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Euclidean Fields: Vector Mesons and Photons 

We study free transverse vee tor fie 1 ds of mass m > 0. The mode 1 is 
related to the usual free vector meson and electromagnetic quantum 
field theories by extension of the field operators from transverse 
to arbitrary test functions. We describe the one particle states in 
transverse gauge and their localization. We prove reflexion positivi· 
ty and derive free Feynman·Kac-Nelson fotmulas. We give an Euclidean 
approach to a photon field in a spherical world using dilatation co
variance and inversions. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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0 . Introduction and content 

It was Schwinger in 1958 who first argued that Euclidean 
Q.F.T. may be a "possible avenue for future development of 
field theory". Now, 1979, it has already a long history. Stimu
lated by the progress in scalar P( ¢ )2-theory from 1972, the 
techniques exploited by Nelson and others have been used to 
describe in the Euclidean region also Fermi and other higher
spin fields even if gauge fields are ~ncluded in the interactions. 

The basic idea is to pass from Minkowski to Euclidean space
time which brings the structural simplification of positive
definite metric and, in the case of Boson models we will discuss, 
the main technical advantage of commuting random variables. 
However, once having the Euclidean formulation of a quantum field 
theoretical problem it yields an interesting mathematical model 
itself, and we can forget about the "physical background "• In 
fact, the refle±ion positivity - together with Euclidean 
covariance and a regularity condition - always guaranties the 
backward step to Minkowski space-time. 

In particular, the free vector meson and electromagnetic 
quantum field theories have unique Euclidean formulations via 
the reconstruction of Osterwalder and Schrader. They were given 
by Yao, Gross, Guerra and others. Independently, in 1974 we have 
found the guantum and Euclidean models for the photon field in 
terms of transverse potentials and derived them from correspon
ding massive theories as limits m~O. We avoided the well known 
problem of quantizing the free Maxwells equations, restricting 
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the vector potentials to transversal test functions in 
the Lorentz or Coulomb gauge. 

Applying the above idea to the massive case we have defined 
also the quantum and Euclidean models for the free vector 
meson field in the transverse gauge. The main result of our 
paper is that refl~on positivity and reflexivity hold for 
m~O, even for the Euclidean models on a lattice. 

However, the !.larkoff property can be recovered exactly for 
the Euclidean photon field theory. Vie have studied a nice 
analogy to classical magnetostatics apd end with the following 
interpretation of refl~on positivity: 

Let {m.J."" I a finite set of magnetic diooles localized in 
the open

1

r~ght half-space f\= {r=(r0,r): r 0 >oj and !(h), 

h= f Vx(mi 'Sai), the related Euclidean random field. Then 

e e 
<A(h)A(9

0
h)/ - l mi .K(ai -90 aj) 90 mj ~ 0 , 

i, j f= I 

because it is just the expression for the Coulomb interaction 
energy of the set of electric dipoles fmiS I with their mirror 
images with respect to the hyperplane S

0
={r: r 0=0J. Above 9

0 
denotes refl~ion at S

0 
and K the coupling matrix of the 

dipoles. 

The paper consists of three parts which are organized as follows: 

(cF. JINR preprints E5-I2779, I278I for the parts II and III) 

I. Vector Mesons and Photons: 1. One-particle states in the 
transverse gauge, 2. Localization, Euclidean and dilatation 
covariance, ). Refle~ion positivity and Hamiltonian semi
groups, 

II. Quantum and Random Fields: 1. Vector meson field in the 
Stlickelberg gauge and photon field in terms of F~~ 
2. Second quantization, ). Transversal self-interaction, 

III. Lattice nodels: 1. Transversal lattice fields, 2. Steady 
currents and magnetic dipoles, ). Conclusions. 
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1. One-particle states in the transverse gauge 

Let be { n/": f1 =0, 1, 2, 3 ~ the Carthesian basis in R4 
and a,b ~ ab= gl-l11a:4tf'=-a0b0+~._£ the indefinite metric. In 
the momentum space we have the upoer mass hyoerboloids 
V~= ip=(w,E_): W= +VJ2.2+m2·~, m;:;>O, and the forward light cone 

V~= fp=(k,J2.): k~ +IE.I)- • For m~O we introduce the tangent 
planes with respect to points p € (</m'\(1), p,;(m,O), 

+ -

( 1 ) T =5heC4 : ph= -wh0 +o.h=0', 
p 2 -- ) 

Note that TP~c3. Moreover, 
We construct a helicity basis 
as follows. For given .!! ~ R3 

T p is we 11 defined if m.> 0. 

Jv>.: AvA=,\ vA ,A=O,.:t1} 
non-colinear in E. 

(2) v0 = (1,E_w/k2), v.:!:.1= (_!!-E.(J2.._!!)/k2l.:tiE.X_!!/k • 

on Tp 

We now define the one-particle Hilbert space in the transverse 
gauge for the free vector meson quantum field of mass m;::>O 

as the direct integral 

(3) M = m 10 ~ 
Tp ~ 

ym 
+ 

As an operator in~ Jl is called helicitv and the square 
C= Jl2 Coulomb projection, where 

(4) cf'v(p)= - T ,M.Y=1,2,3 

f 
?!,1/JI pl"p'l 

0 otherwise. 

They allow a unique decomposition 
NIV N N C 
h=t{f}l, tG'~, where 

( 5) c r~ ~o ~ 
~ = ran C = 2 h € ~: h =0 ) 

and lE ker C. The restriction to V: defines a unitary 
equivalence 

(6) L\niJ! 2,0 1 2(R3,Pw) ('I {ft: -wh0+J2..~=0 a.e.S. 
f" 

5 



No 
for m=O In particular IIlii = m 11~11 L 2 ( Pw), hence 

- i.e. for the one- photon space - in the Lorentz gauge we 
put the factor space 

(7) M 
Mph= m1M0 , m=O, 

m 
and in the Coulomb gauge Mch= Me, m=O. We writ~ shortly M 

C P m 
for ~ and Mph' respectively. By the conjugation 

cs> h ~ c'1*lc.E.>= g,~~vlivC-.E.> 

we sele~t : -)f -real par-t Mr. For m.>O we have dense s~b
spaces S (V+) in M of smooth transverse test functions h on V: 

. ~ m ~ N T o 
which satufy h(\'>)=0, and similar h(O)=O for h€ S (V+). 
Gross has identified Mm with a Hilbert space of weak vector
valued solutions of the Procca field equations and Mph with a 
Hilbert space of Maxwells eauations in vacuum [Gr] • Using the 
~!-invariant tempered measure dw:= Q(p 0

) ~(p2+m2 )d4p in R4 and 
the projections ~(p): c4 ~ Tp 

" ~-<V. "b' Pil P.v (9) pr• (p)= gr' + 2' , 
m 

we can redefine the one-vector-meson space as ~= L2 (~dwm) 
+ 

not specifying any gauge. 
Therefore in the Euclidean formulation it seems natural to 

introduce for m2:0 the Hilbert spaces 

( 10) 
IV 4 

N = L2 (~), 
m p +m 

~,A1vc P l = 'bi1Jl _ ~Pv 
2'• 
p 

where p 2 =.E.2+(p0 ) 2~o and for p ~eo E(p) are the projections 
onto the Euclidean transverse planes Tp= f hE c 4 : p .h=O 3- . Passing 
to spherical coordinates· p=(3 ,~)G R4, .'5 =I pi, the Euclidean 
counterpart of definition (3) is Nm (j) = r ~p d~ , where 
s = ip: lpl=s ~ • However 3 J ~ ~ 

2 J 0 ..j3dg (11) Nm= :Trl2 Nm~) ~2' 
_j +m 

0 
i.e. Nm is reducible with respect to the Euclidean group. 
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We write shortly N for N , m~. The natural conjugation 
m -'" ~ 

in N is given by the map h ~ h¥(p)= h(-p). We have a denee eub-
space ST in Nm - independend of the mass m - of smooth 
transverse test functions h in R4 which satisfy point-wise 
p.t(p)=O and h(O)=O. The set 

(12) Nc= fhE:N: h0 =o\ 

e 
is a closed subspace in N and it defines a projection C=C. 

2 4~ Let be N(s)= L (R ,~) Nelsons one-particle Hilbert space 
for the free Eucl. P +m scalar field of mass mc:O. Then 

( 1 3) Jo· +. 

. N 
M o1 ku I I u 7 ( 1 '-pp k2 )--, k= + .E. ' 

ip0 +k 
e 

is a unitary map from N(s) onto M0= ker C 

Figure R3 

sphere ~ 

In the next section we pass to the description of the one
particle states in the coordinate representation, by the formal 
Fourier transform in Rn 

AI -nl2 r ip.X N n 
(14) hl"(x)= (2Jl;) J e hf(p) d p. 

n 
R 112 

Using the corresponde~ce w ~ (- ~ +m2 ) in RJ, we can 
identify M(s)= L2 (R3,~) with the dual of the Sobolev space 
H+~R3 ) and we denote the norm by 11. ll_.y 2 • Similar p

2 ~ -b. 
in space-time R4. We write ff.ff_ 1 for the norm in N(s), even 

for m=O. 
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2. Localization, Euclidean and dilatation covariance 

By Fourier transform we identify the Euclidean one-particle 
spaces Nm' m~O, for the free Euclidean vector meson fields of 
masses m with the Hilbert spaces of tempered vector-valued 
distributions 

( 15) ""l<±) 4 1 i. 0 
LJ S(R )(\ h=(h ,h): V.h=O, f! -

2 J ·'\11 2 d4 J //W1
// = /hr1(p)/ A<.,.,) 
-1 p +m 

R4 
We introduce a localization in N - different from the usual 

one - as follows: For given closed subsets ~ in R4 we let 

( 16) N/1 = N() "'2!!s(J/ = fh6 N: supp rJ'c.l\s. 
,41 

Those subspaces t}l are closed in N and we as so cia te with 
the above localization the family of projections [EA: A closed~. 
If Nil then also NS=1>f\ is non-trivial, where '?J/1 denotes the 
boundary of A . We have N= U N

3
, however, in contrast to 

the scalar case all S 

( 17) u 

~R 

Ns = Nc 
t 

St= fx=(xo,;!): xo=t3 

is a propper subspace. More general, by GauB' law the elements 
h in NA should have vanishing normal component hn =0 with 
respect to the boundary surface S=1A • N is locali~able in the 
sense that the set of smooth transverse test functions 

(1A) fh= .C.E~u: u6 S(fi), ~open~ 

is just ST which is dense in N. F'ixing (j with closure A , 
the Hilbert space completion N(~) in N coincides with NA 
Note that the operator 4E in (18) is local and continuous 
in the Schwartz topology. 

Figure 2 n3 .h(x)=O 

~ =supp h 

8 

~he localization of particle states in quantum field 
theory is still problematic. The Wightman aporoach uses a 
suitable family of projection-valued measures on the ~-algebra 
of Borel sets in R3 and their eigenstates in the corresponding 
one-particle Hilbert space for a free field. In this sense 
vector mesons are localizable. 

However, the photon position operator gC in Mgh has non
commuting components and Fleming argued maximal localizability 
of photons to be on hyperplanes. But contrary to that conjecture, 
Jadczyk and Jancewicz found generalized helicity states of 
photons on a curve C. in R3 !:!;~ , ~ =±1, for {:a stright line 
and a circle. Due to (2) they are 

( 19) t: A A "''C ~1 = ( ±1)JLU! , 

-1 
9.c = UC;!CU = iS::' + i:E.:x:£1 k2, (L )~11 = t"~t"v 

0( 

3 6l I • 

where t'G G Z S(C) is a normalized tangential 
on C. and U: ldch + L2(cd3x) a unitary mapping. p - . 

vector field 

In the next section we prove that fe>r m~O 

(20) Joh = (u, 'io~!l) 

defines an isometric embedding of Me in N with ran J
0

= N3 , 
hence we can identify the photon states described above 0 

with the elements J h~ 6 N. It would be nice to derive them 
0-11 

from the localization in the Euclidean model. 

Next we describe some covariance properties of the one-particle 
spaces . For m>O the Hilbert apace ~ carries an irreducible 

unitary representation g ~ Ug' g=(a,L) ~ iL1 , of the 
inhomogeneous restricted Lorentz group defined formally by 

( 21 ). 
IV M iap mil - 1 m 

(Ugh )r( p) = e rf1 h ( L p) , p 6 V +. 

-itH In particular Ut= e o denotes the one-parameter .~ 
of time evolution with the flat Hamiltonian H0 = +~c+m2 

• 

Time and space reversal are excluded from Lt. Let be ~· 
,u =0, 1, 2, 3 reflections at the hyperplanes 7" = £ xe R4: if=o 5. 
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The helicity ooerator J~ is a Casimir for m=O. Since J\_ 

anti-commutes with space refl~on u9 the one-photon soace 
M;h is irreducible for the representation 

-1 
(22) g ~ cugc , g € iL+U~ 

where 
Hilbert 

c 
to Mph" 
group. 

+1 -1 
U~: M ~ .M , 

-1 
C denotes the inverse of~e unitary map from the 

space Mph of one-photon states in the Lorentz gauge 
The full covariance group in M;h is the conformal 

For m ~ 0 the Euclidean one-particle space Nm carries a 
reducible unitary representation g~Tg' g=(a,R)~ i0(4), of 
the inhomogeneous Euclidean group defined formally by 

(23) 
-1 

(Tgh)!'(x)= R/.ll' hv (R (x-a) ), 

and 
in N. 

T9# are also well defined unitary self-adjoint operators 
In particular for reflections at S

0 

(24) (T9 hJ"1(x)= gtt~"hY(-x0 ,~) 
0 

we write shortly 90 • The localization in N is related with 
covariance by 

(25) 

Let E+O 
spanned -

-1 
TgE/1 Tg Ell , gt_ i0(4)Uf9 ~. 

g ~ 

denote the projections in N onto the eubspaces 
by elements with support in the half-spaces 

(26) ·\= fxGR4: x0~o) 

1\. and on S =/I () 1\ , respectively. Then 9 E 9
0

= E , 
- 0 + - 0 + -

however, the reflexivity 9
0

E
0

= E
0 

is a non-trivial property. 
Note that the intersection of the relativistic and Euclidean 
groups ,O(J)= Lt()o(4), consists exactly of all transformations 
which leave the hyperplane s

0
W R3 invariant. 
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For m=O the full covariance group in N is the Euclidean 
conformal group. We discuss dilatations x -.;;. ~x, Q< A< ao 

-x inversions 91 : x ~ 7i72 and refledions at the spheres 
SR= fxe R4 : /x/=RS 

2 

( 27 ) 9R: X -7 [.!i } X. 
/x/ 
n nGl<V n 

For space-time R , n~J. on the domain G C
0

(R '0) we 
introduce the diagonal operators 

~ -(n+2) 
(28) T~h(x)= ~ h(~x), 91h(x)= /x/ h(9

1
x) 

-1 
and eR= eT~9ITA 9, ~=R, where 9: x ~ -x. Note that 

(29) e 1 T~ e1 = T~ -1. 

1-n/2 
Ill ' ·'V 1 The Fourier transform gives Thh(p)= n h(~-p), hence the 

operators of dilatations conserve the transversality p.K(p)=O 
and build a multiplicative unitary group in N, m=O, while 
for m?O they rescale the mass parameter, too. 

Since 91 does not commute with the projection E, we shall 
study these operators first in N

1 = ~~(e) with the scalar 
product given by the kernel 

{JO) 
3,4/J/ 

cn/x-y/n-2' 

where en is the area of the unit sphere in Rn. 

Lemma 1 91 is a unitary self-adjoint operator in N1 • 

/x/2 -2/x/2 
Proof: On the dense set fh= n~ e D(x)e J , where D 
is any differential operator with constant coefficients in Rn, 
91 is well defined and symmetric. The fact that •9I is isometric 
depends on dn(e1x)= (-1)n+1;x;-2ndnx and 

(31) 
/x-y/ 

/e1x-91y/= ------ for x I y. 
/x/./y/ 

II 

Q.E.D • 



Figure 3 

S1= {xtRn: /x/=1~ 

Of course for a€ Rn, 9ITa 9I are uni tar~· opera tors 
in N1 , m=O, of special Euclidean conformal transformations. 
Since dilatations leave the hyperplane S

0 
invariant 

(32) c * U?J= JoTI\Jo 

are unitary operators in Mch. In the scalar case, let us /).' s p 2 '3 denote by j
0

: u ~ 0~u the isometric embedding of L (a~/k) 
in N(s) with ran j

0
= Ns (s). Then in coordinate represen

tation and for space-time 0 of dimension n=d+1 ~3. 
we find 

(33) 
·lf- -(d+1) -~ 

j 9Ij : u ~ /xl u(--,.). 
0 0 - /~/~ 

This result coincides with the unitary representation of 
inversion on the one-particle Hilbert space of the free scalar 
massless field given by Swieca and Volkel. 

Note that 9I and 9R are well defined in the subspace 
U Ns of N spanned by elements with vanishing radial 

R>O R . 
component. In part1cular we have 9RES 9R= Es , 

R1 .R2= R2, and we have the inversion property R1 R2 

Lemma 2 

(34) 9RES = Es , for m~O. 
R R 

Proof: }'or h 4Ns the transversal! ty V.h=O implies 
just x.h=O, hence R passing to spherical coordinates 
x=(r,~) e. Rn, h= JR! = (0, bft0!). 

Q.E. D. 

12 

~ 

• 

3. Refledion positivity and Hamiltonian semi-groups 

First we remark that the localizations of the transverse 
Euclidean one-particle states in A+, S

0 
and in some other 

closed subsets of R4 we can describe in momentum represen
tation, and we need not refer to coordinate representation 
at all. 

Using a version of the Paley-Wiener-Schwartz theorem , 
we find that the components }'{1"(.,~) for h""-N+, m;:::>O, have 
analytic continuations to the complex half-plane c+={p0 : 

Im p
0
>0J a.e. with respect to the J..ebesque measure d3p. 

More precisely 

(35) ~ 2 dp 2 2 0 ~ hf(. ,~) €. HL ( 
0 2 'l), w= + E +m , 

(p ) +W 

V AI 2 3 V .t.J 'It,.. in particular hr· t L (d p/2w), where h1"(~)= h1 " (iw(~),~) 

denotes the restriction of the Laplace transform of ~(x) 

to V:· A similar result we get for m=O. 
Then by continuity arguments, for hO:::: NS = Nl)N_ 

finite c17 ° 
hf'(p)= E (ip0

) ff(~), 
Jl=o, 1, 2 ••• 

(36) 

which in coordinate representation exoresses the fact 
that hf(.,~) is a finite derivative of ~(x0 ). 

From !!hf/1 < 0(7 follows ~=0, /11=0, 1, 2, 3. From the 
transversality

1 p.~(p)=O a.e. we derive h 0 =0. Then we 
Na IVa "' 

get //h II = /If 11_112' 3=1,2,3 and ~·.f.=O. Therefore, 
in momentum1 representation, any element heNS has 
the form h= J f = (O, 1sf>, f€. Me • 0 

o- -

Lemma 3 E+90 E+ ? 0. 

Proof: For real h~N+ by the Cauchy integral formula 

f J 0 [ tf!JJ.~rfl t"YJ) 11 
(37) <h,9oh~= d3p ~ g ho (~)h (~)j 

p0 +iw p +1W 

.f,3 I v 2 v 2 
= JC J d P w <- /h 

0 I + lhl ) . 
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The property 9.h=O implies 

(38) 
vo v v 

w/h 1=/E_.'QI ~ w/'Q/ a. e., 

and since Q
0 

is symmetric in the real part Nr , (37) 
generalizes to complex h as well. With the decomposition 
h = 1@ 1 we can rewrite the nominator as 

(39) 
N ~~<g n- 2-"o No g v o 1·1- - /v/ 1 (1 )-, V= (1,-E_P /k2), 

hence 

(40) 
v 2 -1v 2 

<h,G
0
h> = Zllta/1 +m2 //k 1°// 

N -1/2 -1/2 
Q.E.D. 

a=1,2, 3 

}' rom the formula (40) we expect E+QoE+ ~ Es
0 

as mf 0. 
By an argument of Hegerfeldt this may happen if and only 
if E+E- = Es , m=O. Conversely, for m?' 0 the Markoff property 
with respect0 to the hyperplane S is valid in the subspace c 0 
N only. Note that the discussion on page 12 explains the 
reflexivity G

0
Es = Es , m=::O. 

0 0 

Moreover, Es = Ces 
0 0 

since C and 

s - I 0 NS = l hE' N : h =0, '{.Q.=O and 
0 

( 41) 

Lemma 4 The localization A -- Nl\ 

es commute in 
0 

supp h? S
0 
S . 

N1 and 

defined by formula (16) 
satisfies the Markoff property, exactl:~: for m=O. 

Proof: We shall prove the Markoff property with respect 
to S

0 
, however, our 

surface. Let be ~ 

'ftfl G S (11 !n t) • Then 

proof generalizes to any smooth hyper
a vector test function with components 

Elf eN, and for given h6 N_ 

(42) (E+h,~)= <E+h' (-6+m2 )Elf> 
N 

vanishes exactly for m=O, since then (-L~l+m2 )Etp has 
support in l!+int, too. Therefore, E E = E (E E)= Es , m=O. 

+ - - + -
0 

Q.E.D 

14 

-~ 

I 

• 

In the momentum representation the !lar~off property 
for m=O results from the fact that p2sMV(p) is a polynomial. 

Naturally there arises the question of a possible orthogonal 
local decomposition inN with respect to a given sufficiently 
smooth hypersurface. For the hyperplane S

0 
- and similar for 

any other by Euclidean covariance - let us regard the subspaces 
N;::-- = N+ f) Ns

0 
and ~ with the corresponding projection 

operators in N 1 E~ , where E< = G
0

E>G
0

• 

For m=O the problem is solved by the identity 

(43) E/"@ E< $ Es = 1N' 
0 

which results from the Markoff property. However, for m:>O 
(40) implies that <i,G

0
l>N f, 0 for some 1 € N~. Hence 

in this case N;::-- and N< are not <rthogonal to each other 
and there is no such kind of partition of unity. 

Explicitely, using tha~ the Fourier transform of 
for m=O is just ~ 

4:Jl"j~j 

(44) <1. 9 1> = -1' r di ;y 
o N ~ /~-~/ 

R3xR3 

taO 

j 1°(s,~)l0 (-s,~)ds 
-IYJ 

=0. 

N 2 
/v(p)/ 

~ 

Having reflection positivity in the Euclidean one-particle 
space N 
First we 

we can start the Osterwalder Schrader reconstruction. 
regard the "physical subspaces" in N which we 

shall denote by NM and NMC , respectively . 
-111 ph 

Lemma 5 Let us define for 
Then NMC = Ns and using 

ph 0 

m~O NM= N E) fh: E h=Ol_ Ot' + - J 
J+jN (s)=:J~ 

so 0 

(45) 0 NN = Ns @ran Js , for m;::-0. 
m o o 

Proof: The Markoff property in NC implies that 

{te:N~: E_t=OJ = Ng,. , hence NMC = NS for m;:::-0. 
0 
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Then ran J~rN+(s)= N+n ker C gives for 1= J 0u + 
v 

(46) IV 2 0 U 1\ E+QOE+ 1 = m J+ -- 2 , supp u c . 
(w+IEI) + 

N 
For (46) if u(iw,E)=O a.e., 

(E Q E ) 1/ 2 to NO 

m70 vanishes exactly 

and the restriction of the operate~ 

corresponds to the map ~ ~ ~ 
Performing the Fourier w+IEI 

+O+ i>\n 
in L2(d3p/2w). 

Euclidean time variable 
transformation 

we find for 1 e N~ 
in the 

(47) 

o m 
0 0 0 -IE/X IV 

l(x ,E)= (1,-iEV' /k2) Q(x )e IE/u(E). Q.E.D. 

The lemma 5 allows an isometric embedding of the relativistic 

one-particle space M into the Euclidean. However, it is more 

convenient to regard the canonical map W: N+ ~M 
defined by the relation 

(48) 

Lemma 6 

(49) 

Proof: 
pGVm 

+ 

(50) 

2 
<"h, 9 

0
h> = //Wh// 

N M 

rJ .vo v 
Wh = (-~h ,g) , for m>O. 

Formally, W is analytic continuation from 
and E fix. Using 

W: (1,-EPo/k2) ~k ~ 
p +ik 

(1,Ew/k2) -ik 
W+k 

2 -1v 2 
we see that <'1, Q 1> = m //k 1° II • Moreover, 

e 
Tp to Tp' 

0 
N 1/2 W correctly changes the metric, - transversality and 

conjugation from relativistic to Euclidean. 

Alternatively, W will define a map to 

gauge and for m;>O to the factor space 

starting from the factor space 

M h in the Lorentz 
P L2 CI'~v~) , 

(51 ) N+ 
1
{h: E_h=05 

Q.E.D. 
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• 

In the section 2 we remarked that those Euclidean 

rotations, translations and reflections which leave the 

hyperplane S0 invariant - here shortly denoted by g=(~,E,£) -

-~unitary representations g ~ug in Mm. Using 
the canonical map W we get 

(52) uil WTg in N+. 

Lemma 7 For Euclidean time translations 

the relation (52) generalizes to UsW 

with Im s < 0. Hence for h,h' E N+ 

-tH
0 

gt: so~st • 
WTt, for t=is 

(Wh',e Wh)~, t~O. (53) <h' ,QoTth>N = 
m 

For m=O 

(54) 
c j~ 

ug;~ = JoTg,)/o 

-/t/H~ -J' 
e = JoTtJo (free Feynman-Kac-Nelson formula), 

in M~h· Moreover, the dilatations T~ generate a 

continuous multiplicative semi-group of self-adjoint contractions 

in the subspace Ns = i h€ N: 'V.h=O and supp h~'c SR \ 
R 

(55) D~= ESRTrl' "~1. 

Proof: The first part of the lemma simply generalizes 

Nelsons reconstruction of the free scalar Hamiltonian to the 

vector model. Since Tt and es commute with the projection C 

and ECQ+Ec= Es = Ces , (53) 0 follows from 
+ 0 0 

!II m2 0 v 
E+90 E+ Ttl = -- 2 JS (Ttu), 

(W+/E/) o 
(56) 

for l=J~ u, f.i:"e L2 (d3p/2w). 

The fac~ that ~ D~: i\ ~ 1 ~ - and similar for A~ 1 

defines a self-adjoint semi-group in Ns , m=O, follows from 

the Markoff and inversion properties. R Q.E.D. 
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In a forthcoming publication we will prove that in 
the parametrization ~ = ect/R, t 2;0, the semi-group can 
be expressed in the form 

(57) 

Summary: In part I of our paper we have shown that the 
notion of transverse gauge is a good concept for the 
description of one-oarticle states of the free vector meson 
quantum field of mass m>O and the photon field, respectively. 
We derived the Hamiltonian semi-groups from a corresponding 
Euclidean model. 

In the parts II and III we shall discuss the main properties 
of Euclidean transverse random fields.(JINR-preprints E5-I2779,I278I) 
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