be identified with 
steady currents. This idea is due to Gross. We will study the 
localization, Markoff property, reflexivity, etc., for Euclidean 
one-photon states in the language of classical d+1-dimensional 
magnetostatics. 

Given a steady current j we le't 
potential and 

U= G0 j the vector 

03) w = -ju.j dx 

Rd+1 

the self-energy. In Euclidean space-time R3 the kernel 
of G0 = (-~+m2 )- 1 , m=O, is given by the Coulomb potential 
- 1-- • Hence W= - //j// 2 , where 
4~x-y/ N 

04) N 
s "' .::6> 2 d+1 -2 (II 

2 j~ ~ 1 (R ,/p/ dp): p.j{p)=O a.e.) 

Note that ~U=O in the sense of a vector.valued tempered 
distribution. 

e 
The Euclidean transverse potentials A live in the Fock 

space P{Nr). Using the map J
0 

we can identify the real 
one-photon states in Coulomb gauge 

II 



05) 
IV 

AC(O,j)J2... . c d 
• .il. E. S (R ) r ' 

with the steady currents J
0

..1. = (0, ~i..1.) 6 Nr localize1i 
on the hyperplane S

0
• On t he other hand ( 35) can be 

i dent i f i ed with the restriction j 5(p), p=(+/£/,£) ~ v~ • 
B= 1, 2, •• ,d . Then (32 ) gives for d=3 

3 3 3 .Vi4 N 
IV (3G ) JJ dx dy

2
..1.( !; ) • .!_ (;L) 

3 3 1!;-.:LI 
J dp 

2;0 
vo 
+ 

..1. ·.!. • 

RxR 
N N 

( j }fyl'(£) = g,CIIIj ll(-£). wher e 

The reflexivi ty condition in N says that Q
0

j = j, for any 
j G Ns • Steady currents like 

0 

(37) a) <- ~. YV 0
> ~&u 

b) (o, V 0 & & Vxf), 
0 --

wi th 
energy . 

Qoj= -j 
Not e that 

are excluded because of t heir infinite self ­
f or d=2 we have the identity 

(38) (- 4.. ~V0 )u = \7x(\7x n°u), V=(i1°,'l>· 

We now come to the Markoff property. 
j ~ NA • A compact, the interaction of 
current i localized in the complement 
onto the hypersurface 1\cfl/\ = S. 

Given a steady current 
j with any test 
Ac is projected 

(39) <(j ,i>N = <Esj,i~ , j~ N/\' 

is equivalent to U(j-Esj>f.-c=O in the sense of a vector­
valued tempered distribution. 1\ 

In other words: j induces on S magnetic moments which 
are equivalent to the surf ace distribution Esj, and Esj 
produces in Ac the same magnetic field as j itself. 

12 
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Replacing the Coulomb by the Yukawa potential with mass 
m >O, in particular for j G. Nil I) kerC we find instead 
of 09) + 

(40) .c('j,i)> 
Nm 

<E> j ,i/ , 
Nm 

N v 
( o1 ) i .(w+k) .0 '~2 E> j = 1, -J?p k2 0 J , W= + 'IE~+m 

p +ik 

We remark that E~ has support in A+ but not on the 

hyperplane s0 (see section J of part I -(JINR E5-12780)). 

Contrary to the situation in electrosta tics - where we have 
refleXion principles for Dirichlet ~ Neumann boundary 
conditions - in magnetostatics the problem is more complicated. 

Lemma 3 Given j~NA+' let Q
0

j 
to S0 • Then the vector potential 
U+= G0 (j+Q

0
j) satisfies 

the mirror image with respect 
of the total distribution 

( 41) a) 

b) 

-L1U+= j in A.int 
+ and \7. U + =0 , 

U~ f. =0 (Dirichlet for normal component) 
so 

(ns.\7>u!~ =0 (Neumann for tangential comp. u5 , 5=1,2,3). 
o Is + 

0 

Proof: The boundary conditions (41) are found for a 
current j in front of a t hin paramagnetic hyperplane 
The Poi sson equation and the t ransversality f or U+ 
from the t acts t hat U is linear in the curren t s j 

s o . 
follow 
and Q

0
j Aint + and supp Q

0
j {) "+ = ¢ . Moreover, 

(42) j +Qoj 
[ jo(x)- jO(oox ) 

ja(x )+ jB{Qox), 

13 

J3=1,2,3. Q.E . D • 



Let 

mixed 

in N 

(43) 

W+= -Jru+.j dx the corresponding energy with the 

boundary conditions (41), Then refl~on positivity 

implies 

2 
-//j// +<'(1+9

0
)j,j> ~0. 

N N 
W-W+ 

Hence j is attracted by S
0

• Conversely, j induces on S0 

magnetic moments with corresponding distribution of steady 

currents Esj which attract j. Therefore W-W should be 
0 + 

positive. 
The above interpretation of reflection positivity generalizes 

an idea of Uhlmann for a similar situation in electrostatics. 

Figure 3 

j C1' (} Qoj ~· . current-current interaction 

hyperplane S
0 

Let us decompose j into j= t <±> 1, where t= Cj. Using 

Es = Ces , there is no magnetization of S resulting from 1. 
0 0 0 

In other words: There is no contribution of 1 to the amount 

of work (43) we have to do in order to remove j to infinity. 

Remark Lemma 3 generalizes to the situation of a current 

~ with support in the ball "a= [x: /x/~ R \ and its 

inversion image QRj with respect to the sphere SR as follows. 

Rewriting the vector potential UR= G0 (1+QR)j in spherical 

coordinates as UR= (U~,U~), it satisfies the mixed boundary 

condi tiona on SR= f x: /x/ =R \ 

(44) u~l' =0 and 
lsR 

<ns ~)u~l's =0. 
R PR 
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For the model in Euclidean space-time R3 the steady 

current j= .2Vx(mi8'a ), where mi~!i:R3 and supp j = fai\ 
is finite, i i represents a generalized one-

photon state with total magnetic dipole moment 

( 45) aiL< j) = 1 /2 f rxj d?r = Z mi. 

R~ i 
To avoid confusion with the cross product "x" we pass to 

the notation r~R3 instead of x. Prom the relation 

<'Vxri'~, Vxd'a'b~= Et1t11(a,b) we conclude that these currents 

build a total set. 

Hence for the proof of refl~ion positivity in Nr' m=O, 

it is sufficient to study the expression 

(46) 
e e ' 

<F(f)F(Q
0
f)> = ,G<'Vxmi~, Vx~j~ a> , 

a i,j 1 o j N 

e 
where f is related to j by the map I. Explicitly 

holds f= "fc- t] mi 8' a , where * · denotes the Hodge duality 

map. We have used i the pseudo-vector character of mi' 

i.e. Q
0

j= Z '\lx(~i b'9 a ), ~: r ~ (r
0 ,-£). 

i 0 i 

Lemma 4 (46) is equal to 

(47) <:'g,Q
0
g> ~ 0, 

L 

where g= - ~ (mi ':V) ~ 
bution of the electric i 

is the related charge distri­

dipoles mi localized in ai' 

Proof: The interaction energy of individual magnetic dipoles 

with associated steady currents j= Vx(m ba) and i='Vx(n,s;;), 

a ; b, is given by 

(48) ~j,i> = m.K(a-b)n - (m.n) Tr K(a-b), 
N 

JS 



J. -3 
where K(r)= (2Pr-Pr)./r/ with the projection Pr 

onto r~R3 denotes the coupling matrix. Using the expression 
B(n)= K(a-b)n for the magnetic field produced by the dipole 
n in the point a~ R3, and Tr K=O, we get the well known 
formula 

(49) <j,i/ = + m.B(n). 
N 

We now reinterprete m, n as electric dipoles with the 
associated charge distributions ·-m.V~ and -n.'\7 Jb· 
Their Coulomb interaction energy is given by a similar 
expression to (49), i.e. -m.E(n), where E(n)=B(n). Finally, 
using Q (-n.V'&"b)= -(90n).V~ b and 9~= -n, we find for 

0 0 
the individual dipole moments the identity 

(50) <V'xm~,90 ('Vxmc\,>> = <m.'V~,90 (n.V~>> • 
N L 

Q.E.D. 

Figure 4 

electric dipole with 

+ 

9o~o- (p associated charge distribution g 

~ 

Qoj~ 
~magnetic dipole m with 
~associated current j 

j 

hyperplane soc:R3 

The inequality (47) remains valid if we replace the 
Coulomb by the Yukawa potential 

(51) 

-m/x-y/ 
e 
<1/x-y/ ' 

m>O. 

Then the refledaon positivity for the Euclidean free 
transversal vector field of mass m~O is also a consequence 
of lemma 4. We expect that our proof for the models in 
Euclidean apace-time R3 extends to the general case. 
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3. Conclusion 

We have studied the local structure of the Euclidean models 
for the free vector fields of mass m~ 0 in the transverse 
gauge. 

Refl~on positivity and reflexivity are the most important 
features and they allow various interpretations, in particular 
for the Euclidean photon field. 

First of all we mention the consequence of positive-definite 
metric in the Hilbert space of quantum one-photon states in the 
Coulomb gauge and the fact that the time-zero quantum fields 
act irreducibly in the corresponding Fock space. 

For the model in apace-time R3 we have introduced generalized 
Euclidean one-photon states with definite magnetic dipole 
moments. Then refla%ion positivity is related to the very plau­
sible assertion - and we proved it - that the interaction of 
any finite system of such dipoles with its mirror image has 
negative energy. A collection of proofs for refl~on positivity 
- even in the massive case and for .the lattice models - will be 
published in a separate paper. 
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