

# объединенный 

 инСтитут Ядерных исследованийдубна

$$
4 / 2-80
$$

E5-12781

J.Loffelholz

## EUCLIDEAN FIELDS: LATTICE MODELS

## 1. Tranaversal lattice fields

We will reformulate the theory of the free Euclidean tranaversal vector field of mass $m=0$, on a cubio spacetime lattice $\mathrm{X}^{(\mathrm{c})}<\mathrm{R}^{\mathrm{d}+1}$, for $\mathrm{c}>0$ and $\mathrm{d} \geq 2$. For aimplicity we fix the lattice constant to $c=1$ and the dimension of space $d=3$, except stated otherwise.

We keep most of the notations for the continuum theory which we have discussed in parts I and II of the paper (JINR E5-I2780, I2779).

In the Cartesian bareis $\left\{n^{\mu}:\left(n^{\mu}\right)^{\nu}=\delta^{M \nu} ; \mu_{1} \nu=0,1,2,3\right\}$ in $R^{4}$ we write
(1) $x=\left(x^{0}, \underline{x}\right)=x^{\mu} n^{\mu} \in x, x^{\mu}$ integer,
for a lattice point and $|x-y|=\sum / \sum^{\{\mu}-y^{\mu} /$ / for the distance of $x, y \in X$. By the Fourier transformation $T$

$$
\begin{equation*}
T: f \rightarrow f^{N}(p)=(2 \pi)^{-2} \sum_{x}^{i p \cdot x} f_{x}, \quad p \in I=x[-\pi,+\pi] \tag{2}
\end{equation*}
$$

we identify the complex Hilbert spaces $I^{2}(X)$ and $L^{2}(I, d p)$. We define the Nabla oparator $\nabla^{+}$on the lattice by the action on a soalar function $f=\left(f_{x}\right)_{x \in X}$
(3) $\quad\left(\nabla^{+}\right)_{x}^{M}=f_{x+n} M-f_{I^{\prime}}$

Then $\quad\left(-\Delta+m^{2}\right)_{x y}=\left\{\begin{array}{lc}2(d+1)+m^{2} & x=y \\ -1 & / x-y /=1 \\ 0 & \text { otherwise, }\end{array}\right.$
where $\Delta=\nabla^{+} \cdot \nabla^{-}=\nabla^{-} \cdot \nabla^{+}$is the lattice Laplacean, is a standard expreasion. The operator $\nabla^{-}$is defined likewise by
(5) $\quad \nabla^{-}=T_{a}\left(\nabla^{+}\right) T_{-a}, a=n \|^{h}$, where $\left(T_{a^{\prime}}\right)_{x}=I_{x-a}$, ee $R^{4}$, or by $\nabla^{-}=-\left(V^{+}\right)^{*} \quad$ in $l^{2}(x)$.
(6) $\quad T(-\Delta) T^{-1}=/\left.m(p)\right|^{2}=2 \sum_{\{\mu\}^{2}}\left(1-\cos p^{\mu}\right)$,
where $\quad \sigma^{\mu}(p)=T\left(\nabla^{+}\right)_{T}^{\mu}{ }^{-1}$.
Let $G^{m}$ be the Green's function for $-\Delta+m^{2}$ With free boundary conditions.
The one-particle Hilbert space for the free Buclidean scalar field of mass $m \geq 0$ on the lattice $I$ is
(7) $L=\left\{u=\left(u_{x}\right)_{x \in X}: \sum_{X} G_{x y} \bar{u}_{x} u_{y}<\infty\right\}$,
in the momentum representation $L=L^{2}\left(I, \frac{d p}{1 w / /^{2}+m^{2}}\right)$, For man, the map $u \rightarrow \nabla^{+} u$ defines an $/ w /^{2}+m^{2}$ isometric embedding of $1^{2}(x)$ in $\mathbb{H}^{\prime}=\sum^{( }(1)$. Using the orthonormal basis $\left\{\delta_{y}: y \in \mathbb{X}\right\}$ in $I^{2}(x)\{\mu\}$, we can define a projection $E$ in $\mathbb{N}^{\prime}$ as followe:

$$
\begin{align*}
& E f=f-\sum_{I}\left\langle\mathbf{s}_{\mathbf{y}}, f\right\rangle_{\mathbf{N}^{\prime}} \mathbf{a}^{\prime},  \tag{8}\\
& \left(z_{y}\right)_{x}^{\mu}=\left(\nabla^{+} \delta_{y}\right)_{x}^{\mu}= \begin{cases}+1 & x=y-x^{\mu} \\
-1 & x=y \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

are the unit sources on X . For $m \geq 0, \mathrm{~B}$ is defined by

$$
\text { (10) } \quad N=\operatorname{ran} E=\left\{h \in \mathbb{N}^{\prime}: \nabla^{+}, h=0\right\} \text {. }
$$

in particuler, for the model in Euclidean apace-time $R^{3}$ $E$ is given by the identity $\Delta E f=\nabla^{+} x(\nabla \times f), f \in \mathbb{N}^{\prime}$. In the lemma 1 we change the notation and index the lattice model by " c ", in order to diatinguish it from the continuum one. For a region $\propto<R^{4}$, we let $g^{(c)}=\theta \cap X^{(c)}$. where for $c>0$ $x^{(c)}=\left\{x^{\left(x_{n}^{\prime}\right.}(c)^{\mu}: x^{\mu}\right.$ integer and $\left.n^{(c) \mu}=c . n^{\mu}\right\}$. We denote by $x_{I}(c)$ the characteristio function of the corresponding moment $\frac{1}{m}$ box

$$
\begin{equation*}
I^{(c)}=\left\{p \in R^{4}: / p \mu / \leq \frac{\pi}{c}\right\} . \tag{11}
\end{equation*}
$$

Lemma 1 Let $m=0$. Then
(12) $\mathcal{F}(c): N \neq X_{I}(c) \cdot / w^{(c)} / . / p /^{-1} \tilde{u}$
defines a non-local ifometric embedding of $L^{(c)}$ in $L$. Generalized to the vector case, $f\left({ }^{(c)}\right.$ is neither local nor transversal, 1.e. for given $h \in \mathbb{N}_{\delta}(c)$
(13) $\operatorname{supp} f^{(c)} h \neq \sigma$ and $\nabla \cdot J^{(c)} h \neq 0$.

Proof: The multiplication operator $\mathcal{Y}(\mathrm{c})$ has a non-local Pourier tranaform, and $J^{(c)} w(c) \neq i p$, except $c=0$. Note that lemma 1 generalizes to the massive case as well.
Moreover, uaing modified arguments given by Guerra, Rosen and Simon for the scalar model we can prove a convergence theorem ( $c \downarrow 0$ ).
Q.b.D.

We call a region $\sigma$ regular if $x \in \mathcal{C}^{\text {int }}$ implies $x+n^{m}-n^{\prime} \in \sigma_{;} \mu, \nu=0,1,2,3$. Of course, the interior of the half-space $\Lambda_{+}=\left\{x: x^{0} \geq 0\right\}$ is regular. Let

$$
\begin{equation*}
M_{+}=\left\{h \in N: \quad n_{x}=0 \text { for } x \notin \Lambda_{+}\right\} \text {, } \tag{14}
\end{equation*}
$$

and $E_{+}$the corresponding projection in N. We introduce the reflection $\theta_{0}: x \rightarrow\left(-x^{0}, \underline{x}\right)$ at the hyperplane $S_{0}$, and the unitary operator

$$
\begin{equation*}
\left(\theta_{0} \mathrm{~h}\right)_{\mathrm{x}}^{\mu}=g^{\mu \nu} \mathrm{h}_{\theta_{0}}^{\nu} x^{\prime} \quad g^{\mu \nu}=\operatorname{diag}(-+++) . \tag{15}
\end{equation*}
$$

Lemina 2 For $h \in \mathbb{N}_{+}$

$$
\begin{equation*}
\left\langle\mathrm{h}, \theta_{0} \mathrm{~h}\right\rangle_{\mathrm{N}}=\sum_{\mathrm{g}^{\mu} \mathrm{M}_{\mathrm{G}}^{\mathrm{m}}} \overline{\mathrm{~h}}_{\theta_{0}} \overline{\mathrm{~h}}_{\mathrm{x}}^{\mu} \mathrm{h}_{\mathrm{y}}^{\nu} \geq 0 . \tag{16}
\end{equation*}
$$

In particular, for m=0 $\quad B_{+} \theta_{0} B_{+}=E_{0}$ is the projection onto the subspace $N_{S_{0}}=\left\{h \in N: \hat{H}_{X^{+}}=0\right.$ for $\left.x^{0} \neq 0\right\}$.

Morsover, for $m \geq 0$ holds reflexivity with respect to the hyperplane $s_{0}$, i.e. $h_{z}^{0}=0$ for elements $h \in H_{S}$. Proof:
(17) $\quad(\Delta E)_{x y}^{M V}=\operatorname{const} \delta_{x / y+I^{\prime \prime}-n^{\nu}+\ldots \text {, }}$
where $+\ldots$ containa all the contributions from coinciding points and next neighbours. Hence $\Delta E$ does not couple $\Lambda^{1 n t}$ to each other which by standard arguments implies in the case m=0 the Markoff property with respect to $S_{0}$.

Por $h \in M_{S}$ let us rewrite the transversality $\nabla^{+} . h=0$ in the form ${ }^{\circ}$

$$
\begin{equation*}
h_{y}^{0}=h_{x}^{0}+\sum_{B=1,2,3}\left(h_{x+n^{B}}^{B}-h_{x}^{B}\right), y=x+n^{0} . \tag{18}
\end{equation*}
$$

If $y \notin S_{o,} h_{y}^{0}=0$ since supp $h C S_{o}$. If $y \in S_{0}, h_{y}^{0}=0$ since $x, x+n^{\beta} \neq S_{o}$ and the r.h.E. vaniehes.

The proof of the reflection positivity (16) is similar as for the continuum model.
Q.E.D.


Let be $A$ the Gaussian random field indexed by transversel real functions of finite support in $X$, with mean zero and covariance given by the acalar product in $N_{m}, m \geq 0$.

For a suitable choice of the underlying probability space ( $Q, B^{m}, B^{m}$ ) we can realize $A$ as coordinate functions
(19) $\quad A(h)(q)=\sum_{X} h_{x} \cdot q_{X}, \quad q \in Q=\underset{\{x, \mu\}}{X} R$

For $\quad m=0$

$$
\text { (20) dB } N e^{\frac{1}{2} q \cdot \Delta q} d q=\int_{\{x, y, \mu\}}^{+\frac{1}{2} q_{x}^{\mu} q_{y}^{\mu}} \pi \int_{\{x, \mu\}}^{\left\{d \lambda\left(q_{x}^{\mu}\right), ~\right.}
$$

where the first product is over all next neighbours, $/ x-y /=1$, and $\mathrm{d} / / \mathrm{ds}=\exp \left(-4 s^{2}\right)$. 日 is a ferromagnetic measure of Ising type. We let $B$ the smallest $\sigma$-algebra of subbets in $Q$ so that all $A(h), h \in N$ real, are $B$-measurable.

Hence for any source $\sigma_{x}, x \in X, A\left(s_{x}\right)$ is not a measurable Q-space function with reapect to $B$. Pesaing to plequette variablea we will find a simpler expression for $\left.d B\right|_{B}$

Firs't we introduce the sets of lattice bonds and plaquettes with positive orientation

$$
\text { (21) } \quad \begin{aligned}
\mathrm{b}^{+}(\mathrm{x}) & =\left\{\mathrm{b}=\left(x / \mathrm{x}+\mathrm{n}^{\mu}\right)\right\}, \\
& \mathrm{p}^{+}(\mathrm{x})
\end{aligned}=\left\{\mathrm{p}=\left(\mathrm{n}^{\mu} \mathrm{x}_{\mathrm{n}} \nu / \mathrm{x}\right), \mu<\nu\right\} .
$$

Then $r b=\left(x+n^{\mu} / x\right) \in b^{-}(x)$ and $r p=\left(n^{\nu} x_{n} f^{\mu} / x\right) \in p^{-}(x)$. For the notations below we refer to the text book of Singer and Thorpe:
(22) $\partial \mathrm{b}=\left\{\mathrm{x},\left(\mathrm{x}+\mathrm{D}^{h}\right)\right\}$,

$$
\begin{aligned}
\partial \mathrm{p}= & \left\{\left(x / x+n^{\mu}\right),\left(x+n^{\mu} / \dot{x}+n^{\mu}+n^{\nu}\right),\left(x+n^{\mu}+n^{\nu} / x+n^{\nu}\right),\right. \\
& \left.\left(x+n^{\nu} / x\right)\right\}, \\
\delta x= & \{(x / x+n / n)\} .
\end{aligned}
$$

Now we identify a given vector field $h=\left(h_{X}^{/ h}\right) x \in X$ on $X$ With the function on $b(X)=b^{+}(X) \cup b^{-}(X)$
(23) $\quad h_{b}=\left\{\begin{array}{cl}h_{x}^{M} & b=\left(x / x+n^{\mu}\right) \in b^{+}(x) \\ -h_{x}^{\mu} & b=\left(x+n^{\mu} / x\right) \in b^{-}(x),\end{array}\right.$
i.e. $h_{b}+h_{r b}=0$. In a similar manner, we identify a Given tensor field $f=\left(P_{x} \mathcal{K}_{x \in X}\right.$ on $X$ with the function

If $f$ is antisymmetric then $f_{p}+f_{r p}=0$. Hence a vector field $h$ on the lattice $X$ is a sequence $h=\left(h_{b}\right)_{b \in b(x)}$, $h_{b}+h_{r b}=0$ for all $b$, and an antiaymetric tensor field is a sequence $f=\left(f_{p}\right)_{p \in p(X)}, f_{p}+\mathcal{I}_{\mathrm{rp}}=0$.
With the above identifications, for any scalar field $u$ on $X$ holds $\left(\nabla^{+} u\right)_{b}=u_{\partial_{b}}$, in particular

$$
\left(\nabla^{+} \delta_{y}\right)_{b}=\left(a_{y}\right)_{b}= \begin{cases}-1 & b=\left(y / y \pm n^{H}\right)  \tag{25}\\ 0 & \text { otherwise } .\end{cases}
$$

In Buclidean space-time $\mathrm{R}^{3}$, using the Hodge duallty map for any vector field $h$ on $X \subset R^{3}$ hold the identities

$$
\text { (26) } \quad\left(\nabla^{-} \cdot h\right)_{x}=h \delta_{x} \text { and } *\left(\nabla^{+} x h\right)_{p}=h \partial_{p} \text {. }
$$

In particular, for $p=\left(n^{\alpha} x^{\beta} / y\right) \in p^{ \pm}(X)$ let $\left(1_{p}\right)_{x}^{\mu}=\varepsilon^{\mu \beta} \delta_{x y}$. Then

$$
\left(c_{p}\right)_{b}=\left(\nabla^{-} x 1_{p}\right)_{b}= \begin{cases} \pm 1 & \text { be } \partial p  \tag{27}\\ 0 & \text { otherwise }\end{cases}
$$

is a unit curl on $x$. of course ( $c_{p} \partial_{p}= \pm 4$.
In seotion 2 of part II (JIMR E5-12779) we have discussed the map $I$ whioh allows to identify in anitary manner the Euclidean one-photon states in terms of $s^{\mu \nu}$ With those in the transversal gauge.
Por $\tilde{f} \in L^{2}\left(I, P_{p h} / w /^{-2} d p\right)$, where $P_{p h}^{\alpha B / \sim \nu}(p)=\delta^{\alpha p / \omega^{B}} w^{B}+\ldots$ is antisymetric, we define

$$
\begin{equation*}
\stackrel{N}{\stackrel{N}{I}: \tilde{P} \rightarrow \tilde{h}^{\mu}(p)=W^{N}\left(\tilde{P}^{M N}\right.}{\underset{-P}{P M}), p \in I .}^{N} . \tag{28}
\end{equation*}
$$

$\left\{c_{p}: p \in p(X)\right\}$ is a basi in H. Using (II.18) we find the formula $o_{p}=I\left(l_{p}\right)$. Then, for $h=\sum_{p_{p}} \in \mathbb{M}$ real,
we can express the random variable $A(h)$ in terms of the Euclidean $P P^{\prime \prime \prime}$ 's on the lattice $X, P_{p}=P\left(* 1_{p}\right)$, by the formula $A(h)=\sum_{p} m_{p} p_{p}$. Their covariances are given by

$$
\begin{equation*}
\left\langle\mathrm{P}_{\mathrm{p}} \mathrm{~F}_{\mathrm{q}}\right\rangle_{\mathrm{B}}^{\mathrm{p}(\mathrm{X})} \int_{I \mathrm{dp}} \frac{P_{\mathrm{ph}}^{\alpha \beta / \sigma \nu}(\mathrm{p})}{/ \mathrm{p}(\mathrm{p}) /^{2}(\mathrm{x}-\mathrm{y})} \tag{29}
\end{equation*}
$$

for $p=\left(n^{q} x_{n}^{B} / x\right)$ and $q=\left(n^{M} x^{\nu} / y\right)$. Let $\delta_{x}=(q) \delta x^{=}(\nabla \cdot q)_{x}$, $X \in X$, which is formally equal to $A\left(B_{x}\right)(q)$. Since any Q-space function measurable with respect to $B$ is constant in the varlables $\rho_{x}$, the measure $B$ factorizes into $d B=d B(F) \operatorname{dB}(\rho)$, where
(30)
$-\frac{1}{2} P \cdot V P$
$V$ denotes the inverse of the covariance matrix (29).
Pigure 2


Pleauette $p=\left(n^{\prime} / x^{\nu} / x\right)$

The above diecussion of the Euclidean photon field on the lattice shows that it is a non-local theory in the sense that we have a map from plaquettes $p \in p(X)$ to random fields $F_{p}$, rather than from lattice points.

Equivalently, for any loop $C$ the random variable

$$
\begin{equation*}
A(C)=\sum_{b \in C} A_{b} \tag{31}
\end{equation*}
$$

is $\beta$-measurable since $C$ is just the boundary of the union of some plaquettes. To avoid confusion in the next section we return to our notations A, respectively $\stackrel{\ominus}{\mathrm{A}} / \boldsymbol{\mathrm { A }}$ from part II.
2. Steady currente and magnetic dipoles

The Euclidean photon Pield $A$ is the Gaussian random Pleld indexed by elements $j \in S_{r}^{T}$, i.e. real $j \in Z_{S}\left(R^{d+1}\right)$ atiafying $\nabla \cdot j=0$, with mean zero and the covariance

$$
\begin{equation*}
\left\langle i(j) \hat{A}\left(j^{\prime}\right)\right\rangle=\iint_{e_{d} / x-y /^{d-1}} \frac{d x d y}{} j(x) \cdot j^{\prime}(y), \tag{32}
\end{equation*}
$$

where $c_{d}$ denotes the area of the unit sphere in Euclidean space-time $R^{d+1}, d \geq 2$.

In the lattice model which we have discussed in section 1 the basic objects are the random variables $\mathcal{A}(\mathcal{C})$, where $C$ is a loop on the lattice $X<R^{d+1}$. Similar in the continuum formulation: The test functions $j$ can be identified with steady currents. This idea is due to Gross. We will study the localization, Markoff property, reflexivity, etc., for Euclidean one-photon atates in the language of classical d+1-dimenaional magnetostatics.

Given a steady current $j$ we let $U=G^{0} j$ the vector potential and

$$
\begin{equation*}
W=-\int_{R^{d+1}} U . j d x \tag{33}
\end{equation*}
$$

the self-energy. In Euclidean space-time $R^{3}$ the kernel of $G^{0}=\left(-\Delta+m^{2}\right)^{-1}, m=0$, is given by the Coulomb potential $\frac{1}{4 J /(x-y /}$. Hence $W=-/ / j / /_{N}^{2}$, where
(34) $N=\left\{\tilde{j} \in \sum^{\oplus} L^{2}\left(R^{d+1}, / p^{-2} d p\right): p \cdot \tilde{j}(p)=0 \quad\right.$ a.e. $\}$.

Note that $\quad \nabla \cdot U=0$ in the sense of a vector-valued tempered diatribution.
The Euclidean transverse potentials A live in the Pock space $\Gamma\left(N_{r}\right)$. Ueing the map $J_{0}$ we can identify the real one-photon states in Coulomb gauge

$$
\Delta^{C}(0, \tilde{N}) \Omega: 1 \in s_{r}^{c}\left(\mathbb{R}^{d}\right) .
$$

With the steady currents $J_{0} 1=\left(0, \delta_{0} 0_{1}\right) \in M_{r}$ localized on the hyperplane $S_{0}$. On the other hand (35) can be identified with the restriction $j^{B}(p), p=(+/ p /, p) \in v_{+}^{0}$, $B=1,2, \ldots, d$. Then (32) gives for $d=3$

where $\quad\left({ }_{j}^{*}\right)^{M}(\underline{p})=g^{m / N} N_{j}^{N}(-\underline{p})$.
The reflexivity condition in $N$ says that $\theta_{0} j=j$, for any $j \in \mathbb{S}_{0}$. Steady currents like
a) $\left(-\Delta, \nabla \nabla^{0}\right) \delta_{0}$ ou
b) $\quad\left(0, \nabla^{0} \delta_{0}-\underline{\nabla}_{x \underline{f}}\right)$,
with $\theta_{0} j=-j$ are excluded because of their infinite selfenergy. Note that for $d=2$ we heve the identity
(38) $\quad\left(-\underline{\Delta}, \underline{\nabla} \nabla^{0}\right) u=\nabla x\left(\nabla_{x} n_{u}^{0}\right), \quad \nabla=\left(\nabla^{0}, \mathbb{Z}\right)$.

We now come to the Markoff property. Given a steady current $j \in \mathbb{N} \Lambda$, $\Lambda$ compact, the interaction of $j$ with any test current i localized in the complement $\Lambda^{c}$ is projected onto the hypersurface $\overline{\Lambda^{c}} \cap \Lambda=S$.
(39) $\langle j, 1\rangle_{\mathbf{I}}=\left\langle\mathrm{B}_{\mathrm{S}^{j}, 1}\right\rangle_{\mathrm{M}}, j \in \mathrm{~N}_{\Lambda}$,
$\begin{aligned} & \text { is equivalent to } U\left(J-B_{S J}\right) \\ & \text { alued tempered distribution. }\end{aligned} \frac{\Lambda^{c}}{}=0$ in the sense of a vector-
In other words: $j$ induces on $S$ magnetic moments which are equivalent to the surface diatribution $E_{S}{ }^{j}$, and $E_{S}{ }^{j}$ produces in $\Lambda^{c}$ the same magnetic field as $j$ itself.

Replacing the Coulomb by the Yukawa potential with mass $m>0$, in particular for $j \in N^{N} \Lambda_{+} \cap$ kerC we find instead of (39)
(40) $\left.\langle j, 1\rangle_{\mathrm{N}_{\mathrm{m}}}=\langle\mathrm{E}\rangle j, 1\right\rangle_{\mathrm{N}_{\mathrm{m}}}$,

$$
E>^{N}=\left(1,-p p^{0} / k^{2}\right) \frac{1(w+k)}{p^{0}+1 k} j^{0}, w=+\sqrt{\underline{p}^{2}+m^{2}} .
$$

We remark that $E_{y} f$ has support in $\Lambda_{+}$but not on the hyperplane $S_{0}$ (see section 3 of part $I$-(JINR E5-12780)).

Contrary to the situation in electrostatics - where we have reflection principles for Dirichlet and Neumann boundery conditions - In magnetostatics the problem is more complicated.

Lemma 3 Given $j \in N \Lambda_{+}$, let $\theta_{0} J$ the mirror image with respect to $S_{o}$. Then the vector potential of the total distribution $U_{+}=G^{0}\left(j+\theta_{0} j\right)$ satisfies
(41) a) $-\Delta u_{+}=j$ in $\Lambda_{+}^{\text {int }}$ and $\nabla \cdot u_{+}=0$,
b) $\quad U_{+}^{0} \int_{S_{0}}=0$ (Dirichlet for normal component)
$\left(n_{S} \cdot \nabla\right) U^{B}+\int_{S_{0}}=0 \quad$ (Neumann for tangential comp. $\left.U_{+}^{B}, B=1,2,3\right)$.
Proof: The boundery conditions (41) are found for a current $j$ in front of a thin paramagnetic hyperplane $S_{0}$. foe poisson equation and the transversality for $U_{+}$follow from the facts that $U_{+}$is linear in the currents $f$ and $\theta_{o} f$ and supp $\theta_{0} j \cap \Lambda_{+}^{\text {int }} \stackrel{+}{=}$. Moreover,
(42) $j+\theta_{0} j=\left\{\begin{array}{l}j^{0}(x)-j^{0}\left(\theta_{0} x\right) \\ j^{\theta}(x)+j^{\theta}\left(\theta_{0} x\right), \quad \theta=1,2,3, \quad \text { Q.B.D. }\end{array}\right.$

Let $W_{+}=-\int U_{+} \cdot j d x$ the corresponding energy with the mixed boundary conditions (41). Then reflection positivity in N implies
(43) $W-W_{+}=-/ / j \|_{\mathbb{N}}^{2}+\left\langle\left(1+\theta_{0}\right) j, j\right\rangle_{\mathbb{N}} \geq 0$.

Hence $j$ is attracted by $S_{0}$. Conversely, $f$ induces on $S_{0}$ magnetic moments with corresponding distribution of steady currents $E_{S} j$ which attract $j$. Therefore $W-W_{+}$should be positive.

The above interpretation of reflection positivity generalize a an idea of Uhlmann for a similar situation in electrostatics.

## Figure 3



Let us decompose $j$ into $j=t \oplus 1$, where $t=C j$. Using $\mathrm{B}_{\mathrm{S}_{0}}=\mathrm{Ce}_{S_{0}}$, there is no magnetization of $\mathrm{S}_{0}$ resulting from 1.

In other words: There is no contribution of 1 to the amount of work (43) we have to do in order to remove $j$ to infinity.
Remark Lemma 3 generalizes to the situation of a current $j \in N$ with support in the ball $\Lambda_{R}=\{x: / x / \leq R\}$ and its inversion image $\theta_{R} j$ with respect to the sphere $S_{R}$ as follows. Rewriting the vector potential $U_{R}=G^{0}\left(1+\theta_{R}\right) J$ in spherical coordinates as $U_{R}=\left(U_{R}^{r}, U_{R}^{W}\right)$, it satisfies the mixed boundary conditions on $S_{R}=\{x: / x /=R\}$

$$
\begin{equation*}
\left.U_{R}^{r}\right|_{S_{R}}=0 \quad \text { and }\left.\quad\left(n_{S_{R}} \cdot \nabla\right) U_{R}^{w}\right|_{S_{R}}=0 \tag{44}
\end{equation*}
$$

For the model in Euclidean apace-time $R^{3}$ the steady current $j=\sum_{i} \nabla_{x}\left(m_{1} \delta_{a_{1}}\right)$, where $m_{1} \in \mathbb{R}^{3}$ and supp $j=\left\{a_{i}\right\}$ is finite, $1 \quad{ }_{1}$ epresents a generalized onephoton state with total magnetic dipole moment
(45) $\quad m_{n}(j)=1 / 2 \int_{R^{3}} \operatorname{rxj} a^{3} r=\sum_{1} m_{1}$.

To avoid confusion with the cross product "x" we pass to the notation $r \in R^{3}$ instead of $x$. From the relation
 build a total set.

Hence for the proof of reflection positivity in $\mathbb{N}_{r}, m=0$, it is sufficient to study the expression

$$
\begin{equation*}
\left\langle\stackrel{e}{F(f)} \stackrel{\ominus}{F}\left(\theta_{0} f\right)\right\rangle_{B}=\sum_{i, j}\left\langle\nabla_{x m_{i}} \delta_{a_{i}}, \nabla_{x \theta_{j}} \delta_{\theta_{0} a_{j}}\right\rangle_{N} \tag{46}
\end{equation*}
$$

where $f$ is related to $f$ by the map $\frac{e}{I}$. Explicitly holds $f=* \sum m_{i} \delta_{a_{i}}$, where $*$ denotes the Hodge duality map. We have used $a_{i}$ the perudo-vector character of $m_{i}$, 1.e. $\quad \theta_{0} j=\sum_{i} \nabla x\left(\underline{\theta}_{i} \delta_{\theta_{0} a_{i}}\right), \underline{\underline{\theta}}: r \rightarrow\left(r^{0},-\underline{r}\right)$.

Lemma 4 (46) is equal to
(47) $\left\langle\mathrm{g}, \theta_{\mathrm{O}} \mathrm{g}\right\rangle_{\mathrm{L}} \geq 0$,
where $g=-\sum\left(m_{1} \nabla\right) \delta_{\text {, }}$ is the related charge distribution of the electric dipoles $m_{1}$ localized in $a_{1}$.

Proof: The interaction energy of individual magnetic dipoles with associated steady currents $j=\nabla x\left(m \delta_{a}\right)$ and $i=\nabla x\left(n \delta_{b}\right)$, a \& b, is given by
(48) $\langle j, i\rangle_{N}=m \cdot K(a-b) n-(m \cdot n) \operatorname{Tr} K(a-b)$,
where $\left.\mathbb{X}(r)=\left(2 P_{r}^{1}-P_{r}\right) \cdot / r\right)^{-3}$.ith the projection $P_{r}$ onto $r \in R^{3}$ denotes the coupling matrix. Using the expression $B(n)=K(a-b) n$ for the magnetic field produced by the dipole $n$ in the point $a \in R^{3}$, and $\operatorname{Tr} K=0$, we get the well known formule
(49) $\langle\mathrm{j}, 1\rangle_{\mathrm{N}}=+$ m. $\mathrm{B}(\mathrm{n})$.

We now reinterprete $m, n$ as electric dipoles with the associated charge distributions $-m . \nabla \delta$ and $-n . \nabla \delta_{b}$ Their Coulomb interaction energy is given by a imilar expression to (49), 1.e. -m. $B(n)$, where $B(n)=B(n)$. Pinally, using $\theta_{0}\left(-n . \nabla \delta_{b}\right)=-\left(\theta_{0} n\right) . \nabla \delta_{\theta_{0}}$ and $\theta_{0} \theta_{n}=-n$, we find for the individual dipole moments ${ }^{\circ}{ }^{\circ}$ the identity

$$
\text { (50) }\left\langle\nabla_{x m} \delta_{a}, \theta_{0}\left(\nabla_{x m} \delta_{b}\right)\right\rangle_{N}=\left\langle m . \nabla \delta_{a}, \theta_{0}\left(n . \nabla \delta_{b}\right)\right\rangle_{L} \quad \text { Q.E.D. }
$$

Figure 4


The inequality (47) remains valid if we replace the Coulomb by the Yukawe potential

$$
\text { (51) } \quad \frac{e^{-m / x-y /}}{4 \pi / x-y /}, m>0 \text {. }
$$

Then the reflection positivity for the Euclidean free tranaversal vector field of mass $m>0$ is also a consequence of lerma 4. We expect that our proof for the models in Euclidean apace-time $R^{3}$ extenda to the general case.

## 3. Conclusion

We have studied the local structure of the Euclidean models for the free vector fields of mass $m \geq 0$ in the transverse gauge.

Refleation positivity and reflexivity are the most important features and they allow various interpretations, in particular for the Euclidean photon fleld.
First of all we mention the consequence of positive-definite metric in the Hilbert space of quantum one-photon states in the Coulomb gauge and the fact that the time-zero quantum fields act irreducibly in the corresponding Fock space.
For the model in space-time $R^{3}$ we have introduced generalized Euclidean one-photon state日 with definite magnetic dipole moments. Then reflaction positivity is related to the very plausible assertion - and we proved it - that the interaction of any finite system of such dipoles with its mirror image has negative energy. A collection of proofs for reflation positivity - even in the massive case and for the lattice models - will be publiehed in a soparate paper.

## Acknowledgement

The author wishes to thank A.Z. Jadczyk for guiding his interest to Euclidean field theory, and A.Uhlmann, W.Karwowski and A.Pestov for discussions.

References (III)
/SiTh/ I.M.Singer, J.A.Thorpe: Lecture notes on elementary topology and geometry, ed. Scott, Foresman and Co. (1967), /GuRoSi2/ F.Guerra, L.Rosen, B.Simon: Boundary conditions for the $P(\phi)_{2}$ Euclidean Pield theory, Ann. Inst. Poinceré , Vol. XXY, No 3 (1976),
/Uh/ A.Uhlmenn: Remarks on reflection positivity, Czechoslovak Journal of Physics B_29 (1979).

Received by Publishing Department on September 71979.

