L-85

ОбъӨДИнеНный
ИНСТИTYT
ЯдерНых исследований

дубна

E5-12780
J.Löffelholz

EUCLIDEAN FIELDS:
VECTOR MESONS AND PHOTONS

Евклидовые поля: Векторные мезоны и фотоны

Рассматривается свободное поперечное векторное поле частиц масс ■ ≥ 0. Модель относится к обычной теории квантовых полей свободного векторного мезонного поля и свободного элеқтромагнытного поля посредством расщирения от поперечных к произвольным пробным функииям. Мы описываем одночастичные состояния в поперечной калибровке и их локали зацию. Докажем физическуо полотительность. Мы даем евклидов подход к Фотонному полю в сферическом мире, используя дилатационную инвариант ность и инверсии.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследовании. Дубва 1979

Löffelholz J.
E5 - 12780
Euclidean Fields: Vector Mesons and Photons
We study free transverse vector fields of mass $m \geq 0$. The model is related to the usual free vector meson and electromagnetic quantum field theories by extension of the field operators from transverse to arbitrary test functions. We describe the one particle states in the derive free Feynman-Kac-Nelson fotmulas. We give an Euclidean pproach to a photon field in a spherical world using dilatation covariance and inversions.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Instifute for Nuclear Research. Dubna 1979
0. Introduction and content

It was Schwinger in 1958 who first argued that Euclidean Q.F.T. may be a "possible avenue for future development of field theory". Now, 1979, it has already a long history. Stimulated by the progress in scalar $P(\phi)_{2}$-theory from 1972, the techniques exploited by Nelson and others have been used to deacribe in the Euclidean region also Fermi and other higherspin fields even if gauge fields are included in the interactions

The basic idea is to pass from Minkowski to Euclidean spacetime which brings the structural aimplification of positivedefinite metric and, in the case of Boson models we will discuss, the main technical advantage of commuting random variables. However, once having the Euclidean formulation of a quantum field theoretical problem it yields an interesting mathematical model itself, and we can forget about the "physical background". In fact, the reflection positivity - together with Euclidean covariance and a regularity condition - always guaranties the backward step to Minkowski space-time.

In particular, the free vector meson and electromagetic quantum field theories have unique Buclidean formulations via the reconstruction of Osterwalder and Schrader. They were given by Yao, Gross, Guerra and others. Independently, in 1974 we have found the quantum and Euclidean modela for the photon field in terms of transverse potentials and derived them from corresponding massive theories as limits m $\downarrow 0$. We avoided the well known problem of quantizing the free Maxwells equations, restricting
the vector potentials to transversal test functions in the Lorentz or Coulomb gauge.

Applying the above idea to the massive case we have defined also the quantum and Euclidean models for the free vector meson field in the transverse gauge. The main result of our paper is that reflecion positivity and reflexivity hold for $\mathrm{m} \geq 0$, even for the Euclidean models on a lattice.

However, the Markoff property can be recovered exactly for the Euclidean photon field theory. We have studied a nice analogy to classical magnetostatics and end with the following interpretation of reflection positivity:

Let $\left\{m_{i}\right\}_{i \in I}$ a finite set of magnetic dipoles localized in the open right half-space $\Lambda_{+}=\left\{r=\left(r^{0}, \underline{r}\right): r^{0}>0\right\}$ and $A(h)$, $h=\sum_{I} \nabla x\left(m_{i} \delta_{a_{i}}\right)$, the related Euclidean random field. Then

$$
\left\langle\stackrel{e}{A}(h) \stackrel{e}{A}\left(\theta_{0} h\right)\right\rangle=-\sum_{i, j \in I} m_{i} \cdot K\left(a_{i}-\theta_{0} a_{j}\right) \theta_{0} m_{j} \geq 0
$$

because it is just the expression for the Coulomb interaction energy of the set of electric dipoles $\left\{m_{i}\right\} \quad$ with their mirror images with respect to the hyperplane $S_{0}=\left\{r: r^{0}=0\right\}$. Above θ_{0} denotes reflection at S_{0} and K the coupling matrix of the dipoles.

The paper consists of three parts which are organized as follows: (cF. JINR preprints E5-I2779, I278I for the parts II and III)
I. Vector Mesons and Photons: 1. One-particle states in the transverse gauge, 2. Localization, Euclidean and dilatation covariance, 3. Reflection positivity and Hamiltonian semigroups,
II. Quantum and Random Fields: 1. Vector meson field in the Stickelberg gauge and photon field in terms of $\mathrm{F} /{ }^{M / V}$,
2. Second quantization, 3. Transversal self-interaction,
III. Lattice models: 1. Transversal lattice fields, 2. Steady currents and magnetic dipoles, 3. Conclusions.

1. One-particle states in the transerse gauge

Let be $\left\{n_{\mu}: \mu=0,1,2,3\right\}$ the Carthesian basis in R^{4} and $a, b \rightarrow a b=g^{M} a^{M} b^{\prime}=-a^{\circ} b^{\circ}+\underline{a} \cdot b$ the indefinite metric. In the momentum space we heve the upper mass hyoerboloids $v_{+}^{m}=\left\{p=(w, \underline{p}): w=+\sqrt{p^{2}+m^{2}}\right\}$, $m>0$, and the forward light cone $v_{+}^{0}=\{p=(k, p): k=+/ p /\}$. For $m \geq 0$ we introduce the tangent planes with respect to points $p \in\left(V_{+}^{m} \backslash p\right), p=(m, \underline{0})$,

$$
\begin{equation*}
T_{p}=\left\{h \in c^{4} ; p h=-w h^{0}+p \cdot \underline{h}=0\right\} \tag{1}
\end{equation*}
$$

Note that $T_{\mathrm{p}} \mathrm{IC}^{3}$. Moreover, I_{p} ia well defined if $\mathrm{m}>0$. We construct helicity basis $\left\{\nabla_{\lambda}: \Lambda_{\lambda}=\lambda_{\lambda}, \lambda=0, \pm 1\right\}$ on T_{p} as follows. For given $n \in R^{3}$ non-colinear in p

$$
\begin{equation*}
v_{0}=\left(1, \underline{p w} / k^{2}\right), \quad v_{ \pm 1}=\left(\underline{n}-\underline{p}(\underline{p} \cdot \underline{n}) / k^{2)} \pm \underline{p} \pi \underline{n} / k .\right. \tag{2}
\end{equation*}
$$

We now define the one-particle hilbert space in the transverse gauge for the free vector meson quantum field of mass m>0 as the direct integral

$$
\begin{equation*}
M_{m}=\int_{\substack{+m \\ v_{t}^{m}}}^{T_{p} \frac{d^{3} p}{2 p_{0}} .} \tag{3}
\end{equation*}
$$

As an operator in $M_{m} \Lambda$ is called helicity and the square $C=\Lambda^{2}$ Coulomb projection, where

$$
c^{\mu \nu}(p)= \begin{cases}\delta^{N \nu}-\frac{p^{\mu} p^{\nu}}{\underline{p}^{2}} & \mu_{0}^{\nu}=1,2,3 \tag{4}\\ 0 & \text { otherwi:e. }\end{cases}
$$

They allow a unique decomposition $\tilde{h}=\tilde{t} \oplus \tilde{i}, \tilde{t} \in M_{m}^{C}$, where

$$
\begin{equation*}
\mathrm{M}_{\mathrm{m}}^{\mathrm{C}}=\operatorname{ran} \mathrm{C}=\left\{\hat{\mathrm{h}} \in \mathrm{M}_{\mathrm{m}}: \hat{h}^{\circ}=0\right\} \tag{5}
\end{equation*}
$$

and leker C. The restriction to V_{+}^{m} defines a unitary equivalence

$$
\begin{equation*}
M_{m} \underset{\mu}{\mu} \sum_{L^{+}}\left(R^{3}, \frac{d^{3} p}{2 w}\right) \cap\left\{\tilde{B}:-w^{\circ}+\underline{p} \cdot \underline{E}=0 \quad \text { a.e. }\right\} \tag{6}
\end{equation*}
$$

In particular $/ / 1 / /=m / / \frac{T^{\circ}}{K^{\circ}} / L^{2}\left(\frac{d^{3} p}{2 w}\right)$, hence for $m=0$ -
 put the factor apace

and in the Coulomb gauge $M_{p h}^{C}=y_{m}^{C}, m=0$. We Write shortiy M for M_{m} and $M_{p h}^{C}$, reapectively. $B y$ the conjugation
(8) $\quad \mathrm{h} \rightarrow\left(\mathrm{h}^{*}\right)^{\mu}(\mathrm{p})=\mathrm{g}^{\mu \nu} \bar{h}^{\nu}(-\underline{p})$
we select a *-real part M_{r}. For $m>0$ we have dense subspaces $S^{T}\left(V_{+}^{\mathrm{M}}\right)$ in \mathbb{M}_{m} of smooth transverse test functions \tilde{h} on V_{+}^{m} which satisery $\hat{h}(\hat{0})=0$, and similar $\hat{h}(0)=0$ for $\hat{h} \in \mathbb{S}^{T}\left(\nabla_{+}^{0}\right)$. Gross has identified M_{m} with a Hilbert space of weak vectorvalued solutions of the Procca field equations and $M_{p h}$ with a Hilbert space of Maxwells equations in vacuum [Gr]. Using the L_{+}^{\uparrow}-invariant tempered measure $d w_{+}^{m}=\theta\left(p^{0}\right) \delta\left(p^{2}+m^{2}\right) d^{4} p$ in R^{4} and the projection $\tilde{P}(p): C^{4} \rightarrow T_{p}$

$$
\begin{equation*}
{ }_{P}^{A} \mu^{\mu}(p)=g^{\mu \nu}+\frac{p_{\mu} P_{\nu}}{m^{2}}, \tag{9}
\end{equation*}
$$

we can redefine the one-vector-meson space as $M_{m}=L^{2}$ (Ydw ${ }_{+}^{m}$) not specifying any gauge.

Therefore in the Euclidean formulation it seems natural to introduce for $m \geq 0$ the Hilbert spaces
(10) $\quad N_{m}=L^{2}\left(\frac{\sum^{N} d^{4} p}{p^{2}+m^{2}}\right), \quad N^{M N}(p)=\delta^{M \nu}-\frac{p^{M} p^{\nu}}{p^{2}}$,
where $p^{2}=p^{2}+\left(p^{0}\right)^{2} \geq 0$ and for $p \not \xi_{0} 0 \quad E(p)$ are the projections onto the Euclidean transverse planes $T_{p}=\left\{h \in C^{4}: p \cdot h=0\right\}$. Passing to spherical coordinates $p=(\rho, \underline{\omega}) \in R^{4}, \underline{\rho}=/ p /$, the Euclidean counterpert of depinition (3) is $N_{m}(\rho)=\int_{\rho}=\{p: / p /=\rho\}$. However
S_{p} (11) $\quad H_{m}=\pi^{2} / 2 \int_{0}^{\infty} \oplus N_{m}(\rho) \frac{\rho^{3} d g}{\rho^{2}+m^{2}}$.
i.e. $N_{\text {m }}$ is reducible with respect to the Euclidean group.

We write shortly N for $W_{m}, m \geq 0$. The natural conjugation
 space $\mathrm{s}^{\text {T }}$ in H_{m} - independend of the mass m - of amooth transverse test functions h in. R^{4} which satiofy point-wise p. $\boldsymbol{h}(p)=0$ and $\tilde{h}(0)=0$. The set
(12) $\quad \mathrm{H}^{\mathrm{C}}=\left\{\mathrm{h} \in \mathrm{N}: \mathrm{h}^{\circ}=0\right\}$
is a closed subspace in \mathbb{N} and it defines a projection $\mathrm{C}_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}$. Let be $N(s)=L^{2}\left(R^{4}, \frac{d 4 p}{p^{2}+m^{2}}\right)$ Nelsons one-particle Hilbert space for the free Eucl. $p^{2}+m^{2}$ scalar field of mass $m \geq 0$. Then
(13) $\quad J_{+}^{0}: \quad{ }^{v} \rightarrow\left(1,-p p^{0} / k^{2}\right) \frac{k u^{\prime}}{1 p^{0}+k}, k=+/ p /$,
is a unitary map from $N(s)$ onto $M^{0}=k e r \stackrel{\ominus}{C}$.

In the next section we pass to the description of the oneparticle states in the coordinate representation, by the formal Fourier transform in R^{n}
(14) $\quad h^{\mu}(x)=(2 \pi)^{-n / 2} \int_{R^{n}}^{1 p \cdot x} e^{N^{\mu}(p) d^{n} p \text {. }}$
U.ing the correspondence $w \rightarrow\left(-\Delta+m^{2}\right)^{1 / 2}$ in R^{3}, we can identify $M(1)=L^{2}\left(R^{3}, \frac{d^{3} p}{2 w}\right)$ with the dual of the Sobolev apace $H_{+}\left(/ R^{3}\right)$ and we denote the norm by $/ / . \|-y 2$. Similar $p^{2} \rightarrow-\Delta$ in $+1 / 2$ pace-time R^{4}. We write $/ / \cdot / /-1$ for the norm in $N(s)$, even for $m=0$.

2. Localization, Euclidean and dilatation covarianc

By Pourier transform we identify the Euclidean one-particle soaces $N_{m}, m \geq 0$, for the free Euclidean vector meson fields of masses m with the Hilbert opaces of tempered vector-valued distributions

$$
\begin{equation*}
\sum_{\mu}^{\oplus} S\left(R^{4}\right) \cap\left\{h=\left(h^{0}, \underline{h}\right): \nabla \cdot h=0, \quad / / h^{\mu} / /_{-1}^{2}=\int_{R^{4}} / h^{\mu}(p) /_{p^{2}+m^{2}}^{2} \frac{d^{4} p}{2}<\infty\right\} \tag{15}
\end{equation*}
$$

We introduce a localization in N - different from the usual one - as follows: For given closed subsets Λ in R^{4} we let

$$
\begin{equation*}
N_{\Lambda}=N \cap \sum_{\mu}^{(\oplus)} S(\Lambda)^{\prime}=\left\{h \in N: \operatorname{supp} h h^{\mu} \subset \Lambda\right\} . \tag{16}
\end{equation*}
$$

Those subspaces N / Λ are closed in N and we associate with the above localization the family of projections $\left\{E_{\Lambda}: \Lambda\right.$ closed $\}$. If $N^{N} \wedge$ then also $N_{S=\partial \Lambda}$ is non-trivial, where ∂A denotes the boundary of A. We have $N=U \quad N_{S}$, however, in contrast to the scalar case

all S

(17) U $N_{S}=N^{C}, S_{t}=\left\{x=\left(x^{0}, \underline{x}\right): x^{0}=t\right\}$
$\mathrm{t} \in \mathrm{R}$
is a propper subspace. More general, by Gauß' law the elements h in $N^{\prime} \Lambda$ should have vanishing normal component $h_{n}=0$ with respect to the boundary surface $S=2 \Lambda$. N is localikable in the sense that the set of smooth transverse teat functions
(18) $\left\{n=\Delta E_{\mu} u: u \in S\left(\theta^{\prime}\right)\right.$, σ open $\}$
is just S^{T} which is dense in N. Fixing θ^{\prime} with closure Λ, the Hilbert space completion $N(\Theta)$ in N coincides with N / \wedge. Note that the operator $\Delta \mathrm{E}$ in (18) is local and continuous in the Schwartz topology.
Figure 2

The localization of particle states in quantum field theory is atill problematic. The Wightman approach uses a suitable family of projection-valued measures on the 5 -algebra of Borel sets in R^{3} and their eigenstates in the correapondiag one-particle Hilbert space for a free field. In this sense vector mesons are localizable.

However, the photon position operator Q^{C} in $\mathrm{w}_{\mathrm{ph}}^{\mathrm{C}}$ hes noncommuting components and Fleming argued maximal localizebility of photons to be on hyperplanes. But contrary to that conjecture Jadczyk and Jancewicz found generalized helioity states of photons on a curve C in $R^{3} \quad \underline{h} C_{\lambda}, \lambda= \pm 1$, for \mathscr{C} a atright line and a circle. Due to (2) they are

$$
\begin{align*}
& \underline{h}_{ \pm 1}^{と}=(\Lambda \pm 1) \Lambda U_{\underline{t}}^{C} \tag{19}\\
& \underline{g}^{C}=U C x C U
\end{align*}
$$

where $t^{C} \in \sum^{3}{ }^{\oplus} S(C)^{\prime}$ is a normalized tangential vector field on C and $U: M_{p h}^{C} \rightarrow L^{2}\left(\underline{C d}^{3} x\right)$ a unitary mapping.

In the next section we prove that for $m=0$

$$
\begin{equation*}
J_{0} \underline{\tilde{h}}=\left(0, \delta_{0} \emptyset \underline{h}\right) \tag{20}
\end{equation*}
$$

defines an isometric embedding of M^{C} in N with ran $J_{0}=\mathrm{N}_{S_{0}}$, hence we can identify the photon states described above with the elements $J_{0} \underline{h}_{\lambda}^{\mathcal{C}} \in \mathbb{N}$. It would be nice to derive them from the locelization in the Euclidean model.

Next we deacribe some covariance properties of the one-particle spaces . For $m>0$ the Hilbert space M_{m} carries an irreducible unitary represeatation $g \rightarrow U_{g}, g=(a, L)<1 I_{+}^{\mathcal{N}}$, of the inhomogeneous restricted Lorentz group defined formally by
(21). $\quad\left(U_{g}^{N}\right)^{\mu}(p)=e^{\text {iap }} L^{\min \nu}\left(L^{-1} p\right), p \in V_{+}^{\text {m }}$.

In particular $\quad U_{t}=e^{-i t H_{0}}$ denotea the one-parameter group
of time evolution with the flat Hamiltonian $H_{0}=+\sqrt{g^{2}+m^{2}}$. Time and space reversal are excluded from L_{+}^{\uparrow}. Let be $\theta \mu$, $\mu=0,1,2,3$ reflections at the hyperplanes $S_{\mu}^{+}=\left\{x \in R^{4}: x /=0\right\}$.

The helicity operetor Λ is a Casimir for $m=0$. Since Λ anti-commutes with space reflection U_{θ} the one-photon space $\mathrm{m}_{\mathrm{ph}}^{\mathrm{C}}$ is irreducible for the representation
(22) $\quad \mathrm{g} \rightarrow \mathrm{CU}_{\mathrm{g}} \mathrm{C}^{-1}, \mathrm{~g} \in \quad 1 \mathrm{I}_{+} \mathrm{UQ}$

$$
u_{\underline{\theta}}: \mathbb{M}^{+1} \rightarrow \mathbf{u}^{-1}
$$

where C^{-1} denotes the inverse of the unitary map from the Hilbert space $M_{p h}$ of one-photon states in the Lorentr gauge to $M_{p h}^{G}$. The full covariance group in $M_{p h}^{G}$ is the conformal
group. group.

For $m \geq 0$ the Euclidean one-particle apace N_{m} carries a reducible unitary representation $g \rightarrow T g, g=(a, R) \in 10(4)$, of the inhomogeneous Euclidean group defined formally by

$$
\begin{equation*}
\left(T_{g}\right)^{\mu}(x)=R^{m / h^{\nu}}\left(R^{-1}(x-a)\right), \tag{23}
\end{equation*}
$$

and $T_{\theta \mu}$ are also well defined unitary self-adjoint operatore in N. In particular for reflections at S o

$$
\begin{equation*}
\left(T_{\theta_{0}} h\right)^{\mu}(x)=g^{\prime N} h^{\nu}\left(-x^{0}, \underline{\underline{x}}\right) \tag{24}
\end{equation*}
$$

we write shortly θ_{0}. The localization in N is related with covariance by
(25) $\quad T_{g} \mathbb{E}^{T^{T}}{ }^{-1}=E_{\Lambda_{g}}, g \in i 0(4) U\left\{\theta_{\mu}\right\}$.

Let $E_{ \pm}$denote the projections in N onto the subspaces spanned by elements with support in the half-spaces
(26) $\quad \Lambda_{+}=\left\{x \in R^{4}: x^{0} \geq 0\right\}$
$\Lambda_{\text {_ and on }} S_{0}=\Lambda_{+} \cap \Lambda_{-}$, respectively. Then $\theta_{0} E_{+} \theta_{0}=E_{-}$, however, the reflexivity $\theta_{0} E_{0}=E_{0}$ is a non-trivial property. Note that the intersection of the relativistic and Euclidean groups,$O(3)=L_{+}^{\uparrow} \cap O(4)$, consists exactly of ell transformations which leave the hyperplane $S_{o} \underline{N}^{3}$ invariant.

For $m=0$ the full covariance group in N is the Euclidean conformal group. We discuss dilatations $x \rightarrow \lambda x, 0<\lambda<\infty$, invarsions $\theta_{I}:\left.x \rightarrow \frac{-x}{\mid x}\right|^{2}$ and reflections at the spheres $S_{R}=\left\{x \in R^{4}: / x /=R\right\}$

$$
\begin{equation*}
\theta_{R}: x \rightarrow\left[\frac{R}{/ x /}\right]^{2} x \tag{27}
\end{equation*}
$$

For mpace-time $R^{n}, n \geq 3$, on the domain $\sum_{C_{0}}^{\infty}\left(R^{n} \backslash 0\right)$ we introduce the diagonal operators
(28)

$$
\left.T_{\eta} h(x)=\right\rangle^{\frac{n+2}{2}} h(\lambda x), \theta_{I} h(x)=/ x /^{-(n+2)} h\left(\theta_{I} x\right)
$$

$$
\text { and } \theta_{R}=\theta T_{\lambda} \theta_{I} T_{\lambda}^{-1} \theta, \lambda=R \text {, where } \theta: x \rightarrow-x \text {. Note that }
$$

(29) $\quad \theta_{I} T_{\lambda} \theta_{I=}{ }^{T} \lambda^{-1}$.

The Fourier transform gives $T_{\lambda} \tilde{h}(p)=\lambda^{1-n / 2} \eta \not h\left(\lambda^{-p}\right)$, hence the operatora of dilatations conserve the transversality $p . \tilde{h}(p)=0$ and build a multiplicative unitary group in N, $m=0$, while for $m>0$ they reacale the mass parameter, too.

Since θ_{I} does not commute with the projection E, we shall study these operators first in $N^{\prime}=g^{G} N(s)$ with the scalar product given by the kernel

$$
\begin{equation*}
c_{n} \frac{\delta_{m} / x-y / n-2}{} \tag{30}
\end{equation*}
$$

where c_{n} is the area of the unit aphere in R^{n}.
Lemma 1 $\theta_{\text {I }}$ is a unitary self-adjoint operator in \mathbb{N}^{\prime}.
Proof: On the dense set $\left\{n=n^{\prime \prime \prime} e^{/ x / 2} D(x) e^{-2 / x /}\right\}$, where D is any differential operator with constant coefficients in R^{n}, θ_{I} is well defined and symmetric. The fect that θ_{I} is isometric depends on $d^{n}\left(\theta_{I^{x}}\right)=(-1)^{n+1} / x / /^{-2 n_{d}}{ }^{n}$ and

$$
\begin{equation*}
/ \theta_{I^{x-\theta}} y /=\frac{\mid x-y /}{/ x / . / y /} \text { for } x \neq y \tag{31}
\end{equation*}
$$

Figure 3

Of course for $a \in R^{n}, \theta_{I} I^{2}{ }^{\theta} I$ are unitary operators in N^{\prime}, $m=0$, of special Euclidean conformal transformations. Since dilatations leave the hyperplane S_{0} invariant
(32) $\quad U_{\lambda}^{C}=J_{0}^{*} T_{n} J_{0}$
are unitary operators in $M_{p h}^{C}$. In the acalar case, let us denote by $j_{0}: \mathcal{u}^{\sim} \rightarrow \delta_{0}$ the isometric embedding of $L^{2}(d \underline{m} / k)$ in $N(s)$ with ran $j_{0}=N_{S}$ (s). Then in coordinate representation and for apace-time of dimension $n=d+1 \geq 3$, we find
(33) $j_{0}^{*} \Theta_{I_{0}}: u \rightarrow / \underline{x} /^{-(d+1)} u\left(\frac{-\underline{I}}{/ x /^{2}}\right)$.

This result coincides with the unitary representation of inversion on the one-particle Hilbert space of the free scalar massless field given by Swieca and Völkel.

Note that θ_{I} and θ_{R} are well defined in the aubspace $\mathrm{R}>_{0} \mathrm{H}_{\mathrm{S}_{\mathrm{R}}}$ of N epanned by elements with vanishing radial

Lemma 2

(34) $\quad \theta_{R} E_{S_{R}}=E_{S_{R}}$, for $m \geq 0$.

Proof: For $h \in N_{S_{R}}$ the transversality \quad. $h=0$ implies just $x . h=0$, hence ${ }^{R}$ passing to spherical coordinates $x=(r, \underline{\omega}) \in R^{n}, \quad h=J_{R} \underline{t}=\left(0, \delta_{R} \varphi \underline{t}\right)$.
Q.E.D.
3. Reflection positivity and Hamiltonian semi-groups

First we remark that the localizations of the transverse Euclidean one-particle states in Λ_{+}, S_{0} and in some other closed subsets of R^{4} we can describe in momentum representation, and we need not refer to coordinate representation at all.

Using a version of the Paley-Wlener-Schwartz theorem, we find that the components $\mathbb{N}^{M}(0, \mathrm{p})$ for $\mathrm{h} \in \mathrm{N}_{+}, \mathrm{m}>0$, have analytic continuation to the complex half-plene $c_{+}=2 p^{\circ}$: Im $\left.p^{0}>0\right\}$ a.e. With respect to the Lebesque measure $d^{3} p$. More precisely

$$
\begin{equation*}
\tilde{h}^{\mu}(., p) \in H L^{2}\left(\frac{d p^{0}}{\left(p^{0}\right)^{2}+w^{3}}\right), w=+\sqrt{\underline{p}^{2}+m^{2}} \tag{35}
\end{equation*}
$$

 denotes the restriction of the 2π Laplace transform of $h^{\mu}(x)$ to v^{m}. A similar result we get for $m=0$:

Then by continuity arguments, for $h \in N_{S_{0}}=N_{+} \cap N_{-}$
finite

$$
\begin{equation*}
\tilde{h}^{\mu}(p)=\sum_{c^{m}=0,1,2 \ldots}^{\text {inite }}\left(1 p^{0}\right)^{c^{M}} x^{M}(p), \tag{36}
\end{equation*}
$$

which in coordinate representation expresses the fact that $h^{\prime}(., \underline{x})$ is a finite derivative of $\delta_{0}\left(x^{0}\right)$.

From $/ / \tilde{h}^{\mu} / \|<\infty$ follows $c^{\mu}=0, M=0,1,2,3$. From the transversality $\bar{y}^{-1} p . \tilde{h}(p)=0$ a.e. we derive $h^{\circ}=0$. Then we get $/ N_{N^{B}} / /=/ / f^{\prime \beta} / /-1 / 2^{B} B=1,2,3$ and $\underline{p} \cdot \tilde{\tilde{I}}=0$. Therefore, in momentum ${ }^{-1}$ representation, may element he $N_{S_{0}}$ hes the form $\tilde{h}=J_{0} \tilde{\underline{\tilde{f}}}^{\tilde{n}}=(0,1 \hat{\underline{\tilde{f}}}), f \in \mathrm{M}^{\mathrm{C}}$.

Lempe $3 \quad \mathrm{E}_{+} \theta_{0} \mathrm{E}_{+} \geq 0$.
Proof: For real $h \in N_{+}$by the Cauchy integral formula

$$
\text { (37) } \begin{aligned}
\left\langle h, \theta_{0} h\right\rangle & =\int d^{3} p \int \frac{d p^{0}}{p^{0}+i w}\left[\frac{g^{M \nu_{h}^{* / 4}}(p) h^{\nu}(\theta p)}{p^{0}+1 w}\right] \\
& =\pi \int d^{3} p / w\left(-/ h^{v} /^{2}+/ \underline{\underline{h}} /^{2}\right) .
\end{aligned}
$$

The property \quad.h=0 implies
and since θ_{0} is mmetric in the real part $\mathbf{N}_{\mathbf{r}}$, (37) generalizes to complex h as well. With the decomposition $h=\underline{t} \oplus 1$ we can rewrite the nominator as
hence
(40) $\left\langle\mathrm{h}, \theta_{0} \mathrm{~h}\right\rangle \underset{\mathrm{N}}{ }=\sum_{\mathrm{B}=1,2,3} / / \mathrm{t}^{\mathrm{B}} / /_{-1 / 2}^{2}+\mathrm{E}^{2} / / \mathrm{k}^{-1 \mathrm{v}} 1^{0} / /_{-1 / 2}^{2}$. Q.E.D.

From the formula (40) we expect $E_{+} \theta_{0} E_{+} \rightarrow \mathbb{E}_{S}$ as m $\downarrow 0$. By an argument of Hegerfeldt this may happen if ${ }_{O}$ and only if $E_{+} E_{-}=E_{S_{0}}, m=0$. Conversely, for $m>0$ the Markoff property with respect ${ }^{\circ}$ to the hyperplane S_{o} is valid in the subspace N^{C} only. Note that the dizcusaion on page 12 explains the reflexivity $\quad \theta_{0} E_{S_{0}}=E_{S_{0}}, m \geq 0$.

Moreover, $E_{S_{0}}={ }^{C e} S_{0}$ since C and ${ }_{S_{0}}$ commute in N^{\prime} and
(41) $N_{S_{0}}=\left\{h \in \mathbb{N}^{\prime}: h^{0}=0, \underline{\nabla} \cdot \underline{h}=0\right.$ and $\left.\operatorname{supp} h<S_{0}\right\}$.

Lemma 4 The localization $\Lambda \rightarrow N /$ defined by formula (16) satisfies the Markoff property, exactly for m=0.

Proof: We shall prove the Markoff property with respect to S_{o}, however, our proof generalizes to any smooth hypersurface. Let be φ a vector test function with components $\phi^{M} \in S\left(\Lambda_{+}^{1 n t}\right)$. Then $E \varphi \in \mathbb{N}$, and for given $h \in N_{-}$
(42) $\left.\quad\left(E_{+} h, \varphi\right)=\left\langle E_{+} h,\left(-\Delta+m^{2}\right) E \varphi\right\rangle\right\rangle_{N}$
vaniahes exactly for $m=0$, since then $\left(-\Delta+m^{2}\right)$ Eep has support in $\Lambda_{+}^{\text {int }}$, too. Therefore, $E_{+} E_{-}=B_{-}\left(E_{+} E_{-}\right)=E_{S_{0}}, m=0$. Q.E.D

In the momentum representation the Markoff property for $m=0$ results from the fact that $p^{2 N M N(p)}$ is a polynomial.

Naturally there arises the question of a possible orthogonal local decomposition in N with respect to a given sufficiently smooth hypersurface. For the hyperplane S_{0} - and similar for any other by Euclidean covariance - let us regard the subspaces $N_{>}=N_{+} \Theta N_{S}$ and $N_{<}$with the corresponding projection operators

$$
\text { in } N, E_{\gtrless} \text {, where } E_{<}=\theta_{0} B_{>} \theta_{0}
$$

For $m=0$ the problem is solved by the identity

$$
\begin{equation*}
E_{>} \oplus E_{<} \oplus E_{S_{0}}=1_{H} \tag{43}
\end{equation*}
$$

Which results from the Markoff property. However, for $m>0$ (40) implies that $\left\langle 1, \theta_{0} 1\right\rangle_{N} \neq 0$ for some $1 \in N_{+}^{0}$. Hence in this case $N_{>}$and $N_{<}$are notarthogonal to each other and there is no such kind of partition of unity.

Explicitely, using that the Fourier transform of $\frac{/ \tilde{v}(p) /}{p^{2}+m^{2}}$ for $m=0$ is just $\frac{\delta(x)}{4 \pi / \underline{x} /}$
(44) $\left\langle 1, \theta_{0}, 1\right\rangle=-\iint_{N} \frac{d^{3} x d^{3} y}{/ x-y /} \int_{-\infty}^{+\infty} 1^{0}(s, \underline{x}) 1^{0}(-s, y) d s=0$.

Having reflection positivity in the Euclidean one-perticle space N we can start the Osterwalder Schrader reconstruction. First we regard the "physical subspaces" in N which we shall denote by $N_{M_{m}}$ and N_{M}^{C}, respectively.
Lemma 5. Let us define for $m \geqslant 0 \quad N_{w_{1}}=N_{+} \ominus\left\{h_{n}: B_{-} h=0\right\}$. Then $N_{M_{p h}}^{C}=\mathbb{N}_{S_{0}}$ and using $J_{+}^{0} \int_{N_{S}}(s)^{=i J_{S_{0}}^{+}}$

$$
\begin{equation*}
\mathrm{N}_{\mathrm{N}_{\mathrm{m}}}=\mathrm{H}_{\mathrm{S}_{0}} \oplus \operatorname{ran} \mathrm{~J}_{\mathrm{S}_{0}}^{0}, \text { for } \mathrm{m}>0 \tag{45}
\end{equation*}
$$

Proof: The Markoff property in N^{C} implies that $\left\{t \in N_{+}^{C}: E_{-} t=0\right\}=\mathbb{N}_{>}^{C}$, hence $N_{M} C=N_{S}$ for $m \geq 0$.

Then $\quad \operatorname{ran} J_{+}^{0} \bigcap_{N_{+}}(s)=N_{+} \cap$ ker C gives for $1=J_{+}^{0} u$

$$
\begin{equation*}
E_{+} \theta_{0} E_{+} \tilde{N}=m^{2} J_{+}^{0} \frac{\underline{\mathbf{v}}}{(w+/ \underline{p} /)^{2}} \text {, supp } u \subset \Lambda_{+} . \tag{46}
\end{equation*}
$$

For $m>0$ (46) vanishes exactly if $\tilde{u}(i w, p)=0$ a.e., and the restriction of the operator $\left(E_{+} \theta_{0} E_{+}\right)^{T / 2}$ to N_{M}^{0} corresponds to the map $\tilde{u} \rightarrow \frac{m \cdot \mathbb{L}}{w+/ q /}$ in $L^{2}\left(d^{3} p / 2 w\right)$. Performing the Pourier $w+/ \mathrm{p} /$ transformation in the Euclidern time variable we find for $1 \in \mathbb{N}_{M}^{O}$
(47) $\quad I\left(x^{0}, \underline{p}\right)=\left(1,-1 p \nabla^{0} / k^{2}\right) \theta\left(x^{0}\right) e^{-/ p / x^{0}} / \underline{p} / \tilde{N}(\underline{p})$. Q.E.D.

The lemma 5 allows an isometric embedding of the relativiatic one-particle space M into the Euclidean. However, it is more convenient to regard the canonical map $W: \mathrm{N}_{+} \rightarrow \mathrm{M}$ defined by the relation
(48) $\quad\left\langle h, \theta_{o} h\right\rangle_{N}=/ / \mathrm{mh} / /^{2}$.

Lerma 6

$$
\begin{equation*}
W_{h}^{\tilde{h}}=\left(-1 \hat{h}^{\circ}, \underline{\mathbf{h}}\right), \text { for } m>0 \tag{49}
\end{equation*}
$$

Proof: Formally, W is analytic continuation from T_{p} to T_{p}, T^{m} and p fix. Using $p \in V_{+}^{m}$ and p fix. Using

$$
\begin{equation*}
W:\left(1,-p p^{0} / k^{2}\right) \frac{1 k}{p^{0}+i k} \rightarrow\left(1, p w / k^{2}\right) \frac{-i k}{w+i k} \tag{50}
\end{equation*}
$$

we see that $\left\langle 1, \theta_{0} 1\right\rangle=m^{2} / / k^{-1 v} 1^{0} / /_{-1 / 2}^{2}$. Moreover, W correctly changes ${ }^{N}$ the metric, $-1 / 2$ transversality and conjugation from relativistic to Euclidean.
Alteraatively, W will define a map to $M_{p h}$ in the Lorentz gauge and for $m>0$ to the factor space $L^{2}\left(P^{\mu} v_{+}^{m}\right)$, starting from the factor space
(51)

$$
{ }^{N}+\left\{n: E_{-} h=0\right\}
$$

Q.E.D.

In a forthcoming publication we will prove that in the parametrization $\lambda=e^{c t / R}, t \geq 0$, the semi-group can be expressed in the form

$$
\begin{equation*}
D_{t}=e^{-\frac{t H}{\phi_{1}} R}, \quad H_{H} \geq \frac{2 \not 2 c}{R} \tag{57}
\end{equation*}
$$

Summary: In part I of our paper we have shown that the notion of transverse gauge is a good concept for the deacription of one-particle states of the free vector meson quantum field of mass $m>0$ and the photon field, respectively. We derived the Hamiltonian semi-groups from a corresponding Euclidean model.

In the parts II and III we shall discuss the main properties of Euclidean transverse random fields. (JINR-preprints E5-I2779, I278I)

Keferences (I)

/Ne/ E.Nelson: Probability theory and Euclidean field theory, Lecture notes in physics 25 (1973),
/JaJa/ A.Z.Jadczyk, B.Jancewicz: Maximal localimability of photons, Preprint of Wroclaw University 246 (1972),
/OsSch1/ K.Osterwalder, F.Schrader: Axioms for Euclidean Green-s functions, (Oomm. M. Physics 31 (1973),
/Gr/ L.Gross: The free Euclidean Procca and electromagnetic fields, keport to the Cumperland lodge conference on functional analysis and its applications, April (1974),
/Yao1/ T.H.Yao: The connection between a Euclidean Gauss Markoff field and the real Procca Wightman field, C.M.Ph. 41 (1975),
/VeGi/ G.Velo, J.Ginibre: The free Euclidean massive vector field in the Stickelberg gauge, Ann. Inst. P甲incare XXII, 3 (1975),
/Lö1/ J.Löffelholz: On the photon in constructive Q.F.T., Preprint Deptm. of Physics, KMU Leipzig, QFT 74/3 (1974),
/SwVö/ J.A.Swieca, A.H.Völkel: Remarka on conformal invariance, Comm. M. Physics 29 (1973),

Received by Publishing Department on September 71979.

